Ancillarity Conditionality	Anciliavity, Inference principles Conditionality Exponential families
Ancillarity and Conditional Inference Steffen Lauritzen, University of Oxford B52 Statistical Inference, Lecture 1, Hilary Term 2008 April 2, 2008	Various forms of the <i>conditionality principle</i> say that the distribution used for inference should be conditional on any ancillary, such as the instrument actually used. Note this is a frequentist concept and plays little role in a Bayesian paradigm. In the Fisherian paradigm, we should not compare the measurement obtained to anything we could have seen, but did not. Rather we should define a relevant <i>reference set</i> of values, for example by conditioning with an ancillary statistic, and use this set for inference calculations. The relevant reference set may not simply be the original sample space!
くロト・(ラ)・(ミ)・(ミ)・ミーシー きょうのの Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference	Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference
Ancillerity Conditionality Definition	Accillarity Conditionality Condition
Consider an experiment with two instruments available: Definition of the other instrument is older and less accurate; if $\mathcal{N}(\theta, 1)$. The other instrument is older and less accurate; if duces measurements which are $\mathcal{N}(\theta, 100)$. We wish to check whether a parameter $\theta = 0$, the alternative being that $\theta > 0$. Toss a fair coin and let $A = i, i = 1, 2$ denote that the instrument i is chosen. Perform then the measurement to obtain X . The joint is chosen. Perform then the measurement to obtain X . The joint is chosen. Perform then the measurement to obtain X . The joint is chosen of (X, A) is determined as $f(x, a; \theta) = \phi(x - \theta) \mathbb{1}_{\{1\}}(a)/2 + \phi\{(x - \theta)/10\}\mathbb{1}_{\{2\}}(a)/2$. Suppose we have chosen the first instrument and observe $X = 4$. Is this consistent with the assumption $\theta = 0$:	<text><text><equation-block><equation-block><text><text><page-footer></page-footer></text></text></equation-block></equation-block></text></text>
Ancillarity Conditionality Definition	Ancillarity Conditionality Conditionality Completeness
	Basu's Theorem
The <i>p</i> -value is $p = P(X > 4; \theta = 0) = \{1 - \Phi(4)\}/2 + \{1 - \Phi(.4)\}/2 = .1723,$ so there is nothing to worry about? However, we did in fact use the precise instrument. So, with a standard deviation of 1, a value of $X = 4$ should be very unlikely. Why should it matter that we could have used the other instrument, but didn't? Should we not rather have considered $A = a$ fixed and condition on the actual instrument used? That is, calculate the <i>p</i> -value as $\tilde{p} = P(X > 4 A = 1; \theta = 0) = \{1 - \Phi(4)\} = .00003$	In general, if the MLE $\hat{\theta}$ is not sufficient, it is often possible to find an ancillary statistic A so that $(\hat{\theta}, A)$ is jointly sufficient. Then since $f(x; \theta) = h(x)k\{\hat{\theta}(x), a(x); \theta\}$ we also have $f(x A = a; \theta) \propto h(x)k\{\hat{\theta}(x), a; \theta\}.$ Thus $\hat{\theta}$ is sufficient when considering the conditional distribution given the ancillary A .
The <i>p</i> -value is $p = P(X > 4; \theta = 0) = \{1 - \Phi(4)\}/2 + \{1 - \Phi(.4)\}/2 = .1723,$ so there is nothing to worry about? However, we did in fact use the preside instrument. So, with a study and deviation of 1, a value of X = 4 should be very units, buy should it matter that we could have used the other instrument, but didn't? Bould we not rather have considered A = a fixed and condition on the actual instrument used? That is, calculate the <i>p</i> -value as $p = P(X = 4 A = 1; \theta = 0) = \{1 - \Phi(4)\} = .0003$ By the presence of the structure is the str	In general, if the MLE $\hat{\theta}$ is not sufficient, it is often possible to find an ancillary statistic A so that $(\hat{\theta}, A)$ is jointly sufficient. Then since $f(x; \theta) = h(x)k\{\hat{\theta}(x), a(x); \theta\}$ we also have $f(x A = a; \theta) \propto h(x)k\{\hat{\theta}(x), a; \theta\}.$ Thus $\hat{\theta}$ is sufficient when considering the conditional distribution given the ancillary A .
