$\underset{\text { Conditionality }}{\substack{\text { Ancility }}}$	Conditionaliy	
Ancillarity and Conditional Inference Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 1, Hilary Term 2008 April 2, 2008	Various forms of the conditionalit distribution used for inference sho ancillary, such as the instrument Note this is a frequentist concept paradigm. In the Fisherian paradigm, we sho measurement obtained to anythin not. Rather we should define a re example by conditioning with an for inference calculations. The relevant reference set may not space!	principle say that the uld be conditional on any ctually used. and plays little role in a Bayesia uld not compare the we could have seen, but did evant reference set of values, for ncillary statistic, and use this se t simply be the original sample
Steffen Laurizen, University of Oxford Ancillarity and Conditional Inference Ancillarity Conditionality Example Definition wac	Steffen Lauritzen, University of Oxford Ancillarity Conditionality	Ancillarity and Conditional Inference Reference set Imference principles Completenass Completeness Exponential families Basu's Theoren Basu's Theorem
Consider an experiment with two instruments available: One instrument is very precise and produces measurements $\mathcal{N}(\theta, 1)$. The other instrument is older and less accurate; it produces measurements which are $\mathcal{N}(\theta, 100)$. We wish to check whether a parameter $\theta=0$, the alternative being that $\theta>0$. Toss a fair coin and let $A=i, i=1,2$ denote that the instrument i is chosen. Perform then the measurement to obtain X. The joint distribution of (X, A) is determined as $f(x, a ; \theta)=\phi(x-\theta) 1_{\{1\}}(a) / 2+\phi\{(x-\theta) / 10\} 1_{\{2\}}(a) / 2$ Suppose we have chosen the first instrument and observe $X=4$. Is this consistent with the assumption $\theta=0$?	In a Bayesian paradigm we only the likelihood function, which mo the posterior. The likelihood function when obs $L(\theta \mid X=4, a=$ which in itself gives very strong e	nsider the value observed troug difies the prior distribution into rving $X=4, A=1$ would be 1) $\propto \phi(4-\theta)$ idence against $\theta=0$.
Stefien Lauritzen. University of Oxford $\left.\begin{array}{rl}\text { Ancillarity } \\ \text { Conditionality }\end{array} \quad \begin{array}{l}\text { Ancillarity and Conditional Inference } \\ \text { Example } \\ \text { Definition }\end{array}\right]$	Steffen Lauritzen, University of Oxford Ancilarity Conditionality	Ancillarity and Conditional Inference Reference set Inference principles Completeness Exponential families Basu's Theorem
The p-value is $p=P(X>4 ; \theta=0)=\{1-\Phi(4)\} / 2+\{1-\Phi(.4)\} / 2=.1723$ so there is nothing to worry about? However, we did in fact use the precise instrument. So, with a standard deviation of 1 , a value of $X=4$ should be very unlikely. Why should it matter that we could have used the other instrument, but didn't? Should we not rather have considered $A=a$ fixed and condition on the actual instrument used? That is, calculate the p-value as $\tilde{p}=P(X>4 \mid A=1 ; \theta=0)=\{1-\Phi(4)\}=.00003$ giving very strong evidence against the hypothesis.	In general, if the MLE $\hat{\theta}$ is not s an ancillary statistic A so that $(\hat{\theta}$ since $f(x ; \theta)=h(x)$ we also have $f(x \mid A=a ; \theta) \propto$ Thus $\hat{\theta}$ is sufficient when consid given the ancillary A.	ficient, it is often possible to find $A)$ is jointly sufficient. Then $\{\hat{\theta}(x), a(x) ; \theta\}$ $h(x) k\{\hat{\theta}(x), a ; \theta\} .$ ing the conditional distribution
Steffen Laurizen, University of Oxford Ancillarity Conditionality Ancillarity and Conditional Inference Example Definition Dac	Steffen Lauritzen, University of Oxford Ancillarity Conditionality	Ancillarity and Conditional Inference Reference set Inference principles Completeness Exponential families Basu's Theorem
A statistic $A=a(X)$ is said to be ancillary if (i) The distribution of A does not depend on θ; (ii) there is a statistic $T=t(X)$ so that $S=(T, A)$ taken together are minimal sufficient. Intuitively A is then uninformative about the unknown parameter. In the example just given, A is such an ancillary statistic since $\hat{\theta}=X$ can play the role of T as (X, A) clearly is jointly (minimal) sufficient. The word 'ancillary' both means secondary and auxiliary, each meaning referring to each of the two conditions. Notion of ancillarity seems fundamental in statistics and is due to Fisher, but its role is less clear than that of sufficiency.	It has several time been attempted firm foundation through so-called - The sufficiency principle (S) sufficient statistic, S carries parameter θ as does X.	to give statistical inference a inference principles, for example: says that if $S=s(X)$ is a he same evidence for the

Ancillarity ConditionalityReference set Inference priciples Completenss Exponential familics Basu's Theorem	Conditionaliy	Inference principles Exponential families Basu's Theorem
It has several time been attempted to give statistical inference a firm foundation through so-called inference principles, for example: - The sufficiency principle (S) says that if $S=s(X)$ is a sufficient statistic, S carries the same evidence for the parameter θ as does X. - The conditionality principle (C) says that if $A=a(X)$ is ancillary, then the conditional distribution given $A=a\left(x_{\mathrm{obs}}\right)$, carries the same evidence as the unconditional experiment.	Consider an exponential family, $f(x ; \theta)=b(x) e^{a(\theta)}$ If the family is linear, then $T=t$ sufficient. This is a non-trivial result. The pron and is outside the scope of this The case of a linear exponential where a complete sufficient statis can be proved. For curved exponential families th sufficient statistic.	h densities $t(x)-c(\theta), \quad x \in \mathcal{X}$ is boundedly complete and of uses analytic function theory urse. mily is essentially the only case exists, or at least where this re is typically no complete
	Steffen Lauritzen, University of Oxford Ancillarity Conditionality	Ancillarity and Conditional Inference Reference set Inference principles Completeness Basu's Theoremil families Basu's Theorem
It has several time been attempted to give statistical inference a firm foundation through so-called inference principles, for example: - The sufficiency principle (S) says that if $S=s(X)$ is a sufficient statistic, S carries the same evidence for the parameter θ as does X. - The conditionality principle (C) says that if $A=a(X)$ is ancillary, then the conditional distribution given $A=a\left(x_{\mathrm{obs}}\right)$, carries the same evidence as the unconditional experiment. - The likelihood principle (L) says that all evidence in an experiment is summarized in the likelihood function.	Sometimes it does not matter, w If $T=t(X)$ is complete and suffic A does not depend on θ, then T Here is a nice application of this: If $\left(X_{1}, \ldots, X_{n}\right)$ is a sample from with known variance $\sigma^{2}=\sigma_{0}^{2}$, it sufficient. Since the distribution μ, it follows that \bar{X} and $\sum\left(X_{i}-\right.$	ther we condition on A or not: ient for θ and the distribution of and A are independent. e normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ Ids that $\hat{\mu}=\bar{X}$ complete and $\sum_{i}\left(X_{i}-\bar{X}\right)^{2}$ cannot depend on $)^{2}$ are independent.
	Steffen Lauritzen, University of Oxford Ancillarity Conditionality	Ancillarity and Conditional Inference Reference set Inference principles Completeness Exponential families Basu's Theorem
Birnbaum's theorem	The proof is surprisingly simple function of a and let $m=\mathbf{E}_{\theta}\{g$	g be an arbitrary bounded Note m does not depend on
Whereas some variant of (S) and (C) are commonly accepted among statisticians, (L) is not. Birnbaum showed in 1972 that (S) and (C) combined are equivalent to (L)! Reactions on this result have been different. The theorem depends heavily on the precise formulation of the principles (weak and strong forms) and is therefore not generally accepted as a fact. Bayesian inference obeys (L) in the strongest form. Attitudes towards this fact are varied...	$h\{t(x)\}=\mathbf{E}_{\theta}[\{g(\lambda$ which also does not depend on θ Iterating expectations and using $\mathbf{E}_{\theta}\{h(T)\}=$ $=\mathbf{E}_{f}$ for all θ. Completeness then impl $\mathbf{E}_{\theta}\{g(A) \mid T=t\}$ thus that A and T are independe	$-m\} \mid T=t(x)]$ ecause T was sufficient. definition of m yields $\begin{aligned} & E_{\theta}[g\{A\}-m \mid T] \\ & \{g(A)-m\}=0 \end{aligned}$ $\mathfrak{x})\}=\mathbf{E}\{g(A)\},$
	Steffen Lauriten, University of Oxtord	Ancillarit and Condifional Inerence
A statistic $T=t(X)$ is said to be complete w.r.t. θ if for all functions h $\mathbf{E}_{\theta}\{h(T)\}=0 \text { for all } \theta \Longrightarrow h(t)=0 \text { a.s. }$ It is boundedly complete if the same holds when only bounded functions h are considered. It would be more precise to say the family of densities of T $\mathcal{F}_{T}=\left\{f_{T}(t ; \theta), \theta \in \Theta\right\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.		

