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Consider an experiment with two instruments available:

One instrument is very precise and produces measurements
N (θ, 1). The other instrument is older and less accurate; it
produces measurements which are N (θ, 100).

We wish to check whether a parameter θ = 0, the alternative being
that θ > 0.

Toss a fair coin and let A = i , i = 1, 2 denote that the instrument i
is chosen. Perform then the measurement to obtain X . The joint
distribution of (X ,A) is determined as

f (x , a; θ) = φ(x − θ)1{1}(a)/2 + φ{(x − θ)/10}1{2}(a)/2.

Suppose we have chosen the first instrument and observe X = 4.
Is this consistent with the assumption θ = 0?
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The p-value is

p = P(X > 4; θ = 0) = {1− Φ(4)}/2 + {1− Φ(.4)}/2 = .1723,

so there is nothing to worry about?

However, we did in fact use the precise instrument. So, with a
standard deviation of 1, a value of X = 4 should be very unlikely.
Why should it matter that we could have used the other
instrument, but didn’t?

Should we not rather have considered A = a fixed and condition on
the actual instrument used? That is, calculate the p-value as

p̃ = P(X > 4 |A = 1; θ = 0) = {1− Φ(4)} = .00003

giving very strong evidence against the hypothesis.
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A statistic A = a(X ) is said to be ancillary if

(i) The distribution of A does not depend on θ;

(ii) there is a statistic T = t(X ) so that S = (T ,A) taken
together are minimal sufficient.

Intuitively A is then uninformative about the unknown parameter.

In the example just given, A is such an ancillary statistic since
θ̂ = X can play the role of T as (X ,A) clearly is jointly (minimal)
sufficient.

The word ‘ancillary’ both means secondary and auxiliary, each
meaning referring to each of the two conditions.

Notion of ancillarity seems fundamental in statistics and is due to
Fisher, but its role is less clear than that of sufficiency.
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Various forms of the conditionality principle say that the
distribution used for inference should be conditional on any
ancillary, such as the instrument actually used.

Note this is a frequentist concept and plays little role in a Bayesian
paradigm.

In the Fisherian paradigm, we should not compare the
measurement obtained to anything we could have seen, but did
not. Rather we should define a relevant reference set of values, for
example by conditioning with an ancillary statistic, and use this set
for inference calculations.

The relevant reference set may not simply be the original sample
space!
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In a Bayesian paradigm we only consider the value observed trough
the likelihood function, which modifies the prior distribution into
the posterior.

The likelihood function when observing X = 4,A = 1 would be

L(θ |X = 4, a = 1) ∝ φ(4− θ)

which in itself gives very strong evidence against θ = 0.
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In general, if the MLE θ̂ is not sufficient, it is often possible to find
an ancillary statistic A so that (θ̂, A) is jointly sufficient. Then
since

f (x ; θ) = h(x)k{θ̂(x), a(x); θ}

we also have

f (x |A = a; θ) ∝ h(x)k{θ̂(x), a; θ}.

Thus θ̂ is sufficient when considering the conditional distribution
given the ancillary A.
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It has several time been attempted to give statistical inference a
firm foundation through so-called inference principles, for example:

I The sufficiency principle (S) says that if S = s(X ) is a
sufficient statistic, S carries the same evidence for the
parameter θ as does X .

I The conditionality principle (C) says that if A = a(X ) is
ancillary, then the conditional distribution given A = a(xobs),
carries the same evidence as the unconditional experiment.

I The likelihood principle (L) says that all evidence in an
experiment is summarized in the likelihood function.
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It has several time been attempted to give statistical inference a
firm foundation through so-called inference principles, for example:

I The sufficiency principle (S) says that if S = s(X ) is a
sufficient statistic, S carries the same evidence for the
parameter θ as does X .

I The conditionality principle (C) says that if A = a(X ) is
ancillary, then the conditional distribution given A = a(xobs),
carries the same evidence as the unconditional experiment.

I The likelihood principle (L) says that all evidence in an
experiment is summarized in the likelihood function.

Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference

Ancillarity
Conditionality

Reference set
Inference principles
Completeness
Exponential families
Basu’s Theorem

Birnbaum’s theorem

Whereas some variant of (S) and (C) are commonly accepted
among statisticians, (L) is not.

Birnbaum showed in 1972 that (S) and (C) combined are
equivalent to (L)!

Reactions on this result have been different. The theorem depends
heavily on the precise formulation of the principles (weak and
strong forms) and is therefore not generally accepted as a fact.

Bayesian inference obeys (L) in the strongest form.

Attitudes towards this fact are varied. . .
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A statistic T = t(X ) is said to be complete w.r.t. θ if for all
functions h

Eθ{h(T )} = 0 for all θ =⇒ h(t) = 0 a.s.

It is boundedly complete if the same holds when only bounded
functions h are considered.

It would be more precise to say the family of densities of T

FT = {fT (t; θ), θ ∈ Θ}

is complete, but the shorter usage has become common.

The Lehmann-Scheffé theorem says that if a sufficient statistic is
complete, it is also minimal sufficient.
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Consider an exponential family, with densities

f (x ; θ) = b(x)ea(θ)>t(x)−c(θ), x ∈ X .

If the family is linear, then T = t(X ) is boundedly complete and
sufficient.

This is a non-trivial result. The proof uses analytic function theory
and is outside the scope of this course.

The case of a linear exponential family is essentially the only case
where a complete sufficient statistic exists, or at least where this
can be proved.

For curved exponential families there is typically no complete
sufficient statistic.
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Sometimes it does not matter, whether we condition on A or not:

If T = t(X ) is complete and sufficient for θ and the distribution of
A does not depend on θ, then T and A are independent.

Here is a nice application of this:

If (X1, . . . ,Xn) is a sample from the normal distribution N (µ, σ2)
with known variance σ2 = σ2

0, it holds that µ̂ = X̄ complete and
sufficient. Since the distribution of

∑
(Xi − X̄ )2 cannot depend on

µ, it follows that X̄ and
∑

(Xi − X̄ )2 are independent.
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The proof is surprisingly simple: Let g be an arbitrary bounded
function of a and let m = Eθ{g(A)}. Note m does not depend on
θ as the distribution of A did not. Now let

h{t(x)} = Eθ[{g(A)−m} |T = t(x)]

which also does not depend on θ because T was sufficient.

Iterating expectations and using the definition of m yields

Eθ{h(T )} = EθEθ[g{A} −m |T ]

= Eθ{g(A)−m} = 0

for all θ. Completeness then implies

Eθ{g(A) |T = t(x)} = E{g(A)},

thus that A and T are independent.
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A statistic A = a(X ) is said to be ancillary if

(i) The distribution of A does not depend on θ;

(ii) there is a statistic T = t(X ) so that S = (T ,A) taken
together are minimal sufficient.

If the MLE θ̂ is not sufficient, it is often possible to find an ancillary
statistic A so that (θ̂,A) is jointly sufficient. Then we also have

f (x |A = a; θ) ∝ h(x)k{θ̂(x), a; θ}.

Thus θ̂ is sufficient when considering the conditional distribution
given the ancillary A.
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I The sufficiency principle (S) says that if S = s(X ) is a
sufficient statistic, S carries the same evidence for the
parameter θ as does X .

I The conditionality principle (C) says that if A = a(X ) is
ancillary, then the conditional distribution given A = a(xobs),
carries the same evidence as the unconditional experiment.

I The likelihood principle (L) says that all evidence in an
experiment is summarized in the likelihood function.

Birnbaum’s theorem says that (S) and (C) combined are equivalent
to (L)!

Bayesian inference obeys (L) in the strongest form.
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A statistic T = t(X ) is said to be (boundedly) complete w.r.t. θ if
for all functions h

Eθ{h(T )} = 0 for all θ =⇒ h(t) = 0 a.s.

In a linear exponential family, the canonical statistic T = t(X ) is
boundedly complete and sufficient.

The Lehmann-Scheffé theorem: if a sufficient statistic is complete,
it is also minimal sufficient.

Basu’s theorem: If T = t(X ) is (boundedly) complete and
sufficient for θ and the distribution of A does not depend on θ,
then T and A are independent.
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One instrument produces measurements N (θ, 1), the other
measurements which are N (θ, 100).

We wish to check whether a parameter θ = 0, the alternative being
that θ > 0.

Toss a coin with probability λ of landing heads and let
A = i , i = 1, 2 denote that the instrument i is chosen. Perform
then the measurement to obtain X . The joint distribution of
(X ,A) is determined as

f (x , a; θ, λ) = φ(x − θ)1{1}(a)λ+ φ{(x − θ)/10}1{2}(a)(1− λ).

Suppose we have chosen the first instrument and observe X = 4.
Is this consistent with the assumption θ = 0?
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The parameter λ is nuisance parameter in the sense that we are
not interested in its value, but its value modifies the distribution of
our observations.

If we now redo the exercise from the case where λ is known, we
have the additional problem that the p-value

p = P(X > 4; θ = 0)

= {1− Φ(4)}λ+ {1− Φ(.4)}(1− λ)

= .00003λ+ .34458(1− λ)

unfortunately depends on the unknown λ.
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However, the probability of choosing the instrument seems
irrelevant once we know which instrument was in fact used.

Thus, again we would rather consider A = a fixed and condition on
the actual instrument used. That is, also here calculate the p-value
as

p̃ = P(X > 4 |A = 1; θ = 0) = {1− Φ(4)} = .00003

giving very strong evidence against the hypothesis. Note that λ
does not enter in this conditional calculation.

Motivated by this example, we consider more generally a family of
distributions f (x ; θ), θ ∈ Θ where θ is partitioned into θ = (ψ, λ).
We also assume that ψ is the parameter of interest and λ a
nuisance parameter.
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Suppose that there is a minimal sufficient statistic T = t(X )
partitioned as T = (S ,C ) = (s(X ), c(X )) where:

C1: the distribution of C depends on λ but not on ψ;

C2: the conditional distribution of S given C = c depends on ψ
but not λ, for all c ;

C3: the parameters vary independently, i.e. Θ = Ψ× Λ.

Then the likelihood function factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c ;ψ)f (c ;λ)

and we say that C is ancillary for ψ, S is conditionally sufficient for
ψ given C , and C is marginally sufficient for λ.

We also say that C is a cut for λ.
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When C is a cut, the likelihood factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c ;ψ)f (c ;λ) = L1(ψ | s, c)L2(λ | c).

Since ψ and λ vary independently, we may then maximize L by
maximizing each of these factors separately. In other words, the
maximum likelihood estimator θ̂ of the parameter θ satisfies

θ̂ = (ψ̂, λ̂), where ψ̂ = arg max
ψ

L1(ψ | s, c), λ̂ = arg max
λ

L2(λ | c).

Hence we get the same estimate whether we use the joint
distribution f(S ,C) for θ, or fS |C for ψ and fC for λ.

Note that the equation above may indicate a simple way of
maximizing the likelihood function.
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A widely accepted conditionality principle says that when C is a
cut for a nuisance parameter λ, inference about ψ should be based
on the conditional distribution of S given C.

In the simple example given, this corresponds to conditioning on
the instrument actually used when making inference about θ.

A possibly less well accepted principle says that when C is a cut for
λ, inference about λ should be based on the marginal distribution
of C .

Thus when making inference about the probability λ of choosing
the first instrument, we should ignore the fact that the instrument
was used, but only consider that it was chosen.
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Another example

Consider a sample X = (X1, . . . ,Xn) from a normal distribution
N (µ, σ2) where both µ and σ2 are unknown. Since
(X̄ ,S2 =

∑
i (Xi − X̄i )

2) is minimal sufficient, the likelihood
function becomes

L(µ, σ2 | x) ∝ f (x̄ ;µ, σ2)f (s2;σ2),

where we have used the independence of X̄ and S2 and the fact
that S2 follows a σ2χ2-distribution not depending on µ.