The <i>p</i> -value is $p = P(X > 4; \theta = 0) = \{1 - \Phi(4)\}/2 + \{1 - \Phi(.4)\}/2 = .1723,$ so there is nothing to worry about? However, we did in fact use the precise instrument. So, with a standard deviation of 1, a value of X = 4 should be very unlikely. Why should it matter that we could have used the other instrument, but didn't? Should we not rather have considered A = a fixed and condition on the actual instrument used? That is, calculate the <i>p</i> -value as $\tilde{p} = P(X > 4 A = 1; \theta = 0) = \{1 - \Phi(4)\} = .00003$ giving very strong evidence against the hypothesis.	In general, if the MLE $\hat{\theta}$ is not sufficient, it is often possible to find an ancillary statistic A so that $(\hat{\theta}, A)$ is jointly sufficient. Then since $f(x; \theta) = h(x)k\{\hat{\theta}(x), a(x); \theta\}$ we also have $f(x A = a; \theta) \propto h(x)k\{\hat{\theta}(x), a; \theta\}.$ Thus $\hat{\theta}$ is sufficient when considering the conditional distribution given the ancillary A.
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	In general, if the MLE $\hat{\theta}$ is not sufficient, it is often possible to find an ancillary statistic A so that $(\hat{\theta}, A)$ is jointly sufficient. Then since $f(x; \theta) = h(x)k\{\hat{\theta}(x), a(x); \theta\}$ we also have $f(x A = a; \theta) \propto h(x)k\{\hat{\theta}(x), a; \theta\}$. Thus $\hat{\theta}$ is sufficient when considering the conditional distribution given the ancillary A .

<page-header><text><text><list-item></list-item></text></text></page-header>	Reference set	Reference set
<text><list-item><list-item><list-item><list-item><equation-block><text><list-item><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></list-item></text></equation-block></list-item></list-item></list-item></list-item></text>	Conditionality Conditionality Exponential families Basi's Theorem	Conditionality Conditionality Exponential families Easu's Theorem
<text><list-item><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text></text></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></equation-block></list-item></text>		Consider an exponential family, with densities
<text><text><text><text><text></text></text></text></text></text>	It has several time been attempted to give statistical inference a firm foundation through so-called inference principles, for example:	$f(x; heta) = b(x)e^{a(heta)^{ op}t(x)-c(heta)}, x \in \mathcal{X}.$
<text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>	The sufficiency principle (S) says that if S = s(X) is a sufficient statistic, S carries the same evidence for the	If the family is linear, then $T = t(X)$ is boundedly complete and sufficient.
<text><text><text><text><text><text></text></text></text></text></text></text>	parameter θ as does X. The conditionality principle (C) says that if $A = a(X)$ is	This is a non-trivial result. The proof uses analytic function theory
<text><text><text><text><list-item></list-item></text></text></text></text>	ancillary, then the conditional distribution given $A = a(x_{obs})$, carries the came evidence as the unconditional experiment	and is outside the scope of this course. The case of a linear exponential family is essentially the only case
	carries the same evidence as the unconditional experiment.	where a complete sufficient statistic exists, or at least where this
Mathematical StructureMathematical S		For curved exponential families there is typically no complete
Some statistic is a statistic in inference principle, for example. In the second limb been attempting (S) says that if A = (X) is a significant of the distribution of A deem at C allocation through so-called inference principle, for example. In the second limb been attempting (S) says that if A = (X) is a significant of the distribution of A deem at C allocation of this is annewatcation if the same ordene as the unconditional period. In the Method particle () says that if A = (X) is a significant of the conditional distribution given A = d(X_0). In the Method particle () says that if A = (X) is a significant of the conditional distribution given A = d(X_0). In the Method particle () says that if A = (X) is a significant of the conditional distribution given A = d(X_0). In the Method particle () says that if A = (X) is a significant of the conditional distribution of X = d(X_0). Interpretation of this: Whereas some variant of (s) and (c) are commonly accepted and gatistications on this realt have been different. The the deep doe def as the distribution of X di did. Materias the fact are variat. Whereas some variant of (s) and (c) and commonly accepted and gatistication of mis realt have bind filter. Materias the fact are variat.		sufficient statistic.