	Summary of previous lecture Nuisance parameters Similarity	Composite hypotheses Neyman structure Completeness
When C is a cut, the likelihood factorizes as $L(\theta \mid x) \propto f(s, c ; \theta)=f(s \mid c ; \psi) f(c ; \lambda)=L_{1}(\psi \mid s, c) L_{2}(\lambda \mid c)$ Since ψ and λ vary independently, we may then maximize L by maximizing each of these factors separately. In other words, the maximum likelihood estimator $\hat{\theta}$ of the parameter θ satisfies $\hat{\theta}=(\hat{\psi}, \hat{\lambda}), \quad \text { where } \hat{\psi}=\arg \max _{\psi} L_{1}(\psi \mid s, c), \hat{\lambda}=\arg \max _{\lambda} L_{2}(\lambda \mid c)$ Hence we get the same estimate whether we use the joint distribution $f_{(S, C)}$ for θ, or $f_{S \mid C}$ for ψ and f_{C} for λ. Note that the equation above may indicate a simple way of maximizing the likelihood function.	Consider the hypothesis that the specific value, i.e. $H_{0}: \psi=\psi_{0}$. we wish to find a test of size α so $P\left(X \in R ; \psi_{0}, \lambda\right)=\alpha$ A test is said to be similar if this One way of constructing a simila is sufficient for λ for fixed $\psi=\psi$ case if C is a cut. Now look for $P\left(X \in R(c) \mid C=c ; \psi_{0}, \lambda\right)=$ where we have used the sufficien	arameter of interest ψ has a is is a composite hypothesis and the rejection region R satisfies all values of $\lambda \in \Lambda$. ondition holds. est is to find a statistic C which This would in particular be the set $R(c)$ such that $\left(X \in R(c) \mid C=c ; \psi_{0}\right)=\alpha$ of C to remove λ.
$\left.\begin{array}{\|l\|l}\text { Steffen Laurizen, University of Oxford } \\ \text { Summary of previous lecture } \\ \text { Nuisance parameters } \\ \text { Similarity }\end{array}\right)$Nuisance parameters and their treatment Example revisited Anciliny cut cit Likelihood perspective Baysian perspective	Steffen Lauritzen, University of Oxford Summary of previous lecture Nuisance parameters Similarity Similarity	Nuisance parameters and their treatment Composite hypotheses Neyman structure Completeness
A widely accepted conditionality principle says that when C is a cut for a nuisance parameter λ, inference about ψ should be based on the conditional distribution of S given C. In the simple example given, this corresponds to conditioning on the instrument actually used when making inference about θ. A possibly less well accepted principle says that when C is a cut for λ, inference about λ should be based on the marginal distribution of C. Thus when making inference about the probability λ of choosing the first instrument, we should ignore the fact that the instrument was used, but only consider that it was chosen.	If we define R as $x \in R \Longleftrightarrow x$ $\begin{aligned} P\left(X \in R ; \psi_{0}, \lambda\right) & =\mathbf{E}_{(2} \\ & =\mathbf{E}_{(} \\ & =\mathbf{E}_{(\psi)} \end{aligned}$ We have thus succeeded in cons conditioning operation. A test of this kind is said to hav result is that if C is complete and any similar rejection region R ha	$R(c(x))$ we then get 入) $\left\{P\left(X \in R \mid C ; \psi_{0}\right)\right\}$ ג) $\left\{P\left(X \in R(C) \mid C ; \psi_{0}\right)\right\}$ $\lambda)(\alpha)=\alpha$. cting a similar test by this Neyman structure. An importan sufficient for λ for $\psi=\psi_{0}$, then Neyman structure.
	Steffen Lauritzen, University of Oxford Summary of previous lecture Nuisance parameters Similarity Similarity	Nuisance parameters and their treatment Composite hypotheses Neyman structure Completeness
Another example	This is shown as follows. Assum	is a similar rejection region, i.e.
Consider a sample $X=\left(X_{1}, \ldots, X_{n}\right)$ from a normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ where both μ and σ^{2} are unknown. Since $\left(\bar{X}, S^{2}=\sum_{i}\left(X_{i}-\bar{X}_{i}\right)^{2}\right)$ is minimal sufficient, the likelihood function becomes $L\left(\mu, \sigma^{2} \mid x\right) \propto f\left(\bar{x} ; \mu, \sigma^{2}\right) f\left(s^{2} ; \sigma^{2}\right)$ where we have used the independence of \bar{X} and S^{2} and the fact that S^{2} follows a $\sigma^{2} \chi^{2}$-distribution not depending on μ. Here the situation is less clear cut. It could make sense to think of \bar{x} as being sufficient for μ (which it is if σ^{2} is fixed) and S^{2} as ancillary for μ and sufficient for σ^{2}, but it does not fit into the theory developed as the distribution of \bar{X} depends on $\left(\mu, \sigma^{2}\right)$.	$P\left(X \in R ; \psi_{0}\right.$ Then define $h(C)=P(X \in R \mid$ $\begin{aligned} \mathbf{E}_{\left(\psi_{0}, \lambda\right)}\{h(C)\} & =\mathbf{E}_{\left(\psi_{0},\right)} \\ & =\mathbf{E}_{\left(\psi_{0},\right\rangle} \\ & =P(X \end{aligned}$ Completeness yields $h(C)=0$ an As a consequence of this result it universally accepted, to conditio the hypothesis when testing com tests with Neyman structure.	$=\alpha \text { for all } \lambda \text {. }$ $\left.\psi_{0}\right)-\alpha$. We get $\begin{aligned} & \left.P\left(X \in R \mid C ; \psi_{0}\right)-\alpha\right\} \\ & \left.P\left(X \in R \mid C ; \psi_{0}, \lambda\right)-\alpha\right\} \\ & \left.R ; \psi_{0}, \lambda\right)-\alpha=0 \end{aligned}$ $P\left(X \in R \mid C ; \psi_{0}\right)-\alpha$ is common, although not on the statistic sufficient under site hypothesis, i.e. to construc
Steffen Laurizeen, University of Oxtord Nuisance parameters and their treatment	Stefen Lavitizen. University of Oxtord	Nuisance parameters and their treatment
Summary of previous lecture Nuisance parameters Similarity\quadExample revisited Ancilary cut Likelihod perspective Baysian perspective		
Since Bayesian inference obeys the likelihood principle only the factorization itself matters: $L(\theta \mid x) \propto L_{1}(\psi \mid s, c) L_{2}(\lambda \mid c)$ Still, this fact is not unimportant. Assume that the prior density satisfies $\pi(\psi, \lambda)=\eta(\psi) \rho(\lambda)$ in other words that the parameters ψ and λ are prior independent. Then the posterior density satisfies $\pi^{*}(\psi, \lambda)=\pi(\psi, \lambda \mid x) \propto \eta(\psi) \rho(\lambda) L_{1}(\psi \mid s, c) L_{2}(\lambda \mid c) \propto \eta^{*}(\psi) \rho^{*}(\lambda)$ Hence if C is a cut for λ and ψ and λ are prior independent, they are posterior independent.		

Newton-Raphson method The method of scoring The multi-parameter case The min. parametar cas	Newton-Raphson method The likelihood equation The method of scoring Iterative step The multi-parameter case Properties
Newton-Raphson Iteration and the Method of Scoring Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 3, Hilary Term 2008 January 28, 2008	Recall that the (expected) Fisher information is $I(\theta)=\mathbf{E}\{J(\theta)\}$ and that for large i.i.d. samples it holds approximately that $\hat{\theta} \sim \mathcal{N}\left(\theta, I(\theta)^{-1}\right)$. But it is also approximately true, to be elaborated later, under the same assumptions that $\sqrt{J(\hat{\theta})}(\hat{\theta}-\theta) \sim \mathcal{N}(0,1)$ so we could write $\hat{\theta} \sim \mathcal{N}\left(\theta, J(\hat{\theta})^{-1}\right)$. In fact, the observed information is in many ways preferable to the expected information. Indeed, as $\hat{\theta}$ is approximately sufficient, $J(\hat{\theta})$
	Steffen Lauritzen, University of Oxford Newton-Rahson method Newton-Raphson Iteration and the Method of Scoring The methed of scoing The multi-parameter case
Recall that, under suitable regularity conditions, the maximum likelihood estimate is the solution to the score equation $s(\theta)=s(x ; \theta)=\frac{\partial}{\partial \theta} I(\theta)=\frac{\partial}{\partial \theta} \log L(\theta ; x)=0$ where $S(\theta)=s(X ; \theta)$ is the score statistic. Generally the solution to this equation must be calculated by iterative methods. One of the most common methods is the Newton-Raphson method and is based on successive approximations to the solution, using Taylor's theorem to approximate the equation.	Formally the iteration becomes - Choose an initial value θ and calculate $S(\theta)$ and $J(\theta)$; - While $\|S(\theta)\|>\epsilon$ Repeat 1. $\theta \leftarrow \theta+J(\theta)^{-1} S(\theta)$ 2. Calculate $S(\theta)$ and $J(\theta)$ go to 1 - Return θ; Other criteria for terminating the iteration can be used. To get a criterion which is insensitive to scaling of the variables, one can instead use the criterion $J(\theta)^{-1} S(\theta)^{2}>\epsilon$. Note that, as a by-product of this algorithm, the final value of $J(\theta)$ is the observed information which can be used to assess the uncertainty of $\hat{\theta}$.
Thus, we take an initial value θ_{0} and write $0=S\left(\theta_{0}\right)-J\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)$ ignoring the remainder term. Here $J(\theta)=J(\theta ; X)=-\frac{\partial}{\partial \theta} S(\theta)=-\frac{\partial^{2}}{\partial \theta^{2}} I(\theta)$ Solving this equation for θ then yields a new value θ_{1} $\theta_{1}=\theta_{0}+J\left(\theta_{0}\right)^{-1} S\left(\theta_{0}\right)$ and we keep repeating this procedure as long as $\left\|S\left(\theta_{j}\right)\right\|>\epsilon$, i.e. $\theta_{k+1}=\theta_{k}+J\left(\theta_{k}\right)^{-1} S\left(\theta_{0}\right)$	If θ_{0} is chosen sufficiently near $\hat{\theta}$ convergence is very fast. It can be computationally expensive to evaluate $J(\theta)$ a large number of times. This is sometimes remedied by only changing J every 10 iterations or similar. Another problem with the Newton-Raphson method is its lack of stability. When the initial value θ_{0} is far from θ it might wildly oscillate and not converge at all. This is sometimes remedied by making smaller steps as $\theta \leftarrow \theta+\gamma J(\theta)^{-1} S(\theta)$ where $0<\gamma<1$ is a constant. An alternative (or additional) method of stabilization is to let $\theta \leftarrow \theta+\gamma\left\{J(\theta)+S(\theta)^{2}\right\}^{-1} S(\theta)$ as this avoids taking large steps when $S(\theta)$ is large.
Steffen Lauritzen, University of Oxford Newton-Raphson method Newton-Raphson Iteration and the Method of Scoring The method of scoring The multi-parameter cose The likelihood equation Properties	Steffen Lauritzen, University of Oxford Newton-Raphson method The method of scoring The multi-parameter cose\quad Newton-Raphson Iteration and the Method of Scoring
Clearly, $\hat{\theta}$ is a fixed point of this iteration as $S(\hat{\theta})=0$ and, conversely, any fixpoint is a solution to the likelihood equation. If $\hat{\theta}$ is a local maximum for the likelihood function, we must have $J(\hat{\theta})=-\frac{\partial^{2}}{\partial \theta^{2}} I(\hat{\theta})>0$ The quantity $J(\hat{\theta})$ determines the sharpness of the peak in the likelihood function around its maximum. It is also known as the observed information. Occasionally we also use this term for $J(\theta)$ where θ is arbitrary but strictly speaking this can be quite inadequate as $J(\theta)$ may well be negative (although positive in expectation).	The iteration has a tendency to be unstable for many reasons, one of them being that $J(\theta)$ may be negative unless θ already is very close to the MLE $\hat{\theta}$. In addition, $J(\theta)$ might sometimes be hard to calculate. R. A. Fisher introduced the method of scoring which simply replaces the observed second derivative with its expectation to yield the iteration $\theta \leftarrow \theta+I(\theta)^{-1} S(\theta)$ In many cases, $I(\theta)$ is easier to calculate and $I(\theta)$ is always positive. This generally stabilizes the algorithm, but here it can also be necessary to iterate as $\theta \leftarrow \theta+\gamma\left\{I(\theta)+S(\theta)^{2}\right\}^{-1} S(\theta)$