Here the situation is less clear cut. It could make sense to think of
x̄ as being sufficient for µ (which it is if σ2 is fixed) and S2 as
ancillary for µ and sufficient for σ2, but it does not fit into the
theory developed as the distribution of X̄ depends on (µ, σ2).
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Since Bayesian inference obeys the likelihood principle only the
factorization itself matters:

L(θ | x) ∝ L1(ψ | s, c)L2(λ | c).

Still, this fact is not unimportant. Assume that the prior density
satisfies

π(ψ, λ) = η(ψ)ρ(λ),

in other words that the parameters ψ and λ are prior independent.
Then the posterior density satisfies

π∗(ψ, λ) = π(ψ, λ | x) ∝ η(ψ)ρ(λ)L1(ψ | s, c)L2(λ | c) ∝ η∗(ψ)ρ∗(λ).

Hence if C is a cut for λ and ψ and λ are prior independent, they
are posterior independent.
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Consider the hypothesis that the parameter of interest ψ has a
specific value, i.e. H0 : ψ = ψ0. This is a composite hypothesis and
we wish to find a test of size α so the rejection region R satisfies

P(X ∈ R;ψ0, λ) = α for all values of λ ∈ Λ.

A test is said to be similar if this condition holds.

One way of constructing a similar test is to find a statistic C which
is sufficient for λ for fixed ψ = ψ0. This would in particular be the
case if C is a cut. Now look for a set R(c) such that

P(X ∈ R(c) |C = c ;ψ0, λ) = P(X ∈ R(c) |C = c ;ψ0) = α,

where we have used the sufficiency of C to remove λ.
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If we define R as x ∈ R ⇐⇒ x ∈ R(c(x)) we then get

P(X ∈ R;ψ0, λ) = E(ψ0,λ){P(X ∈ R |C ;ψ0)}
= E(ψ0,λ){P(X ∈ R(C ) |C ;ψ0)}
= E(ψ0,λ)(α) = α.

We have thus succeeded in constructing a similar test by this
conditioning operation.

A test of this kind is said to have Neyman structure. An important
result is that if C is complete and sufficient for λ for ψ = ψ0, then
any similar rejection region R has Neyman structure.
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This is shown as follows. Assume R is a similar rejection region, i.e.

P(X ∈ R;ψ0, λ) = α for all λ.

Then define h(C ) = P(X ∈ R |C ;ψ0)− α. We get

E(ψ0,λ){h(C )} = E(ψ0,λ){P(X ∈ R |C ;ψ0)− α}
= E(ψ0,λ){P(X ∈ R |C ;ψ0, λ)− α}
= P(X ∈ R;ψ0, λ)− α = 0.

Completeness yields h(C ) = 0 and P(X ∈ R |C ;ψ0)− α.

As a consequence of this result it is common, although not
universally accepted, to condition on the statistic sufficient under
the hypothesis when testing composite hypothesis, i.e. to construct
tests with Neyman structure.
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The multi-parameter case

The likelihood equation
Iterative step
Properties

Recall that, under suitable regularity conditions, the maximum
likelihood estimate is the solution to the score equation

s(θ) = s(x ; θ) =
∂

∂θ
l(θ) =

∂

∂θ
log L(θ; x) = 0,

where S(θ) = s(X ; θ) is the score statistic.

Generally the solution to this equation must be calculated by
iterative methods. One of the most common methods is the
Newton–Raphson method and is based on successive
approximations to the solution, using Taylor’s theorem to
approximate the equation.
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The likelihood equation
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Thus, we take an initial value θ0 and write

0 = S(θ0)− J(θ0)(θ − θ0),

ignoring the remainder term. Here

J(θ) = J(θ;X ) = − ∂

∂θ
S(θ) = − ∂2

∂θ2
l(θ).

Solving this equation for θ then yields a new value θ1

θ1 = θ0 + J(θ0)
−1S(θ0)

and we keep repeating this procedure as long as |S(θj)| > ε, i.e.

θk+1 = θk + J(θk)−1S(θ0).
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Clearly, θ̂ is a fixed point of this iteration as S(θ̂) = 0 and,
conversely, any fixpoint is a solution to the likelihood equation.

If θ̂ is a local maximum for the likelihood function, we must have

J(θ̂) = − ∂2

∂θ2
l(θ̂) > 0.

The quantity J(θ̂) determines the sharpness of the peak in the
likelihood function around its maximum. It is also known as the
observed information.

Occasionally we also use this term for J(θ) where θ is arbitrary but
strictly speaking this can be quite inadequate as J(θ) may well be
negative (although positive in expectation).
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Recall that the (expected) Fisher information is

I (θ) = E{J(θ)}

and that for large i.i.d. samples it holds approximately that
θ̂ ∼ N (θ, I (θ)−1).

But it is also approximately true, to be elaborated later, under the
same assumptions that√

J(θ̂)(θ̂ − θ) ∼ N (0, 1),

so we could write θ̂ ∼ N (θ, J(θ̂)−1).

In fact, the observed information is in many ways preferable to the
expected information. Indeed, as θ̂ is approximately sufficient, J(θ̂)
is approximately ancillary.
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Formally the iteration becomes

I Choose an initial value θ and calculate S(θ) and J(θ);
I While |S(θ)| > ε Repeat

1. θ ← θ + J(θ)−1S(θ)
2. Calculate S(θ) and J(θ) go to 1

I Return θ;

Other criteria for terminating the iteration can be used. To get a
criterion which is insensitive to scaling of the variables, one can
instead use the criterion J(θ)−1S(θ)2 > ε.

Note that, as a by-product of this algorithm, the final value of J(θ)
is the observed information which can be used to assess the
uncertainty of θ̂.
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If θ0 is chosen sufficiently near θ̂ convergence is very fast.

It can be computationally expensive to evaluate J(θ) a large
number of times. This is sometimes remedied by only changing J
every 10 iterations or similar.

Another problem with the Newton–Raphson method is its lack of
stability. When the initial value θ0 is far from θ it might wildly
oscillate and not converge at all. This is sometimes remedied by
making smaller steps as

θ ← θ + γJ(θ)−1S(θ)

where 0 < γ < 1 is a constant. An alternative (or additional)
method of stabilization is to let

θ ← θ + γ{J(θ) + S(θ)2}−1S(θ)

as this avoids taking large steps when S(θ) is large.
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The iteration has a tendency to be unstable for many reasons, one
of them being that J(θ) may be negative unless θ already is very
close to the MLE θ̂. In addition, J(θ) might sometimes be hard to
calculate.

R. A. Fisher introduced the method of scoring which simply
replaces the observed second derivative with its expectation to
yield the iteration

θ ← θ + I (θ)−1S(θ).

In many cases, I (θ) is easier to calculate and I (θ) is always
positive. This generally stabilizes the algorithm, but here it can
also be necessary to iterate as

θ ← θ + γ{I (θ) + S(θ)2}−1S(θ).
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In the case of n independent and identically distributed
observations we have I (θ) = nI1(θ) so

θ ← θ + I1(θ)
−1S(θ)/n

where I1(θ) is the Fisher information in a single observation.

In a linear canonical one-parameter exponential family

f (x ; θ) = b(x)eθt(x)−c(θ)

we get

J(θ) =
∂2

∂θ2
{c(θ)− θt(X )} = c ′′(θ) = I (θ).

so for canonical exponential families the method of scoring and the
method of Newton–Raphson coincide.
If we let v(θ) = c ′′(θ) = I (θ) = V(t(X )) the iteration becomes

θ ← θ + v(θ)−1S(θ)/n.
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The identity of Newton–Raphson and the method of scoring only
holds for the canonical parameter. If θ = g(µ)

J(µ) =
∂2

∂µ2
{c(g(µ))− g(µ)t(X )}

=
∂

∂µ

[
g ′(µ)τ{g(µ)} − g ′(µ)t(X )

]
= v{g(µ)}{g ′(µ)}2 + g ′′(µ) [τ{g(µ)} − t(X )]

where we have let τ(θ) = c ′(θ) = Eθ{t(X )} and
v(θ) = c ′′(θ) = Vθ{t(X )}.
The method of scoring is simpler because the last term has
expectation equal to 0:

I (µ) = E{J(µ)} = v{g(µ)}{g ′(µ)}2.
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The multi-parameter case

Newton–Raphson
Scoring

The considerations on the previous overheads readily generalize to
the multi-parameter case. The approximation to the score equation
becomes

0 = S(θ0)− J(θ0)(θ − θ0)

where

S(θ)r =
∂

∂θr
l(θ), J(θ)rs = − ∂2

∂θr∂θs
l(θ),

i.e. S(θ) is the gradient and −J(θ) the Hessian of l(θ).

The iterative step can still be written as

θ ← θ + J(θ)−1S(θ)

where we just have to remember that the score statistic S is a
vector and the Hessian −J a matrix.
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Newton–Raphson method
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Newton–Raphson
Scoring

The lack of stability of the Newton–Raphson algorithm is not
getting better in the multiparameter case. On the contrary there
are not only problems with negativity, but the matrix can be
singular and not invertible or it can have both positive and
negative eigenvalues.

Recall that a symmetric matrix A is positive definite if all its
eigenvalues are positive or, equivalently, if x>Ax > 0 for all x 6= 0.
Sylvester’s theorem says that A is positive definite if and only if
det(AR) > 0 for all submatrices AR of the form {ars}r ,s=1...,R .
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Newton–Raphson method
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Newton–Raphson
Scoring

It is therefore also here advisable to replace J(θ) with its
expectation, the Fisher information matrix, i.e. iterate as

θ ← θ + I (θ)−1S(θ)

where now I (θ) is the Fisher information matrix which is always
positive definite if the model is not over-parametrized.

Also in the multi-parameter case it can be advisable to stabilize
additionally, i.e. by iterating as

θ ← θ + γ{I (θ) + S(θ)S(θ)>}−1S(θ)

or
θ ← θ + γ{I (θ) + S(θ)>S(θ)E}−1S(θ),

where E is the identity matrix.
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In a multi-parameter curved exponential family with densities

f (x ;β) = b(x)eθ(β)>t(x)−c{θ(β)}

where β is d-dimensional, we get

J(β) =
∂2

∂β∂β>

[
c{θ(β)} − θ(β)>t(X )

]
=

∂

∂β

[(
∂θ

∂β

)>
τ{θ(β)} −

(
∂θ

∂β

)>
t(X )

]

=
∂2θ

∂β∂β>
[τ{θ(β)} − t(X )] +

(
∂θ

∂β

)>
v{θ(β)}

(
∂θ

∂β

)
,

where the first term has expectation zero so

I (β) = E{J(θ)} =

(
∂θ

∂β

)>
v{θ(β)}

(
∂θ

∂β

)
.

Steffen Lauritzen, University of Oxford Newton–Raphson Iteration and the Method of Scoring



Ancillary cut
Many nuisance parameters

Pseudo likelihoods

More on nuisance parameters

Steffen Lauritzen, University of Oxford

BS2 Statistical Inference, Lecture 4, Hilary Term 2008

February 1, 2008

Steffen Lauritzen, University of Oxford More on nuisance parameters
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Many nuisance parameters

Pseudo likelihoods

Suppose that there is a minimal sufficient statistic T = t(X )
partitioned as T = (S ,C ) = (s(X ), c(X )) where:

C1: the distribution of C depends on λ but not on ψ;

C2: the conditional distribution of S given C = c depends on ψ
but not λ, for all c ;

C3: the parameters vary independently, i.e. Θ = Ψ× Λ.

Then the likelihood function factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c ;ψ)f (c ;λ)

and we say that C is ancillary for ψ, S is conditionally sufficient for
ψ given C , and C is marginally sufficient for λ.

We also say that C is a cut for λ and would then

I base inference about λ on the marginal distribution of C ;

I base inference about ψ on the conditional distribution of S
given C = c .
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Then the likelihood function factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c ;ψ)f (c ;λ)
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I base inference about λ on the marginal distribution of C ;

I base inference about ψ on the conditional distribution of S
given C = c .
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Pseudo likelihoods

Consider a sample X = (X1, . . . ,Xn) from a normal distribution
N (µ, σ2) where both µ and σ2 are unknown. Recall that
(U,V ) = (X̄ ,S2 =

∑
i (Xi − X̄i )

2) is minimal sufficient and the
likelihood function is

L(µ, σ2 | x) ∝ f (u;µ, σ2)f (v ;σ2).