<page-header><text><text><list-item><text><list-item><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></list-item></text></list-item></text></text></page-header>	C C C C C C C C C C C C C C C C C C C	(미) (전) (전) (전) (전) (전) (전) (전) (전) (전) (전
<text><text><list-item><list-item><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></list-item></list-item></text></text>	Ancillority Conditionality Conditionality	Reference set Inference principles Conditionality Conditionality
<text><list-item><list-item><list-item><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></list-item></list-item></list-item></text>	Exponention namines Basu's Theorem	Exponentian sammes Basu's Theorem
<text><list-item><list-item><list-item><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></list-item></list-item></list-item></text>		
<text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text>	It has several time been attempted to give statistical inference a firm foundation through so-called inference principles, for example:	Sometimes it does not matter, whether we condition on A or not:
 Substitution statistic f a since statistic f d = d(X) is any first if d = d(X) is any	• The sufficiency principle (S) says that if $S = s(X)$ is a sufficient statistic S says the same suidance for the	If $T = t(X)$ is complete and sufficient for θ and the distribution of A does not depend on θ , then T and A are independent
<text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>	parameter θ as does X.	Here is a nice application of this:
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	The conditionality principle (C) says that if A = a(X) is ancillary, then the conditional distribution given A = a(x _{obs}),	If (X_1, \ldots, X_n) is a sample from the normal distribution $\mathcal{N}(\mu, \sigma^2)$ with <i>known</i> variance $\sigma^2 = \sigma_n^2$, it holds that $\hat{\mu} = \bar{X}$ complete and
 The the blood grant pice (L) says that all evidence in an experiment is summarized in the likelihood function. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and ((X = A)) are independent. (μ) it follows that X and (((X = A))) are independent. (μ) it follows that X and ((((X = A))) are independent. (μ) it follows that X and (((((((((((((((((((((((((((((((((((carries the same evidence as the unconditional experiment.	sufficient. Since the distribution of $\sum_{i=1}^{n} (X_i - \bar{X})^2$ cannot depend on with follows that \bar{X} and $\sum_{i=1}^{n} (X_i - \bar{X})^2$ cannot depend on
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	The likelihood principle (L) says that all evidence in an experiment is summarized in the likelihood function.	μ , it follows that λ and $\sum (\lambda_i - \lambda)$ are independent.
<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>		
Market and Catter and Part of Catter a	<ロ>(の)(で)(こ)(こ)をつう()	 < □> < (□) < (□)
<page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header>	Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference Reference set Inference principles	Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference Reference set Inference principles
<text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text>	Conditionality Conditionality Exponential families Basu's Theorem	Conditionality Conditionality Exponential families Basu's Theorem
<text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>	Birnbaum's theorem	The proof is surprisingly simple: Let g be an arbitrary bounded function of a and let $m = \mathbf{E}_{\theta}\{g(A)\}$. Note m does not depend on θ as the distribution of A did not. Now let
<text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>	Whereas some variant of (S) and (C) are commonly accepted	$h\{t(x)\} = \mathbf{E}_{\theta}[\{g(A) - m\} \mid T = t(x)]$
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>	among statisticians, (L) is not. Birnhaum showed in 1072 that (S) and (C) combined are	which also does not depend on $ heta$ because T was sufficient.
Reactions on this result have been different. The theorem depends having on the precise formulation of the principles (weak and strong forms) and is therefore not generally accepted as a fact. Bayesian inference obeys (L) in the strongest form. Attitudes towards this fact are varied $E_{\theta}\{g(A) T = t(x)\} = E_{\theta}\{g(A) - m \} T = E_{\theta}\{g(A$	equivalent to (L)!	Iterating expectations and using the definition of m yields
 The second state of the strongest form. Attitudes towards this fact are varied State states the strongest form. Attitudes towards this fact are varied State states the strongest form. Attitude stowards this fact are varied State states the strongest form. Attitude stowards this fact are varied State states the strongest form. Attitude stowards this fact are varied State states the strongest form. Attitude stowards the strongest form. Attitude stowards the store state states the state states the stat	Reactions on this result have been different. The theorem depends heavily on the precise formulation of the principles (weak and strong forms) and is therefore not generally accented as a fact	$ \begin{aligned} \mathbf{E}_{\theta}\{h(T)\} &= \mathbf{E}_{\theta}\mathbf{E}_{\theta}[g\{A\} - m \mid T] \\ &= \mathbf{E}_{\theta}\{g(A) - m\} = 0 \end{aligned} $
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>	Bayesian inference obeys (L) in the strongest form.	for all θ . Completeness then implies
<text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text>	Attitudes towards this fact are varied	$E_{\theta}\{g(A) \mid \mathcal{T}=t(x)\}=E\{g(A)\},$
Statistic $T = t(X)$ is said to be complete w.r.t. θ if for all functions h Statistic $T = t(X)$ is said to be complete w.r.t. θ if for all functions h $E_{\theta}\{h(T)\} = 0$ for all $\theta \implies h(t) = 0$ a.s. It is boundedly complete if the same holds when only bounded functions h are considered. It would be more precise to say the family of densities of T $\mathcal{F}_T = \{f_T(t; \theta), \theta \in \Theta\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.	(ロ)(の)(こ)(こ)(こ)(こ)(こ)(の)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	thus that A and T are independent.