In the case of n independent and identically distributed observations we have $I(\theta)=n l_{1}(\theta)$ so

$$
\theta \leftarrow \theta+I_{1}(\theta)^{-1} S(\theta) / n
$$

where $I_{1}(\theta)$ is the Fisher information in a single observation. In a linear canonical one-parameter exponential family

$$
f(x ; \theta)=b(x) e^{\theta t(x)-c(\theta)}
$$

we get

$$
J(\theta)=\frac{\partial^{2}}{\partial \theta^{2}}\{c(\theta)-\theta t(X)\}=c^{\prime \prime}(\theta)=I(\theta)
$$

so for canonical exponential families the method of scoring and the method of Newton-Raphson coincide
If we let $v(\theta)=c^{\prime \prime}(\theta)=I(\theta)=\mathbf{V}(t(X))$ the iteration becomes

$$
\theta \leftarrow \theta+v(\theta)^{-1} S(\theta) / n .
$$

Steffen Lauritzen. University of Oxford Newton-Raphson method The method of scoring

Newton-Raphson Iteration and the Method of Scoring Newton-
Scoring

It is therefore also here advisable to replace $J(\theta)$ with its expectation, the Fisher information matrix, i.e. iterate as

$$
\theta \leftarrow \theta+I(\theta)^{-1} S(\theta)
$$

where now $I(\theta)$ is the Fisher information matrix which is always positive definite if the model is not over-parametrized.
Also in the multi-parameter case it can be advisable to stabilize additionally, i.e. by iterating as

$$
\theta \leftarrow \theta+\gamma\left\{I(\theta)+S(\theta) S(\theta)^{\top}\right\}^{-1} S(\theta)
$$

$v(\theta)=c^{\prime \prime}(\theta)=\mathbf{V}_{\theta}\{t(X)\}$
The method of scoring is simpler because the last term has expectation equal to 0 :

$$
I(\mu)=\mathbf{E}\{J(\mu)\}=v\{g(\mu)\}\left\{g^{\prime}(\mu)\right\}^{2} .
$$

or

$$
\theta \leftarrow \theta+\gamma\left\{I(\theta)+S(\theta)^{\top} S(\theta) E\right\}^{-1} S(\theta)
$$

where E is the identity matrix.
 The multi-parameterer cas

In a multi-parameter curved exponential family with densities

$$
f(x ; \beta)=b(x) e^{\theta(\beta)^{\top} t(x)-c\{\theta(\beta)\}}
$$

where β is d-dimensional, we get

$$
\begin{aligned}
J(\beta) & =\frac{\partial^{2}}{\partial \beta \partial \beta^{\top}}\left[c\{\theta(\beta)\}-\theta(\beta)^{\top} t(X)\right] \\
& =\frac{\partial}{\partial \beta}\left[\left(\frac{\partial \theta}{\partial \beta}\right)^{\top} \tau\{\theta(\beta)\}-\left(\frac{\partial \theta}{\partial \beta}\right)^{\top} t(X)\right] \\
& =\frac{\partial^{2} \theta}{\partial \beta \partial \beta^{\top}}[\tau\{\theta(\beta)\}-t(X)]+\left(\frac{\partial \theta}{\partial \beta}\right)^{\top} v\{\theta(\beta)\}\left(\frac{\partial \theta}{\partial \beta}\right),
\end{aligned}
$$

where the first term has expectation zero so

$$
I(\beta)=\mathbf{E}\{J(\theta)\}=\left(\frac{\partial \theta}{\partial \beta}\right)^{\top} v\{\theta(\beta)\}\left(\frac{\partial \theta}{\partial \beta}\right) .
$$

Ancillary cur Many nuisance parameters Pseudo likelihoo	Many nuisance parameters Pseudo likelihoods
More on nuisance parameters Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 4, Hilary Term 2008 February 1, 2008	This example shows that we have to be very careful when nuisance parameters are present and straight likelihood considerations can lead us astray: We wish to establish the precision of a new instrument which measures with normal errors. We are therefore taking repeated measurements of individuals $\left(X_{i 1}, X_{i 2}\right), i=1, \ldots, n$ which are all independent with $X_{i j} \sim \mathcal{N}\left(\mu_{i}, \sigma^{2}\right)$ Now consider $U_{i}=\left(X_{i 1}+X_{i 2}\right) / 2, \quad V_{i}=\left(X_{i 1}-X_{i 2}\right) / 2$ These are again independent and normally distributed as $U_{i} \sim \mathcal{N}\left(\mu_{i}, \tau^{2}\right), \quad V_{i} \sim \mathcal{N}\left(0, \tau^{2}\right)$ where $\tau^{2}=\sigma^{2} / 2$.
$\left.\begin{array}{r\|r\|}\text { Steffen Laurizen, University of Oxford } \\ \text { Ancilary cut } \\ \text { Many nuisacec parary } \\ \text { Pseuto lifectilioods }\end{array}\right)$	$\left.\begin{array}{\|r\|r\|}\text { Steffen Lauritzen, University of Oxford } & \text { More on nuisance parameters } \\ \text { Ancillary cut }\end{array}\right)$
Suppose that there is a minimal sufficient statistic $T=t(X)$ partitioned as $T=(S, C)=(s(X), c(X))$ where: C 1 : the distribution of C depends on λ but not on ψ; C2: the conditional distribution of S given $C=c$ depends on ψ but not λ, for all c; C3: the parameters vary independently, i.e. $\Theta=\Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta \mid x) \propto f(s, c ; \theta)=f(s \mid c ; \psi) f(c ; \lambda)$ and we say that C is ancillary for ψ, S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ. We also say that C is a cut for λ and would then - base inference about λ on the marginal distribution of C;	Clearly, we might as well consider $\left(U_{i}, V_{i}\right)$ as the original data. Also, the pair (U, W) is minimal sufficient, where $U=\left(U_{1}, \ldots, U_{n}\right)$ and $W=\sum_{i} V_{i}^{2}$, hence the likelihood function becomes $\begin{aligned} L\left(\mu, \tau^{2}\right) & \propto\left(\tau^{2}\right)^{-n / 2} e^{-\frac{1}{2 \tau^{2}} \sum_{i}\left(u_{i}-\mu_{i}\right)^{2}}\left(\tau^{2}\right)^{-n / 2} e^{-\frac{1}{2 \tau^{2}} \sum_{i} v_{i}^{2}} \\ & =e^{-\frac{1}{2 \tau^{2}} \sum_{i}\left(u_{i}-\mu_{i}\right)^{2}}\left(\tau^{2}\right)^{-n} e^{-\frac{w}{2 \tau^{2}}} \end{aligned}$ Thus the maximum likelihood estimator is $\hat{\mu}_{i}=U_{i}, i=1, \ldots, n ; \quad \hat{\tau}^{2}=W / 2 n$ But $W \sim \tau^{2} \chi^{2}(n)$, so for large $n, \hat{\tau}^{2} \approx n \tau^{2} /(2 n)=\tau^{2} / 2!$! So the additional parameters μ_{i} are a serious nuisance if τ^{2} is the parameter of interest.
Steffen Lauritzen, University of Oxford More on nuisance parameters Ancillary cut Many nuisance parameters Pscudo likelihoods	
Suppose that there is a minimal sufficient statistic $T=t(X)$ partitioned as $T=(S, C)=(s(X), c(X))$ where: C 1 : the distribution of C depends on λ but not on ψ; C2: the conditional distribution of S given $C=c$ depends on ψ but not λ, for all c; C3: the parameters vary independently, i.e. $\Theta=\Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta \mid x) \propto f(s, c ; \theta)=f(s \mid c ; \psi) f(c ; \lambda)$ and we say that C is ancillary for ψ, S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ. We also say that C is a cut for λ and would then - base inference about λ on the marginal distribution of C; - base inference about ψ on the conditional distribution of S given $C=c$.	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta=(\psi, \lambda)$. Such modifications are generally known as pseudo-likelihood functions. Examples include: conditional likelihood, marginal likelihood, profile likelihood, integrated likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always be satisfactory.
Steffen Lauritzen, University of Oxford More on nuisance parameters Ancillary cut Many nuisance parameters Pscudo likelihoods	
Consider a sample $X=\left(X_{1}, \ldots, X_{n}\right)$ from a normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ where both μ and σ^{2} are unknown. Recall that $(U, V)=\left(\bar{X}, S^{2}=\sum_{i}\left(X_{i}-\bar{X}_{i}\right)^{2}\right)$ is minimal sufficient and the likelihood function is $L\left(\mu, \sigma^{2} \mid x\right) \propto f\left(u ; \mu, \sigma^{2}\right) f\left(v ; \sigma^{2}\right)$ If we do straight maximum likelihood estimation, we have $\hat{\mu}=U=\bar{X}, \quad \hat{\sigma}^{2}=V / n$ However, most statisticians agree that it is sensible to use $\tilde{\sigma}^{2}=V /(n-1)$ as the estimator of σ^{2}. Is this reasonable and is there a general rationale for this? Note that the common unbiasedness argument does not work as $\tilde{\sigma}$ is not ubiased for the standard deviation σ, or $\tilde{\sigma}^{-1}$ is not unbiased for the precision σ^{-2}.	Suppose we can write the joint density of a sufficient statistic $T=(U, V)$ as $f(u ; \lambda, \psi) f(v \mid u ; \psi)$ where ψ is the parameter of interest. Then, for fixed ψ, U is sufficient for λ. Inference for ψ can now be based on the conditional likelihood function $L(\psi ; v \mid u)=f(v \mid u ; \psi)$ as the conditional distribution does not involve λ. The critical issue is whether (useful) information about ψ is lost by ignoring the factor $f(u ; \lambda, \psi)$.

$\begin{aligned} & \text { Ancillary cut } \\ & \text { Many nuisance paramters } \\ & \text { Pseudo ilikelihoods } \end{aligned}$	Conditional likelihood Mrofile Itkeliheod Integrated likelih \qquad
In the normal example with many $U=\left(U_{i}, i=1, \ldots, n\right)$ is sufficient $\lambda=\left(\mu_{i}, i=1, \ldots, n\right)$ and for $\psi=$ $L\left(\tau^{2} ; w \mid u\right)=f\left(w \mid u ; \tau^{2}\right)=$	nuisance parameters, for the nuisance parameter τ^{2} $f\left(w ; \tau^{2}\right)=\left(\tau^{2}\right)^{-n / 2} e^{-\frac{w}{2 \tau^{2}}} .$

This gives the conditional MLE $\hat{\tau}_{\mid u}^{2}=W / n$ which is more sensible. It may be argued that $U_{i} \sim \mathcal{N}\left(\mu_{i}, \tau^{2}\right)$ cannot possibly have useful information about τ^{2}. Or at least that the information it may have is not useful.

Although the profile likelihood generally can be very useful, it does not help in the the normal example with many nuisance parameters with $\lambda=\left(\mu_{i}, i=1, \ldots, n\right)$ and $\psi=\tau^{2}$ we get

$$
\hat{L}\left(\tau^{2} ; w\right)=f\left(u ; \hat{\mu}, \tau^{2}\right) f\left(w ; \tau^{2}\right)=\left(\tau^{2}\right)^{-n} e^{-\frac{w}{2 \tau^{2}}}
$$

hence also peaks in the wrong place, at $\hat{\tau}^{2}=W /(2 n)$.
We shall later return to various attempts at modifying the profile likelihood.