If we do straight maximum likelihood estimation, we have

µ̂ = U = X̄ , σ̂2 = V /n.

However, most statisticians agree that it is sensible to use
σ̃2 = V /(n − 1) as the estimator of σ2. Is this reasonable and is
there a general rationale for this?

Note that the common unbiasedness argument does not work as σ̃
is not ubiased for the standard deviation σ, or σ̃−1 is not unbiased
for the precision σ−2.
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Pseudo likelihoods

This example shows that we have to be very careful when nuisance
parameters are present and straight likelihood considerations can
lead us astray:

We wish to establish the precision of a new instrument which
measures with normal errors. We are therefore taking repeated
measurements of individuals (Xi1,Xi2), i = 1, . . . , n which are all
independent with

Xij ∼ N (µi , σ
2).

Now consider

Ui = (Xi1 + Xi2)/2, Vi = (Xi1 − Xi2)/2.

These are again independent and normally distributed as

Ui ∼ N (µi , τ
2), Vi ∼ N (0, τ2),

where τ2 = σ2/2.
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Clearly, we might as well consider (Ui ,Vi ) as the original data.
Also, the pair (U,W ) is minimal sufficient, where
U = (U1, . . . ,Un) and W =

∑
i V

2
i , hence the likelihood function

becomes

L(µ, τ2) ∝ (τ2)−n/2e−
1

2τ2

∑
i (ui−µi )

2

(τ2)−n/2e−
1

2τ2

∑
i v

2
i

= e−
1

2τ2

∑
i (ui−µi )

2

(τ2)−ne−
w

2τ2 .

Thus the maximum likelihood estimator is

µ̂i = Ui , i = 1, . . . , n; τ̂2 = W /2n.

But W ∼ τ2χ2(n), so for large n, τ̂2 ≈ nτ2/(2n) = τ2/2!! So the
additional parameters µi are a serious nuisance if τ2 is the
parameter of interest.
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Pseudo likelihoods

Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

The previous example shows that straight likelihood considerations
may not lead to meaningful results when only a part of the
parameter is considered.

There are a number of suggestions for modifying the likelihood
function to extract the evidence in the sample concerning a
parameter of interest ψ when θ = (ψ, λ). Such modifications are
generally known as pseudo-likelihood functions.

Examples include: conditional likelihood, marginal likelihood,
profile likelihood, integrated likelihood, and others, for example
local, partial, restricted, residual, penalized, etc. The many names
bear witness that straight likelihood considerations may not always
be satisfactory.

Steffen Lauritzen, University of Oxford More on nuisance parameters

Ancillary cut
Many nuisance parameters

Pseudo likelihoods

Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Suppose we can write the joint density of a sufficient statistic
T = (U,V ) as

f (u;λ, ψ)f (v | u;ψ),

where ψ is the parameter of interest. Then, for fixed ψ, U is
sufficient for λ. Inference for ψ can now be based on the
conditional likelihood function

L(ψ; v | u) = f (v | u;ψ),

as the conditional distribution does not involve λ.

The critical issue is whether (useful) information about ψ is lost by
ignoring the factor f (u;λ, ψ).
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In the normal example with many nuisance parameters,
U = (Ui , i = 1, . . . , n) is sufficient for the nuisance parameter
λ = (µi , i = 1, . . . , n) and for ψ = τ2

L(τ2;w | u) = f (w | u; τ2) = f (w ; τ2) = (τ2)−n/2e−
w

2τ2 .

This gives the conditional MLE τ̂2
|u = W /n which is more sensible.

It may be argued that Ui ∼ N (µi , τ
2) cannot possibly have useful

information about τ2. Or at least that the information it may have
is not useful.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

This uses conditioning the other way around. Suppose we can
write the joint density of a sufficient statistic T = (U,V ) as

f (u | v ;λ, ψ)f (v ;ψ),

where ψ is the parameter of interest. Then the nuisance parameter
λ can be eliminated by marginalization as it does not enter in the
marginal distribution of V . Inference for ψ can now be based on
the marginal likelihood function

L(ψ; v) = f (v ;ψ).

The issue is also here whether (useful) information about ψ is lost
by ignoring the factor f (u | v ;λ, ψ).
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Pseudo likelihoods

Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

In the normal example with many nuisance parameters with
λ = (µi , i = 1, . . . , n) and ψ = τ2 we get

L(τ2;w) = f (w ; τ2) = (τ2)−n/2e−
w

2τ2 ,

which in this case is identical to the conditional likelihood function
considered earlier and hence τ̂2

w = W /n.

Marginal likelihood is in this case also known as residual likelihood
because it is based on the residuals

Vi = Xi − µ̂i = Xi1 −
Xi1 + Xi2

2
=

Xi1 − Xi2

2
.

The corresponding estimates are then known as REML estimates.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Marginal and conditional likelihood changes the problem either by
ignoring some of the data (by marginalization) or by ignoring their
variability (by conditioning).

Profile likelihood attempts to stick to the original data distribution
and likelihood function, but eliminates the nuisance parameters by
maximization.

The profile likelihood function L̂(ψ) for ψ is defined as

L̂(ψ) = sup
λ

L(ψ, λ) = L{ψ, λ̂(ψ)},

where ψ is the parameter of interest and λ̂(ψ) is the MLE of λ
when ψ is considered fixed.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Although the profile likelihood generally can be very useful, it does
not help in the the normal example with many nuisance parameters
with λ = (µi , i = 1, . . . , n) and ψ = τ2 we get

L̂(τ2;w) = f (u; µ̂, τ2)f (w ; τ2) = (τ2)−ne−
w

2τ2 ,

hence also peaks in the wrong place, at τ̂2 = W /(2n).

We shall later return to various attempts at modifying the profile
likelihood.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Another way of removing nuisance parameters from the likelihood
is to use integration. This method is essentially Bayesian and
demands the specification of a prior distribution π(λ |ψ) of the
nuisance parameter for fixed ψ.

The integrated likelihood function is then defined as

L̄(ψ) =

∫
L(ψ, λ)π(λ |ψ) dλ.

The integrated likelihood has the same fundamental relation to the
marginal prior and posterior distributions as the ordinary likelihood.

For if π(ψ) is the prior on ψ, the full posterior distribution is
determined as

π∗(ψ, λ) ∝ π(ψ)π(λ |ψ)L(ψ, λ)

and thus, by integration

π∗(ψ) ∝
∫
π∗(ψ, λ) dλ = π(ψ)L̄(ψ).
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Conditional likelihood
Marginal likelihood
Profile likelihood
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In the normal example with many nuisance parameters, we may for
example consider µi independent and normally distributed as
µi ∼ N (α, ω2), where (α, ω2) represent prior knowledge about the
population from which µi ’s are taken.

The integrated likelihood for τ2 can then be calculated as

L̄(τ2) = f (w ; τ2)

∫ ∏
i

f (ui ;µi )π(µi ;α, ω
2) dµi .

The integral can be recognized as the marginal distribution of U
where now Ui are independent and identically distributed as
N (α, τ2 + ω2).
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Thus

L̄(τ2) ∝ f (w ; τ2)(τ2 + ω2)−n/2e
− 1

2(τ2+ω2)

∑
i (ui−α)2

∝ (τ2)−n/2e−
w

2τ2 (τ2 + ω2)−n/2e
− qα(u)

2(τ2+ω2)

where
Qα(U) =

∑
i

(Ui − α)2.

In this calculation, ω2 and α are known and fixed. If these are
‘correct’, in the sense that µi are in fact behaving as if they were
i.i.d. N (α, ω2), then the integrated likelihood will peak around the
correct value, else the peak will be shifted to an incorrect position.
So the influence of the prior prevails.

Empirical Bayes or, equivalently(!), MLE in the random effects
model, would also estimate α and ω2 and get it right, as would
Hierarchical Bayes, assigning a prior on (α, ω2).
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Basic definitions
The generalized linear model

Likelihood analysis

The natural exponential family
Mean and variance function

A generalized linear model is based on a family the form

f (y ; θ, φ) = b(y , φ)e{yθ−c(θ)}/d(φ). (1)

For φ fixed and θ varying over all possible values, this is a
one-dimensional exponential family with canonical statistic
t(y) = y , canonical parameter θ∗ = θ/d(φ), and cumulant
generating function

κ{θ∗} = κ{θ/d(φ)} = c(θ)/d(φ) = log

∫
b(y , φ)eyθ∗ dy , (2)

so

E(Y ) =
∂

∂θ∗
κ{θ/d(φ)} = d(φ)

∂

∂θ
κ{θ/d(φ)} = c ′(θ)

and

V(Y ) =
∂2

∂θ∗2
κ{θ/d(φ)} = d(φ)2

∂2

∂θ2
κ{θ/d(φ)} = c ′′(θ)d(φ).
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Basic definitions
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Likelihood analysis

The natural exponential family
Mean and variance function

An exponential families with the canonical statistic t(y) = y is also
known as a natural exponential family (NEF), but terminology
varies among authors so beware. Clearly, one can either consider
the family (1) as an exponential family with canonical statistic
t(y) = y and canonical parameter θ∗ = θ/d(φ), or let
t∗(y) = y/d(φ) with parameter θ.

For varying φ, the situation is generally much more complex.
Sometimes it is an exponential family, sometimes not. Sometimes
it is not possible to have d(φ) varying independently of θ at all,
e.g. in the Poisson case.

When d(φ) is varying, it is a strong restriction on the function
b(y , φ) to assume that the cumulant generating function (2) has
the form κ(θ/φ) = c(θ)/d(φ).
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Basic definitions
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The natural exponential family
Mean and variance function

Since V(Y ) = d(φ)c ′′(θ) we have c ′′(θ) > 0 and hence the
function c ′(θ) is strictly increasing in θ. We can therefore
parametrize the family with its mean µ and define θ(µ) by the
relation

µ = E(Y ) = c ′(θ), θ(µ) = c ′
−1

(µ)

and define the variance function

v(µ) = c ′′{θ(µ)}

so now
V(Y ) = d(φ)v(µ)

and we can readily think of φ as a dispersion parameter.
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Basic definitions
The generalized linear model

Likelihood analysis

The natural exponential family
Mean and variance function

An important fact is that the variance functions identifies the
family in the sense that two families of densities which both have
the form (1) and have the same variance function v(µ), must be
identical.

Common variance functions for standard families are

Normal Poisson Binomial Gamma Inverse Gaussian

1 µ µ(1− µ) µ2 µ3

Not all functions v(µ) can occur as variance functions.

For example, a function of the form v(µ) = µα is a variance
function for a NEF if α ≤ 0 or 1 ≤ α < ∞, but not if 0 < α < 1.
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Basic definitions
The generalized linear model

Likelihood analysis

Setup
Modelling the responses

Generalized linear models describe independent samples of the
form Y = (Y1, . . . ,Yn) where each Yi is a one-dimensional
response to covariates xi = (xi1, . . . , xip) having distribution of the
form (1), with expectations µi and dispersions di (φ).

For simplicity we assume di (φ) = φ although di (φ) = φ/wi with wi

being a known weight may be appropriate in some cases. Formally
we assume φ known for the moment.

The saturated model makes no further restriction on the
parameters µi and the maximum likelihood estimator under this
model is therefore given as

µ̂ = Y ,

provided the base exponential family is regular.
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Basic definitions
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Setup
Modelling the responses

More generally, we restrict the vector of expectations
µ = (µ1, . . . , µn)

> through a linear predictor ηi = xiβ written in
matrix form as

η = Xβ

where xi are the rows of X and β = (β1, . . . , βp)
> is a vector of

unknown parameters, and a link function g relating the linear
predictor to the mean as

ηi = g(µi ).

Here care should be taken in the choice of link function, as the
parameter space for β must be restricted so that this equation
makes sense.