expected with the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient. $expected expected ex$	Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference Reference set Inference principles	Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference
A statistic $T = t(X)$ is said to be <i>complete</i> w.r.t. θ if for all functions h $\mathcal{L}_{\theta}\{h(T)\} = 0 \text{ for all } \theta \implies h(t) = 0 \text{ a.s.}$ It is <i>boundedly complete</i> if the same holds when only bounded functions h are considered. It would be more precise to say the family of densities of T $\mathcal{F}_T = \{f_T(t; \theta), \theta \in \Theta\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.	Conditionality Exponential families Basu's Theorem	
$\mathbf{E}_{\theta}\{h(T)\} = 0 \text{ for all } \theta \implies h(t) = 0 \text{ a.s.}$ It is <i>boundedly complete</i> if the same holds when only bounded functions <i>h</i> are considered. It would be more precise to say the family of densities of <i>T</i> $\mathcal{F}_{T} = \{f_{T}(t; \theta), \theta \in \Theta\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.	A statistic $T = t(X)$ is said to be <i>complete</i> w.r.t. θ if for all functions <i>h</i>	
It is <i>boundedly complete</i> if the same holds when only bounded functions <i>h</i> are considered. It would be more precise to say the family of densities of <i>T</i> $\mathcal{F}_T = \{f_T(t; \theta), \theta \in \Theta\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that <i>if a sufficient statistic is</i> <i>complete, it is also minimal sufficient.</i>	$\mathbf{E}_{\theta}\{h(T)\}=0$ for all $\theta \implies h(t)=0$ a.s.	
It would be more precise to say the family of densities of T $\mathcal{F}_T = \{f_T(t; \theta), \theta \in \Theta\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.	It is <i>boundedly complete</i> if the same holds when only bounded functions <i>h</i> are considered.	
$\mathcal{F}_{\mathcal{T}} = \{f_{\mathcal{T}}(t;\theta), \theta \in \Theta\}$ is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.	It would be more precise to say the family of densities of $\ensuremath{\mathcal{T}}$	
is complete, but the shorter usage has become common. The Lehmann-Scheffé theorem says that <i>if a sufficient statistic is</i> <i>complete, it is also minimal sufficient.</i> Steffen Laurizen, University of Oxford Ancillarity and Conditional Inference	${\mathcal F}_T=\{f_T(t; heta), heta\in\Theta\}$	
The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient. Steffen Lawitzen, University of Oxford Ancillarity and Conditional Inference	is complete, but the shorter usage has become common.	
・ ロ・・ ク・・ ミ・・ ミ・ ミーク へへ Steffen Laurizen, University of Oxford Ancillarity and Conditional Inference	The Lehmann-Scheffé theorem says that if a sufficient statistic is complete, it is also minimal sufficient.	
Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference	(D) (D) (2) (3) 3 ALA	
	Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference	

Summary of previous lecture Nutiance parameters Similarity	Summary of previous lecture Analysis existing Nuisance parametern Lindhinod perspective
Nuisance parameters and their treatment Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008	One instrument produces measurements $\mathcal{N}(\theta, 1)$, the other measurements which are $\mathcal{N}(\theta, 100)$. We wish to check whether a parameter $\theta = 0$, the alternative being that $\theta > 0$. Toss a coin with probability λ of landing heads and let A = i, i = 1, 2 denote that the instrument <i>i</i> is chosen. Perform then the measurement to obtain <i>X</i> . The joint distribution of (X, A) is determined as $f(x, a; \theta, \lambda) = \phi(x - \theta) \mathbb{1}_{\{1\}}(a) \lambda + \phi\{(x - \theta)/10\} \mathbb{1}_{\{2\}}(a)(1 - \lambda).$ Suppose we have chosen the first instrument and observe $X = 4$. Is this consistent with the assumption $\theta = 0$?
・ロト・(グ)・(主)・ き・ き・ のへひ Stelfen Lauritzen, University of Oxford Nuisance parameters and their treatment	$(\Box \mapsto (\partial) \mapsto (2 \mapsto (2 \mapsto 2 \oplus)) \otimes (\partial A \otimes A $
Summary of previous lecture Ancillarity Nuisance parameters Similarity Completeness	Summary of previous lecture Nuisance parameters Similarity Likelihood perspective
A statistic $A = a(X)$ is said to be <i>ancillary</i> if (i) The distribution of A does not depend on θ ; (ii) there is a statistic $T = t(X)$ so that $S = (T, A)$ taken together are minimal sufficient. If the MLE $\hat{\theta}$ is not sufficient, it is often possible to find an ancillary statistic A so that $(\hat{\theta}, A)$ is jointly sufficient. Then we also have $f(x A = a; \theta) \propto h(x)k\{\hat{\theta}(x), a; \theta\}.$ Thus $\hat{\theta}$ is sufficient when considering the conditional distribution given the ancillary A.	The parameter λ is <i>nuisance parameter</i> in the sense that we are not interested in its value, but its value modifies the distribution of our observations. If we now redo the exercise from the case where λ is known, we have the additional problem that the <i>p</i> -value $p = P(X > 4; \theta = 0)$ $= \{1 - \Phi(4)\}\lambda + \{1 - \Phi(.4)\}(1 - \lambda)$ $= .00003\lambda + .34458(1 - \lambda)$ unfortunately <i>depends on the unknown</i> λ .
Steffen Lauritzen, University of Oxford Nuisance parameters and their treatment Summary of previous Secture Nuisance parameters Similarity Ancilluity Completeness	Steller Luurkzen, University of Oxford Nuisance parameters and their treatment QCC Summary of previous lecture Nuisance parameters Example redicted Lucelhoud perspective Similarity Example redicted Lucelhoud perspective Bayesian perspective
 The sufficiency principle (S) says that if S = s(X) is a sufficient statistic, S carries the same evidence for the parameter θ as does X. The conditionality principle (C) says that if A = a(X) is ancillary, then the conditional distribution given A = a(x_{obs}), carries the same evidence as the unconditional experiment. The likelihood principle (L) says that all evidence in an experiment is summarized in the likelihood function. Birnbaum's theorem says that (S) and (C) combined are equivalent to (L)! Bayesian inference obeys (L) in the strongest form. 	However, the probability of choosing the instrument seems irrelevant once we know which instrument was in fact used. Thus, again we would rather consider $A = a$ fixed and condition on the actual instrument used. That is, also here calculate the p-value as $\tilde{p} = P(X > 4 A = 1; \theta = 0) = \{1 - \Phi(4)\} = .00003$ giving very strong evidence against the hypothesis. Note that λ does not enter in this conditional calculation. Motivated by this example, we consider more generally a family of distributions $f(x; \theta), \theta \in \Theta$ where θ is partitioned into $\theta = (\psi, \lambda)$. We also assume that ψ is the parameter of interest and λ a nuisance parameter.