Another way of removing nuisance parameters from the likelihood is to use integration. This method is essentially Bayesian and
This uses conditioning the other way around. Suppose we can write the joint density of a sufficient statistic $T=(U, V)$ as

$$
f(u \mid v ; \lambda, \psi) f(v ; \psi)
$$

where ψ is the parameter of interest. Then the nuisance parameter λ can be eliminated by marginalization as it does not enter in the marginal distribution of V. Inference for ψ can now be based on the marginal likelihood function

$$
L(\psi ; v)=f(v ; \psi)
$$

The issue is also here whether (useful) information about ψ is lost by ignoring the factor $f(u \mid v ; \lambda, \psi)$.
nuisance parameter for fixed ψ.
The integrated likelihood function is then defined as

$$
\bar{L}(\psi)=\int L(\psi, \lambda) \pi(\lambda \mid \psi) d \lambda
$$

The integrated likelihood has the same fundamental relation to the marginal prior and posterior distributions as the ordinary likelihood. For if $\pi(\psi)$ is the prior on ψ, the full posterior distribution is determined as

$$
\pi^{*}(\psi, \lambda) \propto \pi(\psi) \pi(\lambda \mid \psi) L(\psi, \lambda)
$$

and thus, by integration

$$
\pi^{*}(\psi) \propto \int \pi^{*}(\psi, \lambda) d \lambda=\pi(\psi) \bar{L}(\psi)
$$

Steffen Lauritzen, University of Oxford	More on nuisance parameters	Steffen Laurizen, University of Oxford	More on nuisance parameters
Ancillary cut Many nuisance parameters Pseudo likelihoods	Conditional likelihood Marginal likelihood -Profile likelihood. Integrated likelihoot	$\begin{array}{r} \text { Ancillary cut } \\ \text { Many nuisance parameters } \\ \text { Pseudo likelihoods } \end{array}$	Conditional likelihood Marginal likelihood Integrated likelihood

In the normal example with many nuisance parameters with $\lambda=\left(\mu_{i}, i=1, \ldots, n\right)$ and $\psi=\tau^{2}$ we get

$$
L\left(\tau^{2} ; w\right)=f\left(w ; \tau^{2}\right)=\left(\tau^{2}\right)^{-n / 2} e^{-\frac{w}{2 \tau^{2}}},
$$

which in this case is identical to the conditional likelihood function considered earlier and hence $\hat{\tau}_{w}^{2}=W / n$.
Marginal likelihood is in this case also known as residual likelihood because it is based on the residuals

$$
V_{i}=X_{i}-\hat{\mu}_{i}=X_{i 1}-\frac{X_{i 1}+X_{i 2}}{2}=\frac{X_{i 1}-X_{i 2}}{2}
$$

The corresponding estimates are then known as REML estimates.

In the normal example with many nuisance parameters, we may for example consider μ_{i} independent and normally distributed as $\mu_{i} \sim \mathcal{N}\left(\alpha, \omega^{2}\right)$, where $\left(\alpha, \omega^{2}\right)$ represent prior knowledge about the population from which μ_{i} 's are taken.
The integrated likelihood for τ^{2} can then be calculated as

$$
\bar{L}\left(\tau^{2}\right)=f\left(w ; \tau^{2}\right) \int \prod_{i} f\left(u_{i} ; \mu_{i}\right) \pi\left(\mu_{i} ; \alpha, w^{2}\right) d \mu_{i}
$$

The integral can be recognized as the marginal distribution of U where now U_{i} are independent and identically distributed as $\mathcal{N}\left(\alpha, \tau^{2}+\omega^{2}\right)$

Marginal and conditional likelihood changes the problem either by ignoring some of the data (by marginalization) or by ignoring their variability (by conditioning).
Profile likelihood attempts to stick to the original data distribution and likelihood function, but eliminates the nuisance parameters by maximization.
The profile likelihood function $\hat{L}(\psi)$ for ψ is defined as

$$
\hat{L}(\psi)=\sup _{\lambda} L(\psi, \lambda)=L\{\psi, \hat{\lambda}(\psi)\},
$$

where ψ is the parameter of interest and $\hat{\lambda}(\psi)$ is the MLE of λ when ψ is considered fixed.

$$
\begin{aligned}
\bar{L}\left(\tau^{2}\right) & \propto f\left(w ; \tau^{2}\right)\left(\tau^{2}+\omega^{2}\right)^{-n / 2} e^{-\frac{1}{2\left(\tau^{2}+\omega^{2}\right)} \sum_{i}\left(u_{i}-\alpha\right)^{2}} \\
& \propto\left(\tau^{2}\right)^{-n / 2} e^{-\frac{w}{2 \tau^{2}}\left(\tau^{2}+\omega^{2}\right)^{-n / 2} e^{-\frac{q_{\alpha}(\omega)}{2\left(\tau^{2}+\omega^{2}\right)}}}
\end{aligned}
$$

where

$$
Q_{\alpha}(U)=\sum_{i}\left(U_{i}-\alpha\right)^{2} .
$$

In this calculation, ω^{2} and α are known and fixed. If these are 'correct', in the sense that μ_{i} are in fact behaving as if they were i.i.d. $\mathcal{N}\left(\alpha, \omega^{2}\right)$, then the integrated likelihood will peak around the correct value, else the peak will be shifted to an incorrect position. So the influence of the prior prevails.
Empirical Bayes or, equivalently(!), MLE in the random effects model, would also estimate α and ω^{2} and get it right, as would Hierarchical Bayes, assigning a prior on $\left(\alpha, \omega^{2}\right)$.

Canonical link
General link func
Estimating the dif
The generalized inclinear moonelel
Canonican link
General link kuction
Estimating the dispersion parameter

Thus, the likelihood equation for a fixed ϕ again equates the expectation of the sufficient statistic to the observed value Interpreting vector functions componentwise this has the simple form

$$
X^{\top} \mu(\beta)=X^{\top} y
$$

or equivalently

$$
x^{\top}\{y-\mu(\beta)\}=0
$$

expressing that the residual $y-\mu(\beta)$ is orthogonal to all columns of X.
From general theory of exponential families it is known that there is at most one solution $\hat{\beta}$ to this equation, despite the fact that the equation typically is non-linear in β, as $\mu(\beta)=g^{-1}(X \beta)$

Under reasonable assumption on the behaviour of the covariates x_{i}
D can be shown to be asymptotically distributed as a
χ^{2}-distribution with degrees of freedom $n-p$ where X is assumed
to have full rank p.
In the situation, where the dispersion parameter ϕ is considered unknown it is therefore customary to use the estimator

$$
\tilde{\phi}=\frac{D_{1}(\hat{\mu}, Y)}{n-p}
$$

Note that this is not a maximum likelihood estimator, and there are good reasons for not using the MLE:
For a general link function, the score statistic can be written in the form

$$
S(\beta)=Z^{\top} W\{y-\mu(\beta)\} / \phi
$$

where Z is a matrix with elements

$$
Z(\beta)_{i j}=\frac{\partial \eta_{i}}{\partial \beta_{j}}
$$

and $W(\beta)$ is a diagonal matrix with diagonal elements equal to $W_{i i}=1 / v\left\{\mu_{i}(\beta)\right\}$.
Fisher's method of scoring leads to a iterative weighted least squares regression procedure (IRLS) for solving these, which now can be used for all generalized linear models, only the calculation of the matrix Z and the weights W being special to the model considered, depending in a simple way on the link and variance functions. Details are omitted here

Steffen Lauritzen, University of Oxford
 The generalizad lincear mode mide

Generalized linear models
 Canonical link General link fur
 Estimating the dispersion parameter

Firstly, the problem of finding the MLE of ϕ could be computationally very difficult in general, and the computational problem very different for different variance functions.
Secondly, there would be a problem with the nuisance parameter β distorting the estimate, in particular if the dimension p of β is large.
The estimate for ϕ used is thus based on 'approximate marginal likelihood', estimating ϕ on the basis of the approximate χ^{2}-distribution for the deviance. The MLE of μ is the same for all values of ϕ and is therefore appropriate as is.

The goodness of fit of a specific generalized linear model is assessed in the usual way using the deviance

$$
\begin{aligned}
D(\hat{\mu} ; y) & =-2\{I(\hat{\mu} ; y)-I(y ; y)\} \\
& =-2\left\{I_{1}(\hat{\mu} ; y)-I_{1}(y ; y)\right\} / \phi=D_{1}(\hat{\mu} ; y) / \phi
\end{aligned}
$$

where $I(y ; y)$ is the maximized log-likelihood in the saturated model and $I(\hat{\mu} ; y)$ is the maximized log-likelihood in the model considered.
The symbol I_{1} is used for the log-likelihood in the case $\phi=1$ and similarly for D_{1}.

A simple example Further erinementen then

Alternatively, if the variation of h around y^{*} is not neglible, or a more accurate approximation is desired, one can incorporate h in g as

$$
\tilde{g}_{\lambda}(y)=g(y)-\frac{1}{\lambda} \log h(y)
$$

and get the approximation

$$
\begin{aligned}
I & =\int_{a}^{b} e^{-\lambda g(y)} h(y) d y \\
& =\int_{a}^{b} e^{-\lambda \tilde{g}_{\lambda}(y)} d y \\
& =e^{-\lambda \tilde{g}_{\lambda}\left(\tilde{y}_{\lambda}\right)} \sqrt{\frac{2 \pi}{\lambda \tilde{g}_{\lambda}^{\prime \prime}\left(\tilde{y}_{\lambda}\right)}}\left\{1+\frac{5 \tilde{\rho}_{3}-3 \tilde{\rho}_{4}}{24 \lambda}+O\left(\frac{1}{\lambda^{2}}\right)\right\},
\end{aligned}
$$

where now \tilde{y}_{λ} maximizes $\tilde{g}_{\lambda}(y)$, and other quantities are similarly defined.