A special role is played by the link function g(µ) = θ(µ) = c ′−1(µ)
which is known as canonical link.
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Canonical link
General link function
Estimating the dispersion parameter

If we consider the likelihood function we get

l(β) = log L(β) =
∑

i

{yiθi − c(θi )}/φ = {y>θ −
∑

i

c(θi )}/φ,

where now

θi = θ(µi ) = θ{g−1(ηi )} = θ{g−1(xiβ)}.

If g is the canonical link function, we have g(µ) = θ(µ) and hence
θi = xiβ. This then yields

l(β) = {y>Xβ −
∑

i

c(xiβ)}/φ = {(X>y)>β −
∑

i

c(xiβ)}/φ

and hence the family of joint distributions is a linear and canonical
exponential family with canonical statistic t(y) = X>y and β/φ as
the canonical parameter.
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Thus, the likelihood equation for a fixed φ again equates the
expectation of the sufficient statistic to the observed value.
Interpreting vector functions componentwise this has the simple
form

X>µ(β) = X>y

or equivalently
X>{y − µ(β)} = 0

expressing that the residual y − µ(β) is orthogonal to all columns
of X .

From general theory of exponential families it is known that there
is at most one solution β̂ to this equation, despite the fact that the
equation typically is non-linear in β, as µ(β) = g−1(Xβ).
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For a general link function, the score statistic can be written in the
form

S(β) = Z>W {y − µ(β)}/φ

where Z is a matrix with elements

Z (β)ij =
∂ηi

∂βj

and W (β) is a diagonal matrix with diagonal elements equal to
Wii = 1/v{µi (β)}.
Fisher’s method of scoring leads to a iterative weighted least
squares regression procedure (IRLS) for solving these, which now
can be used for all generalized linear models, only the calculation
of the matrix Z and the weights W being special to the model
considered, depending in a simple way on the link and variance
functions. Details are omitted here.
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The goodness of fit of a specific generalized linear model is
assessed in the usual way using the deviance

D(µ̂; y) = −2{l(µ̂; y)− l(y ; y)}
= −2{l1(µ̂; y)− l1(y ; y)}/φ = D1(µ̂; y)/φ,

where l(y ; y) is the maximized log-likelihood in the saturated
model and l(µ̂; y) is the maximized log-likelihood in the model
considered.

The symbol l1 is used for the log-likelihood in the case φ = 1 and
similarly for D1.
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Under reasonable assumption on the behaviour of the covariates xi ,
D can be shown to be asymptotically distributed as a
χ2-distribution with degrees of freedom n − p where X is assumed
to have full rank p.

In the situation, where the dispersion parameter φ is considered
unknown it is therefore customary to use the estimator

φ̃ =
D1(µ̂,Y )

n − p
.

Note that this is not a maximum likelihood estimator, and there
are good reasons for not using the MLE:
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Firstly, the problem of finding the MLE of φ could be
computationally very difficult in general, and the computational
problem very different for different variance functions.

Secondly, there would be a problem with the nuisance parameter β
distorting the estimate, in particular if the dimension p of β is
large.

The estimate for φ used is thus based on ‘approximate marginal
likelihood’, estimating φ on the basis of the approximate
χ2-distribution for the deviance. The MLE of µ is the same for all
values of φ and is therefore appropriate as is.
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Basic definitions
Basic properties

The multivariate Gaussian
Simple example
Density of multivariate Gaussian
Bivariate case
A counterexample

A d-dimensional random vector X = (X1, . . . ,Xd) is has a
multivariate Gaussian distribution or normal distribution on Rd if
there is a vector ξ ∈ Rd and a d × d matrix Σ such that

λ>X ∼ N (λ>ξ, λ>Σλ) for all λ ∈ Rd . (1)

We then write X ∼ Nd(ξ, Σ).

Taking λ = ei or λ = ei + ej where ei is the unit vector with i-th
coordinate 1 and the remaining equal to zero yields:

Xi ∼ N (ξi , σii ), Cov(Xi ,Xj) = σij .

Hence ξ is the mean vector and Σ the covariance matrix of the
distribution.
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Basic definitions
Basic properties

The multivariate Gaussian
Simple example
Density of multivariate Gaussian
Bivariate case
A counterexample

The definition (1) makes sense if and only if λ>Σλ ≥ 0, i.e. if Σ is
positive semidefinite. Note that we have allowed distributions with
variance zero.

The multivariate moment generating function of X can be
calculated using the relation (1) as

md(λ) = E{eλ>X} = eλ>ξ+λ>Σλ/2

where we have used that the univariate moment generating
function for N (µ, σ2) is

m1(t) = etµ+σ2t2/2

and let t = 1, µ = λ>ξ, and σ2 = λ>Σλ.

In particular this means that a multivariate Gaussian distribution is
determined by its mean vector and covariance matrix.
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A counterexample

Assume X> = (X1,X2,X3) with Xi independent and
Xi ∼ N (ξi , σ

2
i ). Then

λ>X = λ1X1 + λ2X2 + λ3X3 ∼ N (µ, τ2)

with

µ = λ>ξ = λ1ξ1 + λ2ξ2 + λ3ξ3, τ2 = λ2
1σ

2
1 + λ2

2σ
2
2 + λ2

3σ
2
3.

Hence X ∼ N3(ξ,Σ) with ξ> = (ξ1, ξ2, ξ3) and

Σ =

 σ2
1 0 0
0 σ2

2 0
0 0 σ2

3

 .
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If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the distribution
has density on Rd

f (x | ξ,Σ) = (2π)−d/2(det K )1/2e−(x−ξ)>K(x−ξ)/2, (2)

where K = Σ−1 is the concentration matrix of the distribution.
We then also say that Σ is regular.

If X1, . . . ,Xd are independent and Xi ∼ N (ξi , σ
2
i ) their joint

density has the form (2) with Σ = diag(σ2
i ) and

K = Σ−1 = diag(1/σ2
i ).

Hence vectors of independent Gaussians are multivariate Gaussian.
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In the bivariate case it is traditional to write

Σ =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
,

with ρ being the correlation between X1 and X2. Then

det(Σ) = σ2
1σ

2
2(1− ρ2) = det(K )−1

and

K =
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −σ1σ2ρ
−σ1σ2ρ σ2

1

)
.
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Thus the density becomes

f (x | ξ, Σ) =
1

2πσ1σ2

√
(1− ρ2)

×e
− 1

2(1−ρ2)

{
(x1−ξ1)2

σ2
1

−2ρ
(x1−ξ1)(x2−ξ2)

σ1σ2
+

(x2−ξ2)2

σ2
2

}
.

The contours of this density are ellipses and the corresponding
density is bell-shaped with maximum in (ξ1, ξ2).
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The marginal distributions of a vector X can all be Gaussian
without the joint being multivariate Gaussian:

For example, let X1 ∼ N (0, 1), and define X2 as

X2 =

{
X1 if |X1| > c
−X1 otherwise.

Then, using the symmetry of the univariate Gausssian distribution,
X2 is also distributed as N (0, 1).
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However, the joint distribution is not Gaussian unless c = 0 since,
for example, Y = X1 + X2 satisfies

P(Y = 0) = P(X2 = −X1) = P(|X1| ≤ c) = Φ(c)− Φ(−c).

Note that for c = 0, the correlation ρ between X1 and X2 is 1
whereas for c = ∞, ρ = −1.

It follows that there is a value of c so that X1 and X2 are
uncorrelated, and still not jointly Gaussian.
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Adding two independent Gaussians yields a Gaussian:

If X1 ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

To see this, just note that

λ>(X1 + X2) = λ>X1 + λ>X2

and use the univariate addition property.
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Linear transformations preserve multivariate normality:

If A is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = AX + b ∼ Nr (Aξ + b,AΣA>).

Again, just write

γ>Y = γ>(AX + b) = (A>γ)>X + γ>b

and use the corresponding univariate result.
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Partition X into into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs with
r + s = d .
Partition mean vector, concentration and covariance matrix
accordingly as

ξ =

(
ξ1

ξ2

)
, K =

(
K11 K12

K21 K22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
so that Σ11 is r × r and so on. Then, if X ∼ Nd(ξ, Σ)

X2 ∼ Ns(ξ2,Σ22).

This follows simply from the previous fact using the matrix

A = (0sr Is) .

where 0sr is an s × r matrix of zeros and Is is the s × s identity
matrix.
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If Σ22 is regular, it further holds that

X1 |X2 = x2 ∼ Nr (ξ1|2,Σ1|2),

where

ξ1|2 = ξ1 + Σ12Σ
−1
22 (x2 − ξ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

In particular, if Σ12 = 0 if and only if X1 and X2 are independent.
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From the matrix identities

K−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 = Σ1 | 2 (3)

and
K−1

11 K12 = −Σ12Σ
−1
22 , (4)

it follows that then the conditional expectation and concentrations
also can be calculated as

ξ1|2 = ξ1 − K−1
11 K12(x2 − ξ2) and K1|2 = K11.

Note that the marginal covariance is simply expressed in terms of
Σ where as the conditional concentration is simply expressed in
terms of K.
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Consider N3(0,Σ) with covariance matrix

Σ =

 1 1 1
1 2 1
1 1 2

 .

The concentration matrix is

K = Σ−1 =

 3 −1 −1
−1 1 0
−1 0 1

 .
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The marginal distribution of (X2,X3) has covariance and
concentration matrix

Σ23 =

(
2 1
1 2

)
, (Σ23)

−1 =
1

3

(
2 −1
−1 2

)
.

The conditional distribution of (X1,X2) given X3 has concentration
and covariance matrix

K12 =

(
3 −1
−1 1

)
, Σ12|3 = (K12)

−1 =
1

2

(
1 1
1 3

)
.

Similarly, V(X1 |X2,X3) = 1/k11 = 1/3, etc.
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The basic idea
A simple example

Further refinement
The multivariate case

Consider an integral of form

I =

∫ b

a
e−λg(y)h(y) dy

where

1. λ is large;

2. g(y) is a smooth function which has a local minimum at y∗ in
the interior of the interval (a, b);

3. h(y) is smooth.

The integral can be the moment generating function of the
distribution of g(Y ) when Y has density h, it could be a posterior
expectation of h(Y ), or just an integral.

When λ is large, the contribution to this integral is essentially
entirely originating from a neigbourhood around y∗.
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The basic idea
A simple example

Further refinement
The multivariate case

We formalize this by Taylor expansion of the function g around y∗:

g(y) = g(y∗) + g ′(y∗)(y − y∗) + g ′′(y∗)(y − y∗)2/2 + · · ·
Since y∗ is a local minimum, we have g ′(y∗) = 0, g ′′(y∗) > 0, and
thus

g(y)− g(y∗) = g ′′(y∗)(y − y∗)2/2 + · · ·
If we further approximate h(y) linearly around y∗ we get

I =

∫ b

a
e−λg(y)h(y) dy

≈ e−λg(y∗)h(y∗)

∫ ∞

−∞
e−λg ′′(y∗)(y−y∗)2/2 dy

+e−λg(y∗)h′(y∗)

∫ ∞

−∞
(y − y∗)e−λg ′′(y∗)(y−y∗)2/2 dy

= e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)
+ 0.
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The basic idea
A simple example

Further refinement
The multivariate case

We have exploited that we know the integral and expectation of a
Gaussian density with concentration g ′′(y∗)λ. The approximation
is typically very accurate and satisfies

I =

∫ b

a
e−λg(y)h(y) dy

= e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
= A

{
1 + O

(
1

λ

)}
meaning that the relative error

I − A

A

is O(λ−1) and thus remains bounded for λ →∞, even when
multiplied with λ.
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The basic idea
A simple example

Further refinement
The multivariate case

Consider the Gamma function

Γ(x) =

∫ ∞

0
tx−1e−t dt

and recall that for integers λ we have

Γ(λ + 1) = λ!

We get

Γ(λ + 1) =

∫ ∞

0
tλe−t dt.