Steffen Lauritzen, University of Oxford Nuisance parameters and their treatment Summary of previous lecture Nuisance parameters Ancillurity Inference principles	Steffen Lauritzen, University of Oxford Nuisance parameters and their treatment Summary of previous lecture Nuisance parameters Eromple registed Eromple registed Licelihood perspective Nuisance parameters Licelihood perspective
A statistic $T = t(X)$ is said to be (boundedly) <i>complete</i> w.r.t. θ if for all functions h $\mathbf{E}_{\theta}\{h(T)\} = 0$ for all $\theta \implies h(t) = 0$ a.s. In a linear exponential family, the canonical statistic $T = t(X)$ is boundedly complete and sufficient. The Lehmann-Scheffé theorem: if a sufficient statistic is complete, it is also minimal sufficient. Basu's theorem: If $T = t(X)$ is (boundedly) complete and sufficient for θ and the distribution of A does not depend on θ , then T and A are independent.	 Suppose that there is a minimal sufficient statistic T = t(X) partitioned as T = (S, C) = (s(X), c(X)) where: C1: the distribution of C depends on λ but not on ψ; C2: the conditional distribution of S given C = c depends on ψ but not λ, for all c; C3: the parameters vary independently, i.e. Θ = Ψ × Λ. Then the likelihood function factorizes as L(θ x) ∝ f(s, c; θ) = f(s c; ψ)f(c; λ) and we say that C is ancillary for ψ, S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ. We also say that C is a cut for λ.
・ロン・(ク・イミン・ミン・ミークの)の Steffen Lawitzen, University of Oxford Naisance parameters and their treatment	くロン・(ク・イミン・ミン・ミン・シークへの) Steffen Lauritzen, University of Oxford Naisance parameters and their treatment

Summary of previous lecture Example revisited Nuisance parameters LikeWhood perspective Similarity Bayesian perspective	Summary of previous lecture Nuisance parameters Similarity Completeness
<text><text><text><equation-block><text><text><text><text><text><text></text></text></text></text></text></text></equation-block></text></text></text>	Consider the hypothesis that the parameter of interest ψ has a specific value, i.e. $H_0: \psi = \psi_0$. This is a <i>composite</i> hypothesis and we wish to find a test of size α so the rejection region R satisfies $P(X \in R; \psi_0, \lambda) = \alpha \text{ for all values of } \lambda \in \Lambda.$ A test is said to be <i>similar</i> if this condition holds. One way of constructing a similar test is to find a statistic C which is <i>sufficient for</i> λ for <i>fixed</i> $\psi = \psi_0$. This would in particular be the case if C is a cut. Now look for a set $R(c)$ such that $P(X \in R(c) C = c; \psi_0, \lambda) = P(X \in R(c) C = c; \psi_0) = \alpha,$ where we have used the sufficiency of C to remove λ . $P(X \in R(c) C = c; \psi_0, \lambda) = P(X \in R(c) C = c; \psi_0) = \alpha,$ where we have used the sufficiency of C to remove λ . If we define R as $x \in R \iff x \in R(c(x))$ we then get $P(X \in R; \psi_0, \lambda) = \mathbf{E}_{(\psi_0, \lambda)} \{P(X \in R(C) C; \psi_0)\}_{(x) \in \mathbf{E}_{(\psi_0, \lambda)})} \{P(X \in R(C) C; \psi_0)\}_{(x) \in \mathbf{E}_{(\psi_0, \psi_0, \lambda)}} \{P(X \in R(C) C; \psi_0)\}_{(x) \in \mathbf{E}_{(\psi_0, \psi_0, \lambda)}} \{P(X \in R(C) C; \psi_0)\}_{(x) \in \mathbf{E}_{(\psi_0, \psi_0, \lambda)}} \{P(X \in R(C) C; \psi_0)\}_$
Steffen Lauritzen, University of Oxford Summary of provious lecture Nuisance parameters Similarity Biggalan perspective Bagealan perspective	Steffen Lauritzen, University of Oxford Steffen Lauritzen, University of Oxford Summary of previous lecture Nuisance parameters Nuisance parameters Similarity Similarity