The multivariate case is completely analogous. Here we again write $g(y)=g\left(y^{*}\right)+\frac{\partial g\left(y^{*}\right)}{\partial y}\left(y-y^{*}\right)+\left(y-y^{*}\right)^{\top} \frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\left(y-y^{*}\right) / 2+\cdots$
and exploit that the vector of partial derivatives $\frac{\partial g\left(y^{*}\right)}{\partial y}$ must vanish, whereby

$$
\begin{aligned}
I & =\int_{B} e^{-\lambda g(y)} h(y) d y \\
& =e^{-\lambda g\left(y^{*}\right)} h\left(y^{*}\right) \int_{\mathcal{R}^{d}} e^{-\lambda\left(y-y^{*}\right)^{\top} \frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y}\left(y-y^{*}\right) / 2+\ldots} d y \\
& =e^{-\lambda g\left(y^{*}\right)} h\left(y^{*}\right)(2 \pi / \lambda)^{d / 2}\left|\frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\right|^{-1 / 2}\left\{1+O\left(\frac{1}{\lambda}\right)\right\} .
\end{aligned}
$$

Laplace approximations Bayesian posterior distributions Approximate Bayes factors	
Bayesian Asymptotics Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 8, Hilary Term 2008 February 8, 2008	Thus the variation in the posterior density $\pi^{*}(\theta) \propto e^{n \bar{n}_{n}(\theta)} \pi(\theta)$ will for sufficiently large n be dominated by the contribution from the likelihoood funtion. Expanding $I(\theta)$ around the maximum likelihood estimate $\hat{\theta}$ yields $\pi^{*}(\theta) \propto e^{n \overline{I_{n}}(\hat{\theta})} \pi(\hat{\theta}) e^{-(\theta-\hat{\theta})^{\top} j_{n}(\hat{\theta})(\theta-\hat{\theta}) / 2} \propto e^{-(\theta-\hat{\theta})^{\top} j_{n}(\hat{\theta})(\theta-\hat{\theta}) / 2}$ where $j_{n}(\hat{\theta})=n j(\hat{\theta})$ is the observed information matrix, so, approximately for large n, the posterior distribution of θ is $\theta \sim \mathcal{N}_{d}\left\{\hat{\theta}, j_{n}(\hat{\theta})^{-1}\right)=\mathcal{N}_{d}\left(\hat{\theta}, j(\hat{\theta})^{-1} / n\right\}$ Note this expression makes perfect sense, as $\hat{\theta}$ is not random in the posterior distribution.
For large λ we have the approximation $I=\int_{a}^{b} e^{-\lambda g(y)} h(y) d y=e^{-\lambda g(y *)} h\left(y^{*}\right) \sqrt{\frac{2 \pi}{\lambda g^{\prime \prime}\left(y^{*}\right)}}\left\{1+O\left(\frac{1}{\lambda}\right)\right\}$ A more accurate approximation is $I=e^{-\lambda \tilde{g}_{\lambda}\left(\tilde{y}_{\lambda}\right)} \sqrt{\frac{2 \pi}{\lambda \tilde{g}_{\lambda}^{\prime \prime}\left(\tilde{y}_{\lambda}\right)}}\left\{1+\frac{5 \tilde{\rho}_{3}-3 \tilde{\rho}_{4}}{24 \lambda}+O\left(\frac{1}{\lambda^{2}}\right)\right\},$ where \tilde{y}_{λ} maximizes $\tilde{g}_{\lambda}(y)$ and $\tilde{\rho}_{3}=\frac{g^{(3)}\left(\tilde{y}_{\lambda}\right)}{\left\{g^{\prime \prime}\left(\tilde{y}_{\lambda}\right)\right\}^{3 / 2}}, \quad \tilde{\rho}_{4}=\frac{g^{(4)}\left(\tilde{y}_{\lambda}\right)}{\left\{g^{\prime \prime}\left(\tilde{y}_{\lambda}\right)\right\}^{2}} .$	A more accurate approximation is obtained by expanding around the posterior mode θ_{π}^{*} to get $\pi^{*}(\theta) \propto e^{-\left(\theta-\theta_{\pi}^{*}\right)^{\top} j_{n}\left(\theta_{\pi}^{*}\right)\left(\theta-\theta_{\pi}^{*}\right) / 2}$ yielding, approximately for large n, the posterior distribution of θ as $\theta \sim \mathcal{N}_{d}\left\{\theta_{\pi}^{*}, j_{n}\left(\theta_{\pi}^{*}\right)^{-1}\right)=\mathcal{N}_{d}\left(\hat{\theta}, j\left(\theta_{\pi}^{*}\right)^{-1} / n\right\}$ Note both differences and similarities to the analogous frequentist results $\hat{\theta} \sim \mathcal{N}_{d}\left\{\theta, i_{n}(\theta)^{-1}\right\} \quad \hat{\theta} \sim \mathcal{N}_{d}\left\{\theta, i_{n}(\hat{\theta})^{-1}\right\}, \quad \hat{\theta} \sim \mathcal{N}_{d}\left\{\theta, j_{n}(\hat{\theta})^{-1}\right\}$ where the two latter needs appropriate interpretation to make
In the multivariate case we have $\begin{aligned} I & =\int_{B} e^{-\lambda g(y)} h(y) d y \\ & =e^{-\lambda g\left(y^{*}\right)} h\left(y^{*}\right) \int_{\mathcal{R}^{d}} e^{-\lambda\left(y-y^{*}\right)^{\top} \frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\left(y-y^{*}\right) / 2+\ldots} d y \\ & =e^{-\lambda g\left(y^{*}\right)} h\left(y^{*}\right)(2 \pi / \lambda)^{d / 2}\left\|\frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\right\|^{-1 / 2}\left\{1+O\left(\frac{1}{\lambda}\right)\right\} \end{aligned}$ and additional accuracy up to $O\left(\lambda^{-2}\right)$ can be obtained using derivatives of third and fourth order as in the univariate case.	We can obtain an accurate approximation of the posterior distribution by applying Laplace's method to the normalization constant: $\begin{aligned} \pi^{*}(\theta) & =\frac{\exp \{I(\theta)\} \pi(\theta)}{\int_{\Theta} \exp \{I(\theta)\} \pi(\theta) d \theta} \\ & =(2 \pi)^{-d / 2} \exp \{l(\theta)-I(\hat{\theta})\} \frac{\pi(\theta)}{\pi(\hat{\theta})}\|n j(\hat{\theta})\|^{1 / 2}\left\{1+O\left(n^{-1}\right)\right\} \\ & =(2 \pi / n)^{-d / 2} \exp \{l(\theta)-I(\hat{\theta})\} \frac{\pi(\theta)}{\pi(\hat{\theta})}\|j(\hat{\theta})\|^{1 / 2}\left\{1+O\left(n^{-1}\right)\right\} . \end{aligned}$ Note in particular the expression for the normalization constant $\int_{\Theta} f(x \mid \theta) \pi(\theta) d \theta=(2 \pi / n)^{d / 2} L(\hat{\theta}) \pi(\hat{\theta})\|j(\hat{\theta})\|^{-1 / 2}\left\{1+O\left(n^{-1}\right)\right\} .$
	Steffen Lauritzen, University of Oxford Bayesian Asymptotics Laplace approximations Basic Laplace approximation Bayesian posterior distributions Bayesian information criterion Approximate Bayes factors
We consider a standard asymptotic setup, involving $X_{1}, \ldots, X_{n}, \ldots$ random variables which, conditional on a d-dimensional parameter θ are independent and identically distributed with density $f(x \mid \theta)$, and $\pi(\theta)$ is the prior distribution of the parameter θ. The posterior density is determined as $\pi^{*}(\theta)=f(\theta \mid x) \propto e^{l(\theta)} \pi(\theta)$ where $I(\theta)=\log L(\theta)$ is the \log-likelihood function. Letting $\bar{I}_{n}(\theta)=I(\theta) / n=\frac{1}{n} \sum_{1}^{n} \log f\left(X_{i} \mid \theta\right)$ the law of large numbers yields that for $n \rightarrow \infty$, $\bar{I}_{n}(\theta) \rightarrow \mathbf{E}_{\theta}\{\log f(X \mid \theta)\}=-H(\theta)$ where $H(\theta)$ is the entropy of the density $f(\cdot \mid \theta)$.	Recall that for competing models M_{1} and M_{2} with parameters $\theta_{1} \in \Theta_{1} \in \mathcal{R}^{d_{1}}$ and $\theta_{2} \in \Theta_{2} \in \mathcal{R}^{d_{2}}$ and prior distributions π_{1}, π_{2}, the Bayes factor B in favour of M_{1} over M_{2} is $B=\frac{f\left(x_{1}, \ldots, x_{n} \mid M_{1}\right)}{f\left(x_{1}, \ldots, x_{n} \mid M_{2}\right)}=\frac{\int_{\Theta_{1}} f\left(x \mid \theta_{1}, M_{1}\right) \pi_{1}\left(\theta_{1}\right) d \theta_{1}}{\int_{\Theta_{2}} f\left(x \mid \theta_{2}, M_{2}\right) \pi_{2}\left(\theta_{2}\right) d \theta_{2}} .$ Using the approximate expression obtained for the normalization constants, we get $B=(2 \pi)^{\left(d_{1}-d_{2}\right) / 2} n^{\left(d_{2}-d_{1}\right) / 2} \frac{L\left(\hat{\theta}_{1}\right)}{L\left(\hat{\theta}_{2}\right)} \frac{\left\|j_{2}\left(\hat{\theta}_{2}\right)\right\|^{1 / 2}}{\left\|j_{1}\left(\hat{\theta}_{1}\right)\right\|^{1 / 2}}\left\{1+O\left(n^{-1}\right)\right\}$

$\underset{\substack{\text { Baycsian } \text { method } \\ \text { Prediction risk }}}{\text { r. }}$

This classic criterion has been developed to choose between different subsets of variables in linear regression
Consider the problem of predicting an n-dimensional vector Y with expectation μ from explanatory variables X. The total mean square prediction error would be

$$
\mathbf{E}\left(\|Y-\hat{Y}\|^{2}\right)=\mathbf{E}\left\{\|\mu-\hat{\mu}\|^{2}\right\}+\mathbf{E}\left\{\|Y-\mathbf{E}(Y)\|^{2}\right\},
$$

where $\|v\|^{2}=\sum_{i} v_{i}^{2}$ is the squared error norm.
The second term in this expression is the intrinsic random error and we can do nothing about it. The first term is the squared prediction risk

$$
R=\mathbf{E}\left\{\|\mu-\hat{\mu}\|^{2}\right\}
$$

and we would wish to choose a model for $\mu(X)$ which makes this risk small.

Steffen Laurizzen, University of Oxford aximized ilikellhood Bayspian methods

f it holds that $\mu=X \beta$ and we use a linear model of the form

$$
\mu_{S}(X)=X(S) \beta_{S}
$$

where S is a subset of d elements of the covariates so

$$
x_{i}(S)=\left(x_{i j}, j \in S\right)
$$

we thus have the prediction risk

$$
R=\mathbf{E}\left\{\left\|X \beta-X(S) \hat{\beta}_{S}\right\|^{2}\right\}=d \sigma^{2}+B(S)
$$

where $B(S)$ is a bias term

$$
B(S)=\left\|\mu-\mu_{S}(X)\right\|^{2}=\left\|X \beta-X(S) \beta_{S}\right\|^{2}
$$

with $B(S)=0$ if the true distribution satisfies $\beta_{j}=0$ for $j \notin S$.

The corresponding residual sum of squares has expectation

$$
\mathbf{E}(\mathrm{RSS})=\mathbf{E}\left\{\|Y-X(S) \hat{\beta}\|^{2}\right\}=(n-d) \sigma^{2}+B(S) .
$$

Thus, if we add $(2 d-n) \sigma^{2}$ to both sides this equation, we get an unbiased estimate of the prediction risk from the residual sum of squares

$$
\hat{R}(S)=\mathrm{RSS}+(2 d-n) \sigma^{2} .
$$

Mallows C_{p} uses now an unbiased estimate of σ^{2}, typically based on the residual sum of squares for the model with all the variables included, to estimate the risk so that

$$
C_{p}=\frac{\mathrm{RSS}}{\hat{\sigma}^{2}}+2 d-n
$$

Choosing a model S can now be based on this criterion. Note that this also penalizes models with many parameters.