Substituting y = t/λ and letting g(y) = y − log y we get

Γ(λ + 1) = λ

∫ ∞

0
(λy)λe−λy dy = λλ+1

∫ ∞

0
e−λg(y) dy .
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The basic idea
A simple example

Further refinement
The multivariate case

To use Laplace’s method we differentiate twice and get

g ′(y) = 1− 1/y , g ′′(y) = 1/y2

so that y∗ = 1, g(y∗) = 1 and g ′′(y∗) = 1. Laplace’s method now
yields

Γ(λ + 1) = λλ+1e−λg(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
= λλ+1/2e−λ

√
2π

{
1 + O

(
1

λ

)}
which is known as Stirling’s formula.

Steffen Lauritzen, University of Oxford Laplace’s Method of Integration

The basic idea
A simple example

Further refinement
The multivariate case

By expanding the function g further, the error of approximation
can be improved for a constant function h so that

Ĩ =

∫ b

a
e−λg(y) dy

= e−λg(y∗)

√
2π

λg ′′(y∗)

{
1 +

5ρ∗3 − 3ρ∗4
24λ

+ O

(
1

λ2

)}
,

where

ρ∗3 =
g (3)(y∗)

{g ′′(y∗)}3/2
, ρ∗4 =

g (4)(y∗)

{g ′′(y∗)}2
.
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The basic idea
A simple example

Further refinement
The multivariate case

In this fashion we can also get Stirling’s improved formula as

Γ(λ + 1) = λλ+1/2e−λ
√

2π

{
1 +

1

12λ
+ O

(
1

λ2

)}
which is remarkably accurate, even for rather small values of λ, as
this table of log Γ(λ + 1) shows:

λ Exact Stirling Improved

2 0.6931472 0.6518048 0.6926268
4 3.1780538 3.1572615 3.1778807
8 10.6046029 10.5941899 10.6045527
16 30.6718601 30.6666508 30.6718456
32 205.1681995 205.1668957 205.1681970
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The basic idea
A simple example

Further refinement
The multivariate case

Alternatively, if the variation of h around y∗ is not neglible, or a
more accurate approximation is desired, one can incorporate h in g
as

g̃λ(y) = g(y)− 1

λ
log h(y)

and get the approximation

I =

∫ b

a
e−λg(y)h(y) dy

=

∫ b

a
e−λg̃λ(y) dy

= e−λg̃λ(ỹλ)

√
2π

λg̃ ′′λ (ỹλ)

{
1 +

5ρ̃3 − 3ρ̃4

24λ
+ O

(
1

λ2

)}
,

where now ỹλ maximizes g̃λ(y), and other quantities are similarly
defined.
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The basic idea
A simple example

Further refinement
The multivariate case

The multivariate case is completely analogous. Here we again write

g(y) = g(y∗)+
∂g(y∗)

∂y
(y−y∗)+(y−y∗)>

∂2g(y∗)

∂y∂y>
(y−y∗)/2+· · ·

and exploit that the vector of partial derivatives ∂g(y∗)
∂y must

vanish, whereby

I =

∫
B

e−λg(y)h(y) dy

= e−λg(y∗)h(y∗)

∫
Rd

e
−λ(y−y∗)> ∂2g(y∗)

∂y∂y>
(y−y∗)/2+...

dy

= e−λg(y∗)h(y∗)(2π/λ)d/2

∣∣∣∣∂2g(y∗)

∂y∂y>

∣∣∣∣−1/2 {
1 + O

(
1

λ

)}
.
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Laplace approximations
Bayesian posterior distributions

Approximate Bayes factors

The univariate case
The multivariate case

For large λ we have the approximation

I =

∫ b

a
e−λg(y)h(y) dy = e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
A more accurate approximation is

I = e−λg̃λ(ỹλ)

√
2π

λg̃ ′′λ (ỹλ)

{
1 +

5ρ̃3 − 3ρ̃4

24λ
+ O

(
1

λ2

)}
,

where ỹλ maximizes g̃λ(y) and

ρ̃3 =
g (3)(ỹλ)

{g ′′(ỹλ)}3/2
, ρ̃4 =

g (4)(ỹλ)

{g ′′(ỹλ)}2
.
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Laplace approximations
Bayesian posterior distributions

Approximate Bayes factors

The univariate case
The multivariate case

In the multivariate case we have

I =

∫
B

e−λg(y)h(y) dy

= e−λg(y∗)h(y∗)

∫
Rd

e
−λ(y−y∗)> ∂2g(y∗)

∂y∂y>
(y−y∗)/2+...

dy

= e−λg(y∗)h(y∗)(2π/λ)d/2

∣∣∣∣∂2g(y∗)

∂y∂y>

∣∣∣∣−1/2 {
1 + O

(
1

λ

)}
and additional accuracy up to O(λ−2) can be obtained using
derivatives of third and fourth order as in the univariate case.
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Laplace approximations
Bayesian posterior distributions

Approximate Bayes factors

Asymptotic normality of the posterior
Normalizing the posterior

We consider a standard asymptotic setup, involving X1, . . . ,Xn, . . .
random variables which, conditional on a d-dimensional parameter
θ are independent and identically distributed with density f (x | θ),
and π(θ) is the prior distribution of the parameter θ.

The posterior density is determined as

π∗(θ) = f (θ | x) ∝ e l(θ)π(θ),

where l(θ) = log L(θ) is the log-likelihood function. Letting

l̄n(θ) = l(θ)/n =
1

n

n∑
1

log f (Xi | θ),

the law of large numbers yields that for n →∞,

l̄n(θ) → Eθ{log f (X | θ)} = −H(θ),

where H(θ) is the entropy of the density f (· | θ).
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Thus the variation in the posterior density

π∗(θ) ∝ enl̄n(θ)π(θ)

will for sufficiently large n be dominated by the contribution from
the likelihoood funtion. Expanding l(θ) around the maximum
likelihood estimate θ̂ yields

π∗(θ) ∝ enl̄n(θ̂)π(θ̂)e−(θ−θ̂)>jn(θ̂)(θ−θ̂)/2 ∝ e−(θ−θ̂)>jn(θ̂)(θ−θ̂)/2

where jn(θ̂) = nj(θ̂) is the observed information matrix, so,
approximately for large n, the posterior distribution of θ is

θ ∼ Nd{θ̂, jn(θ̂)−1) = Nd(θ̂, j(θ̂)−1/n}.

Note this expression makes perfect sense, as θ̂ is not random in the
posterior distribution.

Steffen Lauritzen, University of Oxford Bayesian Asymptotics
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Asymptotic normality of the posterior
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A more accurate approximation is obtained by expanding around
the posterior mode θ∗π to get

π∗(θ) ∝ e−(θ−θ∗π)>jn(θ∗π)(θ−θ∗π)/2

yielding, approximately for large n, the posterior distribution of θ as

θ ∼ Nd{θ∗π, jn(θ
∗
π)−1) = Nd(θ̂, j(θ∗π)−1/n}.

Note both differences and similarities to the analogous frequentist
results

θ̂ ∼ Nd{θ, in(θ)−1} θ̂ ∼ Nd{θ, in(θ̂)−1}, θ̂ ∼ Nd{θ, jn(θ̂)−1},

where the two latter needs appropriate interpretation to make
perfect sense.
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Laplace approximations
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Asymptotic normality of the posterior
Normalizing the posterior

We can obtain an accurate approximation of the posterior
distribution by applying Laplace’s method to the normalization
constant:

π∗(θ) =
exp{l(θ)}π(θ)∫

Θ exp{l(θ)}π(θ) dθ

= (2π)−d/2 exp{l(θ)− l(θ̂)}π(θ)

π(θ̂)

∣∣∣nj(θ̂)
∣∣∣1/2

{1 + O(n−1)}

= (2π/n)−d/2 exp{l(θ)− l(θ̂)}π(θ)

π(θ̂)

∣∣∣j(θ̂)∣∣∣1/2
{1 + O(n−1)}.

Note in particular the expression for the normalization constant∫
Θ

f (x | θ)π(θ) dθ = (2π/n)d/2L(θ̂)π(θ̂)
∣∣∣j(θ̂)∣∣∣−1/2

{1 + O(n−1)}.
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Laplace approximations
Bayesian posterior distributions

Approximate Bayes factors

Basic Laplace approximation
Bayesian information criterion

Recall that for competing models M1 and M2 with parameters
θ1 ∈ Θ1 ∈ Rd1 and θ2 ∈ Θ2 ∈ Rd2 and prior distributions π1, π2,
the Bayes factor B in favour of M1 over M2 is

B =
f (x1, . . . , xn |M1)

f (x1, . . . , xn |M2)
=

∫
Θ1

f (x | θ1,M1)π1(θ1) dθ1∫
Θ2

f (x | θ2,M2)π2(θ2) dθ2
.

Using the approximate expression obtained for the normalization
constants, we get

B = (2π)(d1−d2)/2n(d2−d1)/2 L(θ̂1)

L(θ̂2)

∣∣∣j2(θ̂2)
∣∣∣1/2

∣∣∣j1(θ̂1)
∣∣∣1/2

{1 + O(n−1)}.
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Laplace approximations
Bayesian posterior distributions

Approximate Bayes factors

Basic Laplace approximation
Bayesian information criterion

To study the asymptotic behaviour of the Bayes factor we take
logarithms and collect terms of similar order to get

log B = n{̄ln(θ̂1)− l̄n(θ̂2)}+
d2 − d1

2
log n

−1

2
log

{∣∣∣j1(θ̂2)
∣∣∣ /

∣∣∣j1(θ̂1)
∣∣∣}− d2 − d1

2
log(2π) + O(n−1).

The dominating terms are those on the first line, as all other terms
are of smaller order for n →∞. Ignoring the latter we get

log B ≈ {l(θ̂1)− l(θ̂2)} −
d1 − d2

2
log n.

The right-hand side is the Bayesian Information Criterion (BIC). It
reflects that, for large n, the Bayes factor will favour the model
with highest maximized likelihood (the first term), but will also
penalize the model having the largest number of parameters.
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Maximized likelihood
Bayesian methods

Prediction risk
Hypothesis testing

Consider two alternative models M1 = {f (x ; θ), θ ∈ Θ1} and
M2 = {f (x ; θ), θ ∈ Θ2} for a sample
(X = x) = (X1 = x1, . . . ,Xn = xn).

We can apparently address the question of which of these are more
adequate by considering the likelihood ratio

Λ =
supΘ1

L(θ)

supΘ2
L(θ)

=
L(θ̂1)

L(θ̂2)
.

Note that the quantities L(θ̂i ) can be considered as the profile
likelihood L̂i of the ‘model label’ i , considering θ as a nuisance
parameter.

Steffen Lauritzen, University of Oxford Model comparison and selection

Maximized likelihood
Bayesian methods

Prediction risk
Hypothesis testing

If the models are nested in the sense that

Θ1 ⊆ Θ2

the likelihood ratio

Λ =
supΘ1

L(θ)

supΘ2
L(θ)

=
L(θ̂1)

L(θ̂2)

will always be less than or equal to 1, so will always prefer the
larger model as a description for the data.

There are many reasons this is not adequate, hence Λ as above is
rarely used as a measure of relative accuracy of two models.
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Maximized likelihood
Bayesian methods

Prediction risk
Hypothesis testing

If the models are nested, one may in principle consider the p-value

p = P{−2 log Λ ≥ −2 log λobs;M1} (1)

i.e. the probability that the ratio Λ is less that the observed value,
assuming the simpler model is true.

If the p-value is very small, corresponding to Λ1 being unusually
small, this will be taken as evidence against M1, and so M2 is
favoured.

In contrast, if p is moderate, M1 would be favoured over M2 as the
simpler explanation of the data.
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Maximized likelihood
Bayesian methods

Prediction risk
Hypothesis testing

This approach has several problems, including:

I it does not make clear sense unless M2 has been established
as adequate

I it does not make sense if the models Mi are not nested

I when many models Mi are considered, it is hard to control the
probability of favouring an incorrect model by chance.
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Maximized likelihood
Bayesian methods

Prediction risk
Bayesian information criterion

The Bayes factor B in favour of M1 over M2 is

B =
f (x |M1)

f (x |M2)
=

∫
Θ1

f (x | θ, M1)π1(θ) dθ∫
Θ2

f (x | θ, M2)π2(θ) dθ
=

L̄1

L̄2
,

where L̄i are the integrated likelihoods for the models Mi .