\section*{Steffen Laurizen. University of Oxford Model comparison and selection
 | Baycsin |
| :---: |
| $\substack{\text { medediction } \\ \text { risk }}$ |}

Akaike's Information Criterion (AIC) is based on exactly the same idea as C_{p}, but it is more general and is not restricted to regression models.

Akaike suggests assessing the prediction error by the Kullback-Leibler distance to the true distribution g :
$D(g, \theta)=\int g(x) \log f(x, \theta) d x-\int g(x) \log g(x) d x=S(g, \theta)+H(g)$.
The AIC is an approximately unbiased estimate of $-2 n S(g, \hat{\theta})$ which can be shown to reduce to

$$
\mathrm{AIC}_{i}=I\left(\hat{\theta}_{i}\right)-d_{i}
$$

so

$$
\Delta \mathrm{AIC}=-\log \Lambda+\left(d_{1}-d_{2}\right) .
$$

AIC gives typically lower penalty for complexity than BIC

$\begin{aligned} & \text { Edgeworth expansion } \\ & \text { Saddle-point expansion } \\ & \text { MLE in exponential family } \end{aligned}$	Edgeworth expansion Sadide.point expansion MLE Cumulants Basic exponension
Maximum likelihood asymptotics Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 11, Hilary Term 2008 February 25, 2008	In terms of the original variable S we get $f_{S_{n}}(s)=\frac{e^{-x^{2} / 2}}{\sigma \sqrt{2 \pi n}}\left\{1+\frac{\rho_{3} H_{3}(x)}{6 \sqrt{n}}+\frac{3 \rho_{4} H_{4}(x)+\rho_{3}^{2} H_{6}(x)}{72 n}\right\}+O\left(n^{-3 / 2}\right)$ where $x=(s-n \mu) /(\sigma \sqrt{n})$. Since $H_{3}(0)=0$ this is particularly accurate when s is close to $n \mu$, as the first correction term then disappears. If we wish a similar accuracy for other values of s we use the idea of tilting the distribution by shifting the log-density with a linear
Steffen Lauritzen, University of Oxford Edgeworth expasion Saddle-point expansion MLE in exponential family Cumulants Basic expansion	Ten Lauritzen, University of Oxford Maximum likelihood asymptotics Edggeworth expansion Sadde-point expansion Titting MLE in exponential family
Let X_{1}, \ldots, X_{n} be independent and identically distributed with density f and moment generating function $M(t)=\mathbf{E} e^{t X}$. The cumulant generating function of X is $K(t)=\log M(t)=\sum_{r=1}^{\infty} \frac{\kappa_{r}}{r!} t^{r}$ and the coefficient $\kappa_{r}=\frac{\partial^{r} K(0)}{\partial^{r} t}$ is the cumulant of order r. The first two cumulants are the mean and variance $\kappa_{1}=\mu=\mathbf{E}(X), \quad \kappa_{2}=\sigma^{2}=\mathbf{V}(X)$	Associate an exponential family of densities with the originial density f as $f(x ; \gamma)=f(x) e^{x \gamma-K(\gamma)}$ where K is the cumulant generating function of f. Clearly, $f(x ; 0)=f(x)$. We say that $f(x ; \gamma)$ is obtained by tilting f by γ. If X_{i} have density $f(x ; \gamma)$, the sum S_{n} has density $f_{S_{n}}(s ; \gamma)=f_{S_{n}}(s) e^{s \gamma-n K(\gamma)}$ implying that $f_{S_{n}}(s)=e^{n K(\gamma)-s \gamma} f_{S_{n}}(s ; \gamma)$ Since this equation holds for all γ we can now choose γ freely to suit our purpose.
	Steffen Laurizen. University of Oxford Eddegeworth expansin MLE in eppont expansin Maximum Iikelihood asymptotics Tilting
If X and Y are independent random variable, their cumulants satisfy $\kappa_{r}(a X+b Y)=a^{r} \kappa_{r}(X)+b^{r} \kappa^{r}(Y)$ The standardized standardized cumulants $\rho_{r}=\kappa_{r} / \kappa_{2}^{r / 2}, r=3,4, \ldots$ are thus invariant under translations and scaling $\rho_{r}(a X+b)=\rho_{r}$ and therefore determine the shape of the density. In the normal distribution, $\kappa_{r}=0$ for $r>2$ and cumulants ρ_{r} for $r>2$ therefore indicate departures from normality. The third cumulant ρ_{3} is is known as the skewness, and the fourth cumulant ρ_{4} as the kurtosis of the distribution.	If we use an Edgeworth expansion to approximate $f_{S_{n}}(s ; \gamma)$ we can thus choose γ so that the expectation $\mathbf{E}_{\gamma}\left(S_{n}\right)=s$. Since the mean of S_{n} in the tilted distribution is $n K^{\prime}(\gamma)$ we should choose $n K^{\prime}(\hat{\gamma})=s$. As the variance of S_{n} in the tilted distribution is $n K^{\prime \prime}(\gamma)$, the resulting approximation is then $f_{S_{n}}(s) \approx e^{n K(\hat{\gamma})-s \hat{\gamma}} \frac{1}{\left\{2 \pi n K^{\prime \prime}(\hat{\gamma})\right\}^{-1 / 2}}$ which can be extremely accurate. Note that the Edgeworth approximation uses a normal approximation around the mean of the distribution whereas Laplace's method uses its mode. The tilting technique can be useful in both cases.
F. Y. Edgeworth (1845-1926), Professor of Political Economy at Oxford, showed that the density of $S_{n}^{*}=\frac{\sum_{1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}}$ could be approximated as $f_{S_{n}^{*}}(x) \approx \phi(x)\left\{1+\frac{\rho_{3} H_{3}(x)}{6 \sqrt{n}}+\frac{3 \rho_{4} H_{4}(x)+\rho_{3}^{2} H_{6}(x)}{72 n}\right\}+O\left(n^{-3 / 2}\right)$ where ϕ is standard normal density and the omitted terms are $O\left(n^{-3 / 2}\right)$ and H_{r} are Hermite polynomials $H_{r}(x)=(-1)^{r} \phi^{(r)}(x) / \phi(x)$ For example, $H_{3}(x)=x^{3}-3 x, H_{4}(x)=x^{4}-6 x^{2}+3$, $H_{6}(x)=x^{1} 6-15 x^{4}+45 x^{2}-15$.	Use this approximation for an exponential family with parameter θ, then $K(t)=K(\theta+t)-K(t)$ and thus $\hat{\gamma}=\hat{\theta}-\theta$, where $\hat{\theta}$ is the MLE, yielding $f_{S_{n}}(s ; \theta) \approx e^{n\{K(\hat{\theta})-K(\theta)\}-s(\hat{\theta}-\theta)\}} \frac{1}{\left\{2 \pi n K^{\prime \prime}(\hat{\theta})\right\}^{-1 / 2}} \propto \frac{L(\theta)}{L(\hat{\theta})}\|j(\hat{\theta})\|^{-1 / 2}$ Since $n K^{\prime}(\hat{\theta})=s$ we have $\frac{\partial \hat{\theta}}{\partial s}=\frac{1}{n K^{\prime \prime}(\hat{\theta})}=\frac{1}{n j(\hat{\theta})}$ so a change of variables leads to the following approximate formula for the density of the MLE $f(\hat{\theta} ; \theta) \approx \propto \frac{L(\theta)}{L(\hat{\theta})}\|j(\hat{\theta})\|^{1 / 2}$

Similar methods can be used to show that, in wide generality, if A is ancillary so that $(\hat{\theta}, A)$ is minimal sufficient, then approximately and quite often exactly,

$$
f(\hat{\theta} \mid A=a ; \theta) \approx \propto \frac{L(\theta)}{L(\hat{\theta})}|j(\hat{\theta})|^{1 / 2},
$$

which is known as Barndorff-Nielsen's formula. Note that normalization constant may depend on θ and a.
Note similarity to the approximate Bayesian posterior:

$$
\pi^{*}(\theta) \approx \propto \frac{L(\theta)}{L(\hat{\theta})}|j(\hat{\theta})|^{1 / 2}
$$

where we have ignored the contribution $\pi(\theta) / \pi(\hat{\theta})$ from the prior Only the interpretations are different!

The multivariate Gaussian distribution Gaussian likelihoods The Wishirt distribution	
Multivariate Gaussian Analysis Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 12, Hilary Term 2008 February 25, 2008	A square matrix A has trace $\operatorname{tr}(A)=\sum_{i} a_{i i}$ The trace has a number of properties: 1. $\operatorname{tr}(\gamma A+\mu B)=\gamma \operatorname{tr}(A)+\mu \operatorname{tr}(B)$ for γ, μ being scalars; 2. $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\top}\right)$; 3. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ 4. $\operatorname{tr}(A)=\sum_{i} \lambda_{i}$ where λ_{i} are the eigenvalues of A.
	 Steffen Lauritzen, University of Oxford Multivariate Gaussian Analysis The multivariate Gaussian distribution Trace of matrix Gaussian likelihoods Sample with known mean The Wishart distribution Maximizing the likelihood
For a positive definite covariance matrix Σ, the multivariate Gaussian distribution has density on \mathcal{R}^{d} $\begin{equation*} f(x \mid \xi, \Sigma)=(2 \pi)^{-d / 2}(\operatorname{det} K)^{1 / 2} e^{-(x-\xi)^{\top} K(x-\xi) / 2} \tag{1} \end{equation*}$ where $K=\Sigma^{-1}$ is the concentration matrix of the distribution. If $X_{1} \sim \mathcal{N}_{d}\left(\xi_{1}, \Sigma_{1}\right)$ and $X_{2} \sim \mathcal{N}_{d}\left(\xi_{2}, \Sigma_{2}\right)$ and $X_{1} \Perp X_{2}$ $X_{1}+X_{2} \sim \mathcal{N}_{d}\left(\xi_{1}+\xi_{2}, \Sigma_{1}+\Sigma_{2}\right)$ If A is an $r \times d$ matrix, $b \in \mathcal{R}^{r}$ and $X \sim \mathcal{N}_{d}(\xi, \Sigma)$, then $Y=A X+b \sim \mathcal{N}_{r}\left(A \xi+b, A \Sigma A^{\top}\right)$	For symmetric matrices the last statement follows from taking an orthogonal matrix O so that $O A O^{\top}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ and using $\operatorname{tr}\left(O A O^{\top}\right)=\operatorname{tr}\left(A O^{\top} O\right)=\operatorname{tr}(A)$ The trace is thus orthogonally invariant, as is the determinant: $\operatorname{det}\left(O A O^{\top}\right)=\operatorname{det}(O) \operatorname{det}(A) \operatorname{det}\left(O^{\top}\right)=1 \operatorname{det}(A) 1=\operatorname{det}(A)$ There is an important trick that we shall use again and again: For $\lambda \in \mathcal{R}^{d}$ $\lambda^{\top} A \lambda=\operatorname{tr}\left(\lambda^{\top} A \lambda\right)=\operatorname{tr}\left(A \lambda \lambda^{\top}\right)$ since $\lambda^{\top} A \lambda$ is a scalar.
	Steffen Lauritzen, University of Oxford Multivariate Gaussian Analysis The multivariate Gaussisan distribution Gassian likelihoods Trace of matrix Sample with known mean Maximizing the likeclibood The Wishart distribution
Partition X into X_{1} and X_{2}, where $X_{1} \in \mathcal{R}^{r}$ and $X_{2} \in \mathcal{R}^{s}$ with $r+s=d$ and partition mean vector, concentration and covariance matrix accordingly. Then, if $X \sim \mathcal{N}_{d}(\xi, \Sigma)$ $X_{2} \sim \mathcal{N}_{s}\left(\xi_{2}, \Sigma_{22}\right)$ If Σ_{22} is regular, it further holds that $X_{1} \mid X_{2}=x_{2} \sim \mathcal{N}_{r}\left(\xi_{1 \mid 2}, \Sigma_{1 \mid 2}\right)$ where $\xi_{1 \mid 2}=\xi_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\xi_{2}\right) \quad \text { and } \quad \Sigma_{1 \mid 2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$	Consider first the case where $\xi=0$ and a sample $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$ from a multivariate Gaussian distribution $\mathcal{N}_{d}(0, \Sigma)$ with Σ regular. Using (1), we get the likelihood function $\begin{align*} L(K) & =(2 \pi)^{-n d / 2}(\operatorname{det} K)^{n / 2} e^{-\sum_{\nu=1}^{n} x_{\nu}^{\top} K x^{\nu} / 2} \\ & \propto(\operatorname{det} K)^{n / 2} e^{-\sum_{\nu=1}^{n} \operatorname{tr}\left\{K x_{\nu} x_{\nu}^{\top}\right\} / 2} \\ & =(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}\left\{K \sum_{\nu=1}^{n} x_{\nu} x_{\nu}^{\top}\right\} / 2} \\ & =(\operatorname{det} K)^{n / 2} e^{-\operatorname{tr}(K W) / 2} . \tag{4} \end{align*}$ where $W=\sum_{\nu=1}^{n} x_{\nu} x_{\nu}^{\top}$ is the matrix of sums of squares and products.
From the matrix identities $\begin{equation*} K_{11}^{-1}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}=\Sigma_{1 \mid 2} \tag{2} \end{equation*}$ and $\begin{equation*} K_{11}^{-1} K_{12}=-\Sigma_{12} \Sigma_{22}^{-1} \tag{3} \end{equation*}$ it follows that then the conditional expectation and concentrations also can be calculated as $\xi_{1 \mid 2}=\xi_{1}-K_{11}^{-1} K_{12}\left(x_{2}-\xi_{2}\right) \quad \text { and } \quad K_{1 \mid 2}=K_{11}$ Note that the marginal covariance is simply expressed in terms of Σ where as the conditional concentration is simply expressed in terms of K.	Writing the trace out $\operatorname{tr}(K W)=\sum_{i} \sum_{j} k_{i j} W_{j i}$ emphasizes that it is linear in both K and W and we can recognize this as a linear and canonical exponential family with K as the canonical parameter and $-W / 2$ as the canonical sufficient statistic. Thus, the likelihood equation becomes $\mathbf{E}(-W / 2)==-n \Sigma / 2=-W / 2$ since $\mathbf{E}(W)=n \Sigma$. Solving, we get $\hat{K}^{-1}=\hat{\Sigma}=W / n$ in analogy with the univariate case.


```
Consider now alternative models \(M_{1}\) with \(\Sigma\) arbitrary and \(M_{2}\) with \(\Sigma\) of block diagonal form
\[
\Sigma=\left(\begin{array}{cc}
\Sigma_{11} & 0 \\
0 & \Sigma_{22}
\end{array}\right)
\]
If the associated prior distributions are for \(M_{1}\) that
\(\Sigma \sim \mathcal{I} \mathcal{W}_{d}\left(\delta, I_{d}\right)\) and for \(M_{2}\) that \(\Sigma_{11} \sim \mathcal{I} \mathcal{W}_{r}\left(\delta, I_{r}\right)\),
\(\Sigma_{22} \sim \mathcal{I} \mathcal{W}_{s}\left(\delta, I_{s}\right)\), we can now calculate the Bayes factor.
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline \begin{tabular}{l}
Sequential Bayesian Updating \\
Steffen Lauritzen, University of Oxford \\
BS2 Statistical Inference, Lectures 15 and 16, Hilary Term 2008 \\
March 6, 2008
\end{tabular} & \begin{tabular}{l}
The previous considerations take when also the parameter or state \(\theta\) precisely, we consider a Markovian the form
\[
f\left(\theta_{0}\right)=\pi\left(\theta_{0}\right)
\] \\
where the evolving states \(\theta_{0}, \theta_{1}\),. information about them are availa observations \(X_{i}=x_{i}\), where
\[
f\left(x_{i} \mid \theta_{\mathbf{i}}, \mathbf{x}_{\mathbf{i}-\mathbf{1}}\right)
\] \\
so the joint density of states and
\[
f\left(\mathbf{x}_{\mathbf{n}}, \theta_{\mathbf{n}}\right)=\pi\left(\theta_{0}\right) \prod_{i=1}^{n}
\]
\end{tabular} & \begin{tabular}{l}
n a particular dynamic form is changing with time. More model for the state dynamics of
\[
\left.+1 \mid \theta_{\mathbf{i}}\right)=f\left(\theta_{i+1} \mid \theta_{i}\right)
\] \\
are not directly observed, but le through sequential
\[
=f\left(x_{i} \mid \theta_{i}\right)
\] \\
bservations is
\[
f\left(\theta_{i+1} \mid \theta_{i}\right) f\left(x_{i} \mid \theta_{i}\right)
\]
\end{tabular} \\
\hline  & Steffen Lauritzen, University of Oxford
Fixed state
Evolving state
Kalman filter
Particle filters &  \\
\hline \begin{tabular}{l}
We consider data arriving sequentially \(X_{1}, \ldots, X_{n}, \ldots\) and wish to update inference on an unknown parameter \(\theta\) online. \\
In a Bayesian setting, we have a prior distribution \(\pi(\theta)\) and at time \(n\) we have a density for data conditional on \(\theta\) as
\[
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=f\left(x_{1} \mid \theta\right) f\left(x_{2} \mid x_{1}, \theta\right) \cdots f\left(x_{n} \mid \mathbf{x}_{\mathbf{n}-\mathbf{1}}, \theta\right)
\] \\
where we have let \(\mathbf{x}_{\mathbf{i}}=\left(x_{1}, \ldots, x_{i}\right)\). Note that we are not assuming \(X_{1}, \ldots, X_{n}, \ldots\) to be independent conditionally on \(\theta\). \\
At time \(n\), we may have updated our distribution of \(\theta\) to its posterior
\[
\pi_{n}(\theta)=f\left(\theta \mid \mathbf{x}_{\mathbf{n}}\right) \propto \pi(\theta) f\left(\mathbf{x}_{\mathbf{n}} \mid \theta\right)
\]
\end{tabular} & \begin{tabular}{l}
This type of model is common in target tracking, and steering/cont airplanes, and space ships. \\
The natural tasks associated with state \(\theta_{i}\) are known as \\
- Filtering: Find \(f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right)\). Wh
\end{tabular} & obotics, speech recognition, ol, for example of large ships, inference about the evolving at is the current state? \\
\hline  &  & \begin{tabular}{l}
Sequential Bayesian Updating \\
Basic dynamic mod
Fundamental tasks \\
Prediction and filterin
Smoothing
\end{tabular} \\
\hline \begin{tabular}{l}
If we obtain a new observation \(X_{n+1}=x_{n+1}\) we may either start afresh and write
\[
\pi_{n+1}(\theta)=f\left(\theta \mid \mathbf{x}_{\mathbf{n}+\mathbf{1}}\right) \propto \pi(\theta) f\left(\mathbf{x}_{\mathbf{n}+\mathbf{1}} \mid \theta\right)
\] \\
or we could claim that just before time \(n+1\), our knowledge of \(\theta\) is summarized in the distribution \(\pi_{n}(\theta)\) so we just use this as a prior distribution for the new piece of information and update as
\[
\tilde{\pi}_{n+1}(\theta) \propto \pi_{n}(\theta) f\left(x_{n+1} \mid \mathbf{x}_{\mathbf{n}}, \theta\right)
\] \\
Indeed, these updates are identical since
\[
\begin{aligned}
\tilde{\pi}_{n+1}(\theta) & \propto \pi_{n}(\theta) f\left(x_{n+1} \mid \mathbf{x}_{\mathbf{n}}, \theta\right) \\
& \propto \pi(\theta) f\left(\mathbf{x}_{\mathbf{n}} \mid \theta\right) f\left(x_{n+1} \mid \mathbf{x}_{\mathbf{n}}, \theta\right) \\
& =\pi(\theta) f\left(\mathbf{x}_{\mathbf{n}+\mathbf{1}} \mid \theta\right) \propto \pi_{n+1}(\theta)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
This type of model is common in target tracking, and steering/con airplanes, and space ships. \\
The natural tasks associated with state \(\theta_{i}\) are known as \\
- Filtering: Find \(f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right)\). Wh \\
- Prediction: Find \(f\left(\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}}\right)\)
\end{tabular} & obotics, speech recognition, ol, for example of large ships, inference about the evolving at is the current state? What is the next state? \\
\hline  & ne Laurizen. Univerity of oxtord &  \\
\hline \begin{tabular}{l}
We may summarize these facts by replacing the usual expression for a Bayesian updating scheme
\[
\text { posterior } \propto \text { prior } \times \text { likelihood }
\] \\
with
\[
\text { revised } \propto \text { current } \times \text { new likelihood }
\] \\
represented by the formula
\[
\pi_{n+1}(\theta) \propto \pi_{n}(\theta) \times L_{n+1}(\theta)=\pi_{n}(\theta) f\left(x_{n+1} \mid \mathbf{x}_{\mathbf{n}}, \theta\right)
\] \\
In this dynamic perspective we notice that at time \(n\) we only need to keep a representation of \(\pi_{n}\) and otherwise can ignore the past. \\
The current \(\pi_{n}\) contains all information needed to revise knowledge when confronted with new information \(L_{n+1}(\theta)\). \\
We sometimes refer to this way of updating as recursive.
\end{tabular} & \begin{tabular}{l}
This type of model is common in target tracking, and steering/cont airplanes, and space ships. \\
The natural tasks associated with state \(\theta_{i}\) are known as \\
- Filtering: Find \(f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right)\). Wh \\
- Prediction: Find \(f\left(\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}}\right)\). \\