When the integrated likelihood is approximated with using
Laplace’s method, we get the Bayesian Information Criterion

L̄i ≈ constant + BICi = l(θ̂i )−
di

2
log n.

The prior distributions πi do not enter in the expression for BIC

which may or may not be seen as an advantage.

Models with a high value of BIC would be preferred over models
with a low value of BIC.
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Maximized likelihood
Bayesian methods

Prediction risk
Bayesian information criterion

One can get a more accurate approximation of the Bayes factor by
adding terms

−1

2
log

{∣∣∣ji (θ̂2)
∣∣∣} +

di

2
log(2π)

but this correction is not increasing with n, so it is most commonly
ignored.

For the comparison of two models we get

∆BIC = l(θ̂1)− l(θ̂2) +
d1 − d2

2
log n

= − log Λ +
d1 − d2

2
log n.

Thus, in comparison with straight maximized likelihood, the
simpler model gets preference by entertaining a lower penalty.
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Maximized likelihood
Bayesian methods

Prediction risk
Bayesian information criterion

In the nested case, if d1 < d2 and the true value of the parameter
θ0 ∈ M1 ⊆ M2, the deviance −2 log Λ would under suitable
regularity conditions be approximately χ2(d2 − d1) and the penalty
term will thus dominate for large values of n, so the simpler model
will be correctly chosen.

In this sense, BIC will asymptotically choose the simplest model
which is correct.
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Maximized likelihood
Bayesian methods

Prediction risk

Mallows Cp
AIC

This classic criterion has been developed to choose between
different subsets of variables in linear regression.

Consider the problem of predicting an n-dimensional vector Y with
expectation µ from explanatory variables X . The total mean
square prediction error would be

E(||Y − Ŷ ||2) = E{||µ− µ̂||2}+ E{||Y − E(Y )||2},

where ||v ||2 =
∑

i v
2
i is the squared error norm.

The second term in this expression is the intrinsic random error
and we can do nothing about it. The first term is the squared
prediction risk

R = E{||µ− µ̂||2}

and we would wish to choose a model for µ(X ) which makes this
risk small.
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Maximized likelihood
Bayesian methods

Prediction risk

Mallows Cp
AIC

If it holds that µ = Xβ and we use a linear model of the form

µS(X ) = X (S)βS

where S is a subset of d elements of the covariates so

xi (S) = (xij , j ∈ S)

we thus have the prediction risk

R = E{||Xβ − X (S)β̂S ||2} = dσ2 + B(S)

where B(S) is a bias term

B(S) = ||µ− µS(X )||2 = ||Xβ − X (S)βS ||2

with B(S) = 0 if the true distribution satisfies βj = 0 for j 6∈ S .
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Maximized likelihood
Bayesian methods

Prediction risk

Mallows Cp
AIC

The corresponding residual sum of squares has expectation

E(RSS) = E{||Y − X (S)β̂||2} = (n − d)σ2 + B(S).

Thus, if we add (2d − n)σ2 to both sides this equation, we get an
unbiased estimate of the prediction risk from the residual sum of
squares

R̂(S) = RSS + (2d − n)σ2.

Mallows Cp uses now an unbiased estimate of σ2, typically based
on the residual sum of squares for the model with all the variables
included, to estimate the risk so that

Cp =
RSS

σ̂2
+ 2d − n.

Choosing a model S can now be based on this criterion. Note that
this also penalizes models with many parameters.
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Maximized likelihood
Bayesian methods

Prediction risk

Mallows Cp
AIC

Akaike’s Information Criterion (AIC) is based on exactly the same
idea as Cp, but it is more general and is not restricted to regression
models.

Akaike suggests assessing the prediction error by the
Kullback-Leibler distance to the true distribution g :

D(g , θ) =

∫
g(x) log f (x , θ) dx−

∫
g(x) log g(x) dx = S(g , θ)+H(g).

The AIC is an approximately unbiased estimate of −2nS(g , θ̂)
which can be shown to reduce to

AICi = l(θ̂i )− di

so
∆AIC = − log Λ + (d1 − d2).

AIC gives typically lower penalty for complexity than BIC.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Maximum likelihood asymptotics
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Steffen Lauritzen, University of Oxford Maximum likelihood asymptotics

Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Cumulants
Basic expansion

Let X1, . . . ,Xn be independent and identically distributed with
density f and moment generating function M(t) = EetX . The
cumulant generating function of X is

K (t) = log M(t) =
∞∑

r=1

κr

r !
tr ,

and the coefficient

κr =
∂rK (0)

∂r t

is the cumulant of order r . The first two cumulants are the mean
and variance

κ1 = µ = E(X ), κ2 = σ2 = V(X ).
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Cumulants
Basic expansion

If X and Y are independent random variable, their cumulants
satisfy

κr (aX + bY ) = arκr (X ) + brκr (Y ).

The standardized standardized cumulants

ρr = κr/κ
r/2
2 , r = 3, 4, . . .

are thus invariant under translations and scaling

ρr (aX + b) = ρr

and therefore determine the shape of the density.

In the normal distribution, κr = 0 for r > 2 and cumulants ρr for
r > 2 therefore indicate departures from normality.

The third cumulant ρ3 is is known as the skewness, and the fourth
cumulant ρ4 as the kurtosis of the distribution.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Cumulants
Basic expansion

F. Y. Edgeworth (1845-1926), Professor of Political Economy at
Oxford, showed that the density of

S∗n =

∑n
1 Xi − nµ

σ
√

n

could be approximated as

fS∗n (x) ≈ φ(x)

{
1 +

ρ3H3(x)

6
√

n
+

3ρ4H4(x) + ρ2
3H6(x)

72n

}
+ O(n−3/2)

where φ is standard normal density and the omitted terms are
O(n−3/2) and Hr are Hermite polynomials

Hr (x) = (−1)rφ(r)(x)/φ(x).

For example, H3(x) = x3 − 3x , H4(x) = x4 − 6x2 + 3,
H6(x) = x16− 15x4 + 45x2 − 15.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Cumulants
Basic expansion

In terms of the original variable S we get

fSn(s) =
e−x2/2

σ
√

2πn

{
1 +

ρ3H3(x)

6
√

n
+

3ρ4H4(x) + ρ2
3H6(x)

72n

}
+O(n−3/2),

where x = (s − nµ)/(σ
√

n).

Since H3(0) = 0 this is particularly accurate when s is close to nµ,
as the first correction term then disappears.

If we wish a similar accuracy for other values of s we use the idea
of tilting the distribution by shifting the log-density with a linear
term, as we shall see next.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family
Tilting

Associate an exponential family of densities with the originial
density f as

f (x ; γ) = f (x)exγ−K(γ),

where K is the cumulant generating function of f . Clearly,
f (x ; 0) = f (x). We say that f (x ; γ) is obtained by tilting f by γ.

If Xi have density f (x ; γ), the sum Sn has density

fSn(s; γ) = fSn(s)e
sγ−nK(γ),

implying that
fSn(s) = enK(γ)−sγfSn(s; γ).

Since this equation holds for all γ we can now choose γ freely to
suit our purpose.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family
Tilting

If we use an Edgeworth expansion to approximate fSn(s; γ) we can
thus choose γ so that the expectation Eγ(Sn) = s.

Since the mean of Sn in the tilted distribution is nK ′(γ) we should
choose nK ′(γ̂) = s. As the variance of Sn in the tilted distribution
is nK ′′(γ), the resulting approximation is then

fSn(s) ≈ enK(γ̂)−sγ̂ 1

{2πnK ′′(γ̂)}−1/2
,

which can be extremely accurate.

Note that the Edgeworth approximation uses a normal
approximation around the mean of the distribution whereas
Laplace’s method uses its mode. The tilting technique can be
useful in both cases.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family
Barndorff–Nielsen’s formula

Use this approximation for an exponential family with parameter θ,
then K (t) = K (θ + t)− K (t) and thus γ̂ = θ̂ − θ, where θ̂ is the
MLE, yielding

fSn(s; θ) ≈ en{K(θ̂)−K(θ)}−s(θ̂−θ)} 1

{2πnK ′′(θ̂)}−1/2
∝ L(θ)

L(θ̂)
|j(θ̂)|−1/2.

Since nK ′(θ̂) = s we have

∂θ̂

∂s
=

1

nK ′′(θ̂)
=

1

nj(θ̂)

so a change of variables leads to the following approximate formula
for the density of the MLE

f (θ̂; θ) ≈∝ L(θ)

L(θ̂)
|j(θ̂)|1/2.
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Edgeworth expansion
Saddle-point expansion

MLE in exponential family
Barndorff–Nielsen’s formula

Similar methods can be used to show that, in wide generality, if A
is ancillary so that (θ̂, A) is minimal sufficient, then approximately,
and quite often exactly,

f (θ̂ |A = a; θ) ≈∝ L(θ)

L(θ̂)
|j(θ̂)|1/2,

which is known as Barndorff–Nielsen’s formula. Note that
normalization constant may depend on θ and a.

Note similarity to the approximate Bayesian posterior:

π∗(θ) ≈∝ L(θ)

L(θ̂)

∣∣∣j(θ̂)∣∣∣1/2

where we have ignored the contribution π(θ)/π(θ̂) from the prior.
Only the interpretations are different!
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The Wishart distribution
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Basic properties
Marginal and conditional distributions

For a positive definite covariance matrix Σ, the multivariate
Gaussian distribution has density on Rd

f (x | ξ,Σ) = (2π)−d/2(det K )1/2e−(x−ξ)>K(x−ξ)/2, (1)

where K = Σ−1 is the concentration matrix of the distribution.
If X1 ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

If A is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = AX + b ∼ Nr (Aξ + b,AΣA>).
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Basic properties
Marginal and conditional distributions

Partition X into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs with
r + s = d and partition mean vector, concentration and covariance
matrix accordingly.

Then, if X ∼ Nd(ξ, Σ)

X2 ∼ Ns(ξ2,Σ22).

If Σ22 is regular, it further holds that

X1 |X2 = x2 ∼ Nr (ξ1|2,Σ1|2),

where

ξ1|2 = ξ1 + Σ12Σ
−1
22 (x2 − ξ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

In particular, if Σ12 = 0 if and only if X1 and X2 are independent.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Basic properties
Marginal and conditional distributions

From the matrix identities

K−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 = Σ1 | 2 (2)

and
K−1

11 K12 = −Σ12Σ
−1
22 , (3)

it follows that then the conditional expectation and concentrations
also can be calculated as

ξ1|2 = ξ1 − K−1
11 K12(x2 − ξ2) and K1|2 = K11.

Note that the marginal covariance is simply expressed in terms of
Σ where as the conditional concentration is simply expressed in
terms of K.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Trace of matrix
Sample with known mean
Maximizing the likelihood

A square matrix A has trace

tr(A) =
∑

i

aii .

The trace has a number of properties:

1. tr(γA + µB) = γ tr(A) + µ tr(B) for γ, µ being scalars;

2. tr(A) = tr(A>);

3. tr(AB) = tr(BA)

4. tr(A) =
∑

i λi where λi are the eigenvalues of A.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Trace of matrix
Sample with known mean
Maximizing the likelihood

For symmetric matrices the last statement follows from taking an
orthogonal matrix O so that OAO> = diag(λ1, . . . , λd) and using

tr(OAO>) = tr(AO>O) = tr(A).

The trace is thus orthogonally invariant, as is the determinant:

det(OAO>) = det(O) det(A) det(O>) = 1 det(A)1 = det(A).