- Smoothing: Find \(f\left(\theta_{j} \mid \mathbf{x}_{\mathbf{n}}\right), j\) time \(j\) ?
\end{tabular} & \begin{tabular}{l}
obotics, speech recognition, ol, for example of large ships, inference about the evolving \\
at is the current state? \\
What is the next state? \\
\(<n\). What was the past state at
\end{tabular} \\
\hline
\end{tabular}

If the filter distribution \(f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right)\) is available we may calculate the predictive distribution as
\[
\begin{equation*}
f\left(\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}}\right)=\int_{\theta_{n}} f\left(\theta_{n+1} \mid \theta_{n}\right) f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{n} \tag{1}
\end{equation*}
\]
which uses the current filter distribution and the dynamic model. When a new observation \(X_{n+1}=x_{n+1}\) is obtained, we can use
\[
\text { revised } \propto \text { current } \times \text { new likelihood }
\]
to update the filter distribution as
\[
\begin{equation*}
f\left(\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}+\mathbf{1}}\right) \propto f\left(\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}}\right) f\left(x_{n+1} \mid \theta_{n+1}\right) \tag{2}
\end{equation*}
\]
i.e. the updated filter distribution is found by combining the current predictive with the incoming likelihood. The predictive distributions can now be updated to yield a general recursive scheme of predict-observe-filter-predict-observe-filter. .


When we have more time, we may similarly look retrospectively and try to reconstruct the movements of \(\theta\). This calculation is slightly more subtle than filtering. We first get
\[
\begin{aligned}
f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{n}}\right) & =\int_{\theta_{j}} f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{n}}\right) f\left(\theta_{j} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{j} \\
& =\int_{\theta_{j}} f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right) f\left(\theta_{j} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{j}
\end{aligned}
\]
where we have used that
\[
\begin{aligned}
f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{n}}\right) & \propto f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right) f\left(x_{j}, \ldots, x_{n} \mid \theta_{j}, \theta_{j-1}\right) \\
& =f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right) f\left(x_{j}, \ldots, x_{n} \mid \theta_{j}\right)
\end{aligned}
\]
so
\[
f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{n}}\right)=f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right)
\]
\begin{tabular}{|c|c|}
\hline Steffen Lauriten, University of Oxford & Sequential Bayesian Updating \\
\hline  & Basic dynamic model Fundamental tasks Smoothing \\
\hline
\end{tabular}

Since further
\[
f\left(\theta_{j-1} \mid \theta_{j}, \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right) \propto f\left(\theta_{j} \mid \theta_{j-1}\right) f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right)
\]
we thus get
\[
\begin{aligned}
f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{n}}\right) & \propto \int_{\theta_{j}} f\left(\theta_{j} \mid \theta_{j-1}\right) f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{j}-1}\right) f\left(\theta_{j} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{j} \\
& \propto f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{j}-1}\right) \int_{\theta_{j}} f\left(\theta_{j} \mid \theta_{j-1}\right) f\left(\theta_{j} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{j}
\end{aligned}
\]

Which is the basic smoothing recursion:
\[
\begin{equation*}
f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{n}}\right) \propto f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{j}-\mathbf{1}}\right) \int_{\theta_{j}} f\left(\theta_{j} \mid \theta_{j-1}\right) f\left(\theta_{j} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{j} \tag{3}
\end{equation*}
\]

It demands that we have stored a representation of the filter distributions \(f\left(\theta_{j-1} \mid \mathbf{x}_{\mathbf{j}-1}\right)\) as well as the dynamic state model.

The filtering relations become particularly simple, since the conditional distributions all are normal, and we are only concerned with expectations and variances.
We repeat Thiele's argument as an instance of the general theory developed.
Suppose at time \(n\) we have the filter distribution of \(\theta_{n}\) as
\(\mathcal{N}\left(\mu_{n}, \omega_{n}^{2}\right)\). Then the predictive distribution of \(\theta_{n+1}\) is
\[
\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}} \sim \mathcal{N}\left(\mu_{n}, \omega_{n}^{2}+\sigma^{2}\right)
\]

We can think of \(\mu_{n}\) as our current 'best measurement' of \(\theta_{n+1}\), with this variance.
The contribution from the observation is a measurement of \(\theta_{n+1}\) with a value of \(x_{n+1}\) and a variance \(\tau^{2}\). The best way of combining these estimates is to take a weighted average with the inverse variances as weights.


It follows that our new filter distribution has expectation
\[
\mu_{n+1}=\frac{\mu_{n} /\left(\omega_{n}^{2}+\sigma^{2}\right)+x_{n+1} / \tau^{2}}{\left(\omega_{n}^{2}+\sigma^{2}\right)^{-1}+\tau^{-2}}=\frac{\tau^{2} \mu_{n}+\left(\sigma_{2}+\omega_{n}^{2}\right) x_{n+1}}{\tau^{2}+\sigma^{2}+\omega_{n}^{2}}
\]
and variance
\[
\omega_{n+1}^{2}=\frac{1}{\left(\omega_{n}^{2}+\sigma^{2}\right)^{-1}+\tau^{-2}}=\frac{\tau^{2}\left(\sigma^{2}+\omega_{n}^{2}\right)}{\tau^{2}+\sigma^{2}+\omega_{n}^{2}}
\]

Clearly this result could also have been obtained from expanding the sum of squares in the expression for the filter distribution (2)
\[
f\left(\theta_{n+1} \mid \mathbf{x}_{\mathbf{n}}\right) \propto \exp \left\{-\frac{\left(\theta_{n+1}-\mu_{n}\right)^{2}}{2\left(\sigma^{2}+\omega_{n}^{2}\right)}+\frac{\left(\theta_{n+1}-x_{n+1}\right)^{2}}{2 \tau^{2}}\right\}
\]

\section*{\begin{tabular}{l} 
Sequential Bayssian Updating \\
\hline Basic model \\
\hline
\end{tabular} \\ Updating the filicers
Correcting redicions and observations
Cometric construction}

We may elaborate the expression for \(\mu_{n+1}\) and write it as a correction of \(\mu_{n}\) or of \(x_{n+1}\) as
\[
\mu_{n+1}=\mu_{n}+\frac{\sigma^{2}+\omega_{n}^{2}}{\tau^{2}+\sigma^{2}+\omega_{n}^{2}}\left(x_{n+1}-\mu_{n}\right)
\]
or
\[
\mu_{n+1}=x_{n+1}-\frac{\tau^{2}}{\tau^{2}+\sigma^{2}+\omega_{n}^{2}}\left(x_{n+1}-\mu_{n}\right)
\]
showing how at each stage \(n\) the filtered value is obtained by modifying the observed and predicted values when the prediction is not on target.
The Kalman filter readily generalizes to the multivariate case and more complex models for the state evolution and observation equation. We abstain from further details.


This special case of the previous is traditionally attributed to Kalman from a result in 1960, but was in fact developed in full detail by the Danish statistician T.N. Thiele in 1880.
It is based on the Markovian state model
\[
\theta_{i+1} \mid \theta_{i} \sim \mathcal{N}\left(\theta_{i}, \sigma_{i+1}^{2}\right), \quad \theta_{0}=0
\]
and the simple observational model
\[
X_{i} \mid \theta_{i} \sim \mathcal{N}\left(\theta_{i}, \tau_{i}^{2}\right), i=1, \ldots
\]
where typically \(\sigma_{i}^{2}=\left(t_{i}-t_{i-1}\right) \sigma^{2}\) and \(\tau_{i}^{2}=\tau^{2}\) with \(t_{i}\) denoting the time of the \(i\) th observation. For simplicity we shall assume \(t_{i}=i\) and \(w_{i}=1\) in the following

This geometric construction of the Kalman filter and smoother is taken from Thiele (1880).


One of the most recent developments in modern statistics is using Monte Carlo methods for representing the predictive and filtered distributions.
We assume that we at time \(n\) have represented the filter distribution (2) by a sample
\[
f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right) \sim\left\{\theta_{n}^{1}, \ldots, \theta^{M}\right\}
\]
so that we would approximate any integral w.r.t. this density as
\[
\int h\left(\theta_{n}\right) f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{n} \approx \sum_{i=1}^{M} h\left(\theta_{n}^{i}\right) .
\]

The values \(\left\{\theta_{n}^{1}, \ldots, \theta_{n}^{M}\right\}\) are generally referred to as particles


More generally, we may have the particles associated with weights
\[
f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right) \sim\left\{\left(\theta_{n}^{1}, w_{n}^{1}\right), \ldots,\left(\theta^{M}, w_{n}^{M}\right)\right\}
\]
with \(\sum_{i=1}^{M} w_{n}^{i}=1\), so that the integral is approximated by
\[
\begin{equation*}
\int h\left(\theta_{n}\right) f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right) d \theta_{n} \approx \sum_{i=1}^{M} h\left(\theta_{n}^{i}\right) w_{n}^{i} . \tag{4}
\end{equation*}
\]

Typically, \(w_{i}\) will reflect that we have been sampling from a proposal distribution \(g\left(\theta_{n}\right)\) rather than the target distribution \(f\left(\theta_{n} \mid \mathbf{x}_{\mathbf{n}}\right)\) so the weights are calculated as
\[
w_{n}^{i}=f\left(\theta_{n}^{i} \mid \mathbf{x}_{\mathbf{n}}\right) / g\left(\theta_{n}^{i}\right)
\]


When filtering to obtain particles representing the next stage of the filtering distribution we move each particle a random amount by drawing \(\theta_{n+1}^{i}\) at random from a proposal distribution \(g_{n+1}\left(\theta \mid \theta_{n}^{i}, \mathbf{x}_{\mathbf{n}+\mathbf{1}}\right)\) and subsequently reweight the particle as
\[
w_{n+1}^{i} \propto w_{n}^{i} \frac{f\left(\theta_{n+1}^{i} \mid \theta_{n}^{i}\right) f\left(x_{n+1} \mid \theta_{n+1}^{i}\right)}{g_{n+1}\left(\theta_{n+1}^{i} \mid \theta_{n}^{i}, \mathbf{x}_{\mathbf{n}+1}\right)}
\]
the numerator being proportional to \(f\left(\theta_{n+1}^{i} \mid \theta_{n}^{i}, x_{n+1}\right)\)
There are many possible proposal distributions but a common choice is a normal distribution with an approximately correct mean and slightly enlarged variance.

The approximate inverse variance of the integral (4) is for the constant function \(h \equiv 1\) equal to
\[
\tilde{M}_{n}=\frac{1}{\sum_{i}\left(w_{n}^{i}\right)^{2}}
\]
which is known as effective number of particles. It is maximized for \(w^{i} \equiv 1 / M\) which represents weights obtained when sampling from the correct distribution.

As the filtering evolves, it may happen that some weights become very small, reflecting bad particles, which are placed in areas of small probability. This leads to the effective number of particles becoming small.

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Sequential Bayesian Updating
Beqsic Monte Carto representation
Moving and reverhting particles
ERective ummer of par
Rectivelinu bud ropleniticting} \\
\hline \\
\hline
\end{tabular}

To get rid of these, \(M\) new particles are resampled with replacement, the probability for choosing particle \(i\) at each sampling being equal to \(w^{i}\) so that bad particles have high probability of not being included. This creates now a new set of particles which now all have weight \(1 / M\)
However, some particles will now be repeated in the sample and when this has been done many times, there may be only few particles left.
Various schemes then exist for replenishing and sampling new particles.
This can also be done routinely at each filtering, for example by first sampling two new particles for every existing one and subsequently resampling as above to retain exactly \(M\) particles.```