There is an important trick that we shall use again and again: For
λ ∈ Rd

λ>Aλ = tr(λ>Aλ) = tr(Aλλ>)

since λ>Aλ is a scalar.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Trace of matrix
Sample with known mean
Maximizing the likelihood

Consider first the case where ξ = 0 and a sample
X1 = x1, . . . ,Xn = xn from a multivariate Gaussian distribution
Nd(0,Σ) with Σ regular. Using (1), we get the likelihood function

L(K ) = (2π)−nd/2(det K )n/2e−
∑n

ν=1 x>ν Kxν/2

∝ (det K )n/2e−
∑n

ν=1 tr{Kxνx>ν }/2

= (det K )n/2e− tr{K
∑n

ν=1 xνx>ν }/2

= (det K )n/2e− tr(KW )/2. (4)

where

W =
n∑

ν=1

xνx
>
ν

is the matrix of sums of squares and products.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Trace of matrix
Sample with known mean
Maximizing the likelihood

Writing the trace out

tr(KW ) =
∑

i

∑
j

kijWji

emphasizes that it is linear in both K and W and we can recognize
this as a linear and canonical exponential family with K as the
canonical parameter and −W /2 as the canonical sufficient
statistic. Thus, the likelihood equation becomes

E(−W /2) == −nΣ/2 = −W /2

since E(W ) = nΣ. Solving, we get

K̂−1 = Σ̂ = W /n

in analogy with the univariate case.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Trace of matrix
Sample with known mean
Maximizing the likelihood

Rewriting the likelihood function as

log L(K ) =
n

2
log(det K )− tr(KW )/2

we can of course also differentiate to find the maximum, leading to

∂

∂kij
log(det K ) = wij/n,

which in combination with the previous result yields

∂

∂K
log(det K ) = K−1.

This can also be derived directly by writing out the determinant,
and it holds for any non-singular square matrix!
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Definition
Basic properties
Wishart density

The Wishart distribution is the sampling distribution of the matrix
of sums of squares and products. More precisely:

A random d × d matrix W has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D
=

n∑
i=1

XνX
>
ν

where Xν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).

If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Definition
Basic properties
Wishart density

If W1 and W2 are independent with Wi ∼ Wd(ni ,Σ), then

W1 + W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr (n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd ,

λ>Wλ ∼ σ2
λχ2(n),

where σ2
λ = λ>Σλ.
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The multivariate Gaussian distribution
Gaussian likelihoods

The Wishart distribution

Definition
Basic properties
Wishart density

If W ∼ Wd(n,Σ), where Σ is regular, then W is regular with
probability one if and only if n ≥ d .

When n ≥ d the Wishart distribution has density

fd(w | n,Σ)

= c(d , n)−1(det Σ)−n/2(det w)(n−d−1)/2e− tr(Σ−1w)/2

for w positive definite, and 0 otherwise.

The Wishart constant c(d , n) is

c(d , n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n + 1− i)/2}.

Steffen Lauritzen, University of Oxford Multivariate Gaussian Analysis



Wilks’ distribution
Hotelling’s T2
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

If X and Y are independent , X ∼ Γ(αx , γ), and Y ∼ Γ(αy , γ),
then the ratio X/(X + Y ) follows a Beta distribution:

B =
X

X + Y
∼ B(αx , αy ).

A multivariate analogue of this result involves the Wishart
distribution and asserts.

If W1 ∼ Wd(f1,Σ) and W2 ∼ Wd(f2,Σ) with f1 ≥ d, then the
distribution of

Λ =
det(W1)

det(W1 + W2)

does not depend on Σ and is denoted by Λ(d , f1, f2). The
distribution is known as Wilks’ distribution.
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

To see that the distribution of Λ does not depend on Σ, we choose
a matrix A such that AΣA> = Id . Then

W̃i = AWiA
> ∼ Wd(fi , Id)

and

Λ̃ =
det(W̃1)

det(W̃1 + W̃2)
=

det(A) det(W1) det(A>)

det(A) det(W1 + W2) det(A>)
= Λ.

Clearly, the distribution of Λ̃ does not depend on Σ and as Λ̃ = Λ
this also holds for the latter.

Steffen Lauritzen, University of Oxford Wilks’ Λ and Hotelling’s T2.

Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

Wilks’ distribution is closely related to the Beta distribution. It
holds that

Λ
D
=

d∏
i=1

Bi

where Bi are independent and follow Beta distributions with

Bi ∼ B{(f1 + 1− i)/2, f2/2)}.

Indeed the distribution of

(W1 + W2)
−1W1

is also known as the multivariate Beta distribution.
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

We first need a useful result about determinants of block matrices.

If A is a d × d symmetric matrix partitioned into blocks of
dimension r × r , r × s, and s × s as

A =

(
A11 A12

A21 A22

)
,

it holds that

det A = det(A11 − A12A
−1
22 A21) det(A22). (1)

Here the entire expression should be considered equal to 0 if A22

is not invertible and det(A22) = 0.
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

This follows from a simple calculation

det(A) = det

(
A11 A12

A21 A22

)
det

(
Ir×r 0r×s

−A−1
22 A21 Is×s

)
= det

(
A11 − A12A

−1
22 A21 A12

0s×r A22

)
= det(A11 − A12A

−1
22 A21) det(A22).
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

Consider a partitioning of W and Σ into blocks as

W =

(
W11 W12

W21 W22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 is an r × r matrix, Σ22 is s × s, etc.

If W ∼ Wd(f ,Σ) and Σ12 = Σ21 = 0 then

det(W )

det(W11) det(W22)
∼ Λ(r , f − s, s) = Λ(s, f − r , r).
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

To see this is true we first use the matrix identity (1) to write

det(W )

det(W11) det(W22)
=

det(W1|2)

det(W11)
=

det(W1|2)

det(W1|2 + W12W
−1
22 W21)

,

where W1|2 = W11 −W12W
−1
22 W21.

Next we need to use that if Σ12 = 0 and thus Σ1|2 = Σ11, it

further holds that W1|2 and W12W
−1
22 W21 are independent and

both Wishart distributed as

W1|2 ∼ Wr (f − s,Σ11), W12W
−1
22 W21 ∼ Wr (s,Σ11).

We abstain from giving further details.
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Wilks’ distribution
Hotelling’s T2

Definition
Relation to Beta distribution
A matrix identity
Test for independence

Wilks’ distribution occurs as the likelihood ratio test for
independence. Consider X1, . . . ,Xn ∼ Nd(0,Σ). The likelihood
function is

L(K ) = (det K )n/2e− tr(KW )/2.

As this is maximized by

K̂ = nW−1

we have
L(K̂ ) = (det W )−n/2e−nd/2.

If Σ12 = 0 we similarly have

L(K̂11, K̂22) = (det W11)
−n/2e−nr/2(det W22)

−n/2e−ns/2.

Hence the likelihood ratio statistic is

L(K̂11, K̂22)

L(K̂ )
=

{
det(W )

det(W11) det(W22)

}n/2

= Λn/2.
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Wilks’ distribution
Hotelling’s T2

Definition and relation to Wilks’ Λ
Relation to Fisher’s F

Let Y ∼ Nd(µ, cΣ) and W ∼ Wd(f ,Σ) with f ≥ d , and Y ⊥⊥W .
Then

T 2 = f (Y − µ)>W−1(Y − µ)/c

is known as Hotelling’s T 2. This is the multivariate analogue of
Student’s t (or rather t2).

It is equivalent to the likelihood ratio statistic for testing µ = 0
from a sample X1, . . . ,Xn where then Y = X̄ , W =

∑
i (Xi − X̄ ),

f = n − 1, and c = 1/n.

It holds that

1

1 + T 2/f
∼ Λ(d , f , 1) = Λ(1, f − d + 1, d).
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Wilks’ distribution
Hotelling’s T2

Definition and relation to Wilks’ Λ
Relation to Fisher’s F

To see this we exploit the matrix identity (1) and calculate a
determinant in two different ways. We may without loss of
generality let µ = 0. We have

det

(
W −Y /

√
c

Y /
√

c 1

)
= det(W + YY>/c) · 1,

But we also have

det

(
W −Y /

√
c

Y /
√

c 1

)
= det(1 + Y>W−1Y /c) detW

= (1 + Y>W−1Y /c) detW

= (1 + T 2/f ) detW .
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Wilks’ distribution
Hotelling’s T2

Definition and relation to Wilks’ Λ
Relation to Fisher’s F

Hence

1

1 + T 2/f
=

1

1 + Y>W−1Y /c
=

det W

det(W + YY>/c)
.

The result now follows by noting that Y ∼ Nd(0, cΣ) implies
YY>/c ∼ Wd(1,Σ). Since

Λ(d , f , 1) = Λ(1, f − d + 1, d)

and the latter is a Beta distribution, it also holds that

f − d + 1

fd
T 2 ∼ F (d , f + 1− d)

where F denotes Fisher’s F -distribution.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Definition
Testing for independence
Hotelling’s T2

If W1 ∼ Wd(f1,Σ) and W2 ∼ Wd(f2,Σ) with f1 ≥ d , then the
distribution of

Λ =
det(W1)

det(W1 + W2)

is Wilks’ distribution and denoted by Λ(d , f1, f2). It holds that

Λ
D
=

d∏
i=1

Bi

where Bi are independent and follow Beta distributions with

Bi ∼ B{(f1 + 1− i)/2, f2/2)}.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Definition
Testing for independence
Hotelling’s T2

Wilks’ distribution occurs as the likelihood ratio test for
independence. Consider W ∼ Wd(f ,Σ) and the hypothesis that
Σ12 = 0 for a fixed block partitioning of Σ into r × r , r × s and
s × s matrices. The likelihood ratio statistic then becomes

L(K̂11, K̂22)

L(K̂ )
=

{
det(W )

det(W11) det(W22)

}n/2

= Un/2,

where
U ∼ Λ(r , f − s, s) = Λ(s, f − r , r).

It follows that

Λ(d , f1, f2) = Λ(f2, f1 + f2 − d , d).
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Definition
Testing for independence
Hotelling’s T2

This is the equivalent of Student’s t-distribution. Let
Y ∼ Nd(µ, cΣ), W ∼ Wd(f ,Σ) with f ≥ d , and Y ⊥⊥W .

T 2 = f (Y − µ)>W−1(Y − µ)/c

is known as Hotelling’s T 2.

It holds that

1

1 + T 2/f
∼ Λ(d , f , 1) = Λ(1, f − d + 1, d)

and
f − d + 1

fd
T 2 ∼ F (d , f + 1− d)

where F denotes Fisher’s F -distribution.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

Recall that the Wishart density has the form

fd(w | f ,Σ) ∝ (det w)(f−d−1)/2e− tr(Σ−1w)/2.

Since the likelihood function for Σ is

L(K ) = (det K )f /2e− tr(KW )/2,

a conjugate family of distributions for K is given by

π(K ; a,Ψ) ∝ (det K )a/2−1e− tr(KΨ)/2,

which thus specifies a Wishart distribution for the concentration
matrix.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

We then say that Σ follows an inverse Wishart distribution if
K = Σ−1 follows a Wishart distribution, formally expressed as

Σ ∼ IWd(δ,Ψ) ⇐⇒ K = Σ−1 ∼ Wd(δ + d − 1,Ψ−1),

i.e. if the density of K has the form

f (K | δ,Ψ) ∝ (det K )δ/2−1e− tr(ΨK)/2.

We repeat the expression for the standard Wishart density:

fd(w | f ,Σ) ∝ (det w)(f−d−1)/2e− tr(Σ−1w)/2.

It follows that the family of inverse Wishart distributions is a
conjugate family for Σ.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

If the prior distribution of Σ is IWd(δ,Ψ) and W |Σ ∼ Wd(f ,Σ),
we get for the posterior density of K that

f (K | δ,Ψ,W ) ∝ (det K )f /2e− tr(KW )/2

×(det K )δ/2−1e− tr(ΨK)/2

= (det K )(f +δ)/2−1e− tr{(Ψ+W )K}/2,

and hence the posterior distribution is simply
IWd(δ + f ,Ψ + W ) = IWd(δ∗,Ψ∗).

We can thus interpret the parameter δ as a prior equivalent sample
size and Ψ as the value of a matrix of sums and squares and
products from a previous sample.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

We need the full form of the Wishart density for K , as constants
may become important and recall that

fd(K | δ,Ψ)

= q(d , δ)−1(det Ψ)(δ+d−1)/2(det K )δ/2−1e− tr(ΨK)/2

The constant q(d , δ) is

q(d , δ) = 2(δ+d−1)d/2(2π)d(d−1)/4
d∏

i=1

Γ{(δ + d − i)/2}.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

Consider now alternative models M1 with Σ arbitrary and M2 with
Σ of block diagonal form:

Σ =

(
Σ11 0
0 Σ22

)
.

If the associated prior distributions are for M1 that
Σ ∼ IWd(δ, Id) and for M2 that Σ11 ∼ IW r (δ, Ir ),
Σ22 ∼ IWs(δ, Is), we can now calculate the Bayes factor.
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Fixed state
Evolving state
Kalman filter

Particle filters

We consider data arriving sequentially X1, . . . ,Xn, . . . and wish to
update inference on an unknown parameter θ online.

In a Bayesian setting, we have a prior distribution π(θ) and at time
n we have a density for data conditional on θ as

f (x1, . . . , xn | θ) = f (x1 | θ)f (x2 | x1, θ) · · · f (xn | xn−1, θ)

where we have let xi = (x1, . . . , xi ). Note that we are not assuming
X1, . . . ,Xn, . . . to be independent conditionally on θ.

At time n, we may have updated our distribution of θ to its
posterior

πn(θ) = f (θ | xn) ∝ π(θ)f (xn | θ).
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Fixed state
Evolving state
Kalman filter

Particle filters

If we obtain a new observation Xn+1 = xn+1 we may either start
afresh and write

πn+1(θ) = f (θ | xn+1) ∝ π(θ)f (xn+1 | θ)

or we could claim that just before time n + 1, our knowledge of θ
is summarized in the distribution πn(θ) so we just use this as a
prior distribution for the new piece of information and update as

π̃n+1(θ) ∝ πn(θ)f (xn+1 | xn, θ).

Indeed, these updates are identical since

π̃n+1(θ) ∝ πn(θ)f (xn+1 | xn, θ)

∝ π(θ)f (xn | θ)f (xn+1 | xn, θ)

= π(θ)f (xn+1 | θ) ∝ πn+1(θ).
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Fixed state
Evolving state
Kalman filter

Particle filters

We may summarize these facts by replacing the usual expression
for a Bayesian updating scheme

posterior ∝ prior× likelihood

with
revised ∝ current× new likelihood

represented by the formula

πn+1(θ) ∝ πn(θ)× Ln+1(θ) = πn(θ)f (xn+1 | xn, θ).

In this dynamic perspective we notice that at time n we only need
to keep a representation of πn and otherwise can ignore the past.

The current πn contains all information needed to revise knowledge
when confronted with new information Ln+1(θ).

We sometimes refer to this way of updating as recursive.
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Fixed state
Evolving state
Kalman filter

Particle filters

Basic dynamic model
Fundamental tasks
Prediction and filtering
Smoothing

The previous considerations take on a particular dynamic form
when also the parameter or state θ is changing with time. More
precisely, we consider a Markovian model for the state dynamics of
the form

f (θ0) = π(θ0), f (θi+1 | θi) = f (θi+1 | θi )

where the evolving states θ0, θ1, . . . are not directly observed, but
information about them are available through sequential
observations Xi = xi , where

f (xi | θi, xi−1) = f (xi | θi )

so the joint density of states and observations is

f (xn, θn) = π(θ0)
n∏

i=1

f (θi+1 | θi )f (xi | θi ).
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Fixed state
Evolving state
Kalman filter

Particle filters

Basic dynamic model
Fundamental tasks
Prediction and filtering
Smoothing

This type of model is common in robotics, speech recognition,
target tracking, and steering/control, for example of large ships,
airplanes, and space ships.

The natural tasks associated with inference about the evolving
state θi are known as

I Filtering: Find f (θn | xn). What is the current state?

I Prediction: Find f (θn+1 | xn). What is the next state?

I Smoothing: Find f (θj | xn), j < n. What was the past state at
time j?
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This type of model is common in robotics, speech recognition,
target tracking, and steering/control, for example of large ships,
airplanes, and space ships.

The natural tasks associated with inference about the evolving
state θi are known as

I Filtering: Find f (θn | xn). What is the current state?

I Prediction: Find f (θn+1 | xn). What is the next state?

I Smoothing: Find f (θj | xn), j < n. What was the past state at
time j?
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This type of model is common in robotics, speech recognition,
target tracking, and steering/control, for example of large ships,
airplanes, and space ships.

The natural tasks associated with inference about the evolving
state θi are known as

I Filtering: Find f (θn | xn). What is the current state?

I Prediction: Find f (θn+1 | xn). What is the next state?

I Smoothing: Find f (θj | xn), j < n. What was the past state at
time j?
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Evolving state
Kalman filter

Particle filters

Basic dynamic model
Fundamental tasks
Prediction and filtering
Smoothing

If the filter distribution f (θn | xn) is available we may calculate the
predictive distribution as

f (θn+1 | xn) =

∫
θn

f (θn+1 | θn)f (θn | xn) dθn (1)

which uses the current filter distribution and the dynamic model.
When a new observation Xn+1 = xn+1 is obtained, we can use

revised ∝ current× new likelihood

to update the filter distribution as

f (θn+1 | xn+1) ∝ f (θn+1 | xn)f (xn+1 | θn+1), (2)

i.e. the updated filter distribution is found by combining the
current predictive with the incoming likelihood. The predictive
distributions can now be updated to yield a general recursive
scheme of predict-observe-filter-predict-observe-filter. . .
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Basic dynamic model
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When we have more time, we may similarly look retrospectively
and try to reconstruct the movements of θ. This calculation is
slightly more subtle than filtering. We first get

f (θj−1 | xn) =

∫
θj

f (θj−1 | θj , xn)f (θj | xn) dθj

=

∫
θj

f (θj−1 | θj , xj−1)f (θj | xn) dθj ,

where we have used that

f (θj−1 | θj , xn) ∝ f (θj−1 | θj , xj−1)f (xj , . . . , xn | θj , θj−1)

= f (θj−1 | θj , xj−1)f (xj , . . . , xn | θj)

so
f (θj−1 | θj , xn) = f (θj−1 | θj , xj−1).
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Basic dynamic model
Fundamental tasks
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Since further

f (θj−1 | θj , xj−1) ∝ f (θj | θj−1)f (θj−1 | xj−1)

we thus get

f (θj−1 | xn) ∝
∫

θj

f (θj | θj−1)f (θj−1 | xj−1)f (θj | xn) dθj

∝ f (θj−1 | xj−1)

∫
θj

f (θj | θj−1)f (θj | xn) dθj ,

Which is the basic smoothing recursion:

f (θj−1 | xn) ∝ f (θj−1 | xj−1)

∫
θj

f (θj | θj−1)f (θj | xn) dθj . (3)

It demands that we have stored a representation of the filter
distributions f (θj−1 | xj−1) as well as the dynamic state model.
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Evolving state
Kalman filter

Particle filters

Basic model
Updating the filters
Correcting predictions and observations
Geometric construction

This special case of the previous is traditionally attributed to
Kalman from a result in 1960, but was in fact developed in full
detail by the Danish statistician T.N. Thiele in 1880.

It is based on the Markovian state model

θi+1 | θi ∼ N (θi , σ
2
i+1), θ0 = 0

and the simple observational model

Xi | θi ∼ N (θi , τ
2
i ), i = 1, . . .

where typically σ2
i = (ti − ti−1)σ

2 and τ2
i = τ2 with ti denoting

the time of the ith observation. For simplicity we shall assume
ti = i and wi = 1 in the following.
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Particle filters

Basic model
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Correcting predictions and observations
Geometric construction

The filtering relations become particularly simple, since the
conditional distributions all are normal, and we are only concerned
with expectations and variances.

We repeat Thiele’s argument as an instance of the general theory
developed.

Suppose at time n we have the filter distribution of θn as
N (µn, ω

2
n). Then the predictive distribution of θn+1 is

θn+1 | xn ∼ N (µn, ω
2
n + σ2).

We can think of µn as our current ‘best measurement’ of θn+1,
with this variance.

The contribution from the observation is a measurement of θn+1

with a value of xn+1 and a variance τ2. The best way of combining
these estimates is to take a weighted average with the inverse
variances as weights.
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It follows that our new filter distribution has expectation

µn+1 =
µn/(ω2

n + σ2) + xn+1/τ2

(ω2
n + σ2)−1 + τ−2

=
τ2µn + (σ2 + ω2

n)xn+1

τ2 + σ2 + ω2
n

and variance

ω2
n+1 =

1

(ω2
n + σ2)−1 + τ−2

=
τ2(σ2 + ω2

n)

τ2 + σ2 + ω2
n

.

Clearly this result could also have been obtained from expanding
the sum of squares in the expression for the filter distribution (2)

f (θn+1 | xn) ∝ exp

{
−(θn+1 − µn)

2

2(σ2 + ω2
n)

+
(θn+1 − xn+1)

2

2τ2

}
.
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We may elaborate the expression for µn+1 and write it as a
correction of µn or of xn+1 as

µn+1 = µn +
σ2 + ω2

n

τ2 + σ2 + ω2
n

(xn+1 − µn)

or

µn+1 = xn+1 −
τ2

τ2 + σ2 + ω2
n

(xn+1 − µn)

showing how at each stage n the filtered value is obtained by
modifying the observed and predicted values when the prediction is
not on target.

The Kalman filter readily generalizes to the multivariate case and
more complex models for the state evolution and observation
equation. We abstain from further details.
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This geometric construction of the Kalman filter and smoother is
taken from Thiele (1880).
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Particle filters

Basic Monte Carlo representation
Moving and reweighting particles
Effective number of particles
Resampling and replenishing

One of the most recent developments in modern statistics is using
Monte Carlo methods for representing the predictive and filtered
distributions.

We assume that we at time n have represented the filter
distribution (2) by a sample

f (θn | xn) ∼ {θ1
n, . . . , θ

M}

so that we would approximate any integral w.r.t. this density as∫
h(θn)f (θn | xn) dθn ≈

M∑
i=1

h(θi
n).

The values {θ1
n, . . . , θ

M
n } are generally referred to as particles.
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More generally, we may have the particles associated with weights

f (θn | xn) ∼ {(θ1
n,w

1
n ), . . . , (θM ,wM

n )}

with
∑M

i=1 w i
n = 1, so that the integral is approximated by

∫
h(θn)f (θn | xn) dθn ≈

M∑
i=1

h(θi
n)w

i
n. (4)

Typically, wi will reflect that we have been sampling from a
proposal distribution g(θn) rather than the target distribution
f (θn | xn) so the weights are calculated as

w i
n = f (θi

n | xn)/g(θi
n).
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When filtering to obtain particles representing the next stage of
the filtering distribution we move each particle a random amount
by drawing θi

n+1 at random from a proposal distribution
gn+1(θ | θi

n, xn+1) and subsequently reweight the particle as

w i
n+1 ∝ w i

n

f (θi
n+1 | θi

n)f (xn+1 | θi
n+1)

gn+1(θi
n+1 | θi

n, xn+1)

the numerator being proportional to f (θi
n+1 | θi

n, xn+1).

There are many possible proposal distributions but a common
choice is a normal distribution with an approximately correct mean
and slightly enlarged variance.
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The approximate inverse variance of the integral (4) is for the
constant function h ≡ 1 equal to

M̃n =
1∑

i (w
i
n)

2

which is known as effective number of particles. It is maximized for
w i ≡ 1/M which represents weights obtained when sampling from
the correct distribution.

As the filtering evolves, it may happen that some weights become
very small, reflecting bad particles, which are placed in areas of
small probability. This leads to the effective number of particles
becoming small.
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To get rid of these, M new particles are resampled with
replacement, the probability for choosing particle i at each
sampling being equal to w i so that bad particles have high
probability of not being included. This creates now a new set of
particles which now all have weight 1/M.
However, some particles will now be repeated in the sample and
when this has been done many times, there may be only few
particles left.

Various schemes then exist for replenishing and sampling new
particles.

This can also be done routinely at each filtering, for example by
first sampling two new particles for every existing one and
subsequently resampling as above to retain exactly M particles.
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