Consider a sample $X = (X_1,, X_n)$ from a normal distribution $\mathcal{N}(\mu, \sigma^2)$ where both μ and σ^2 are unknown. Since $(\bar{X}, S^2 = \sum_i (X_i - \bar{X}_i)^2)$ is minimal sufficient, the likelihood function becomes $\mathcal{L}(\mu, \sigma^2 X) \propto f(\bar{X}; \mu, \sigma^2) f(s^2; \sigma^2),$ where we have used the independence of \bar{X} and S^2 and the fact that S^2 follows a $\sigma^2 \chi^2$ -distribution not depending on μ . Here the situation is less clear cut. It could make sense to think of \bar{X} as being sufficient for μ (which it is if σ^2 is fixed) and S^2 as ancillary for μ and sufficient for σ^2 , but it does not fit into the theory developed as the distribution of \bar{X} depends on (μ, σ^2) . Stefen Lawters, University of Otor Muture genetics Simples Simples Simpl	This is shown as follows. Assume R is a similar rejection region, i.e. $P(X \in R; \psi_0, \lambda) = \alpha \text{ for all } \lambda.$ Then define $h(C) = P(X \in R \mid C; \psi_0) - \alpha$. We get $E_{(\psi_0,\lambda)}\{h(C)\} = E_{(\psi_0,\lambda)}\{P(X \in R \mid C; \psi_0) - \alpha\}$ $= E_{(\psi_0,\lambda)}\{P(X \in R \mid C; \psi_0, \lambda) - \alpha\}$ $= P(X \in R; \psi_0, \lambda) - \alpha = 0.$ Completeness yields $h(C) = 0$ and $P(X \in R \mid C; \psi_0) - \alpha$. As a consequence of this result it is common, although not universally accepted, to condition on the statistic sufficient under the hypothesis when testing composite hypothesis, i.e. to construct tests with Neyman structure. Musance parameters and their treatment Musance parameters and their treatment
$ \begin{split} \mathcal{L}(\theta \mid x) \propto \mathcal{L}_1(\psi \mid s, c)\mathcal{L}_2(\lambda \mid c). \\ \text{Still, this fact is not unimportant. Assume that the prior density satisfies} \\ & \pi(\psi, \lambda) = \eta(\psi)\rho(\lambda), \\ \text{in other words that the parameters } \psi \text{ and } \lambda \text{ are prior independent. Then the posterior density satisfies} \\ & \pi^*(\psi, \lambda) = \pi(\psi, \lambda \mid x) \propto \eta(\psi)\rho(\lambda)\mathcal{L}_1(\psi \mid s, c)\mathcal{L}_2(\lambda \mid c) \propto \eta^*(\psi)\rho^*(\lambda). \\ \text{Hence if } \mathcal{C} \text{ is a cut for } \lambda \text{ and } \psi \text{ and } \lambda \text{ are prior independent, they are posterior independent. } \end{split}$	

$$\begin{aligned} & \text{Marked and the state of a independent and identically distributed} \\ & \text{observations where } ([d]) = n([d]) = 0 \\ & \theta - \theta + h([d])^{-1}S([\theta])/n \\ & \text{where } h([d]) \text{ is the Fisher information in a single observation.} \\ & \text{In a linear canonical one parameter exponential family \\ & f(x, \theta) = b(x)e^{H(x) - c(\theta)} \\ & \text{we get} \\ & f(x) = b(x)e^{H(x) - c(\theta)} \\ & \text{we get} \\ & f(\theta) = \frac{\partial}{\partial \mu^2} [c(\theta) - \theta + f(X)] = c^{\theta}([\theta] - 10], \\ & \text{ so for canonical comparameter exponential family is the method of Scoring and the method of Meeton-Raphson cancels. \\ & \text{If we to } (\theta) = c^{\theta}(\theta) = (\theta) - \theta^{\theta}(X) = c^{\theta}(\theta) = 1(\theta). \\ & \text{ so for canonical comparametric matrix (A is positive definite if and only if default as provide (A_A) > 0 for all x \neq 0. \\ & \text{ so for canonical comparametric matrix (A is positive definite if and only if default as provide (A_A) > 0 for all x \neq 0. \\ & \text{ so for canonical comparametric matrix (A is positive definite if and only if default as provide (A_A) > 0 for all x \neq 0. \\ & \text{ submatrix} (A_A) > 0 for all x \neq$$

Many nuisance parameters Pseudo likelihoods	Ancillory cut Many nuisance parameters Pseudo lixelhoods
	This example shows that we have to be very careful when nuisance parameters are present and straight likelihood considerations can lead us astray:
More on nuisance parameters	We wish to establish the precision of a new instrument which measures with normal errors. We are therefore taking repeated measurements of individuals $(X_{i1}, X_{i2}), i = 1,, n$ which are all independent with
Steffen Lauritzen, University of Oxford	$X_{ij} \sim \mathcal{N}(\mu_i,\sigma^2).$
BS2 Statistical Inference, Lecture 4, Hilary Term 2008	Now consider
February 1, 2008	$U_i = (X_{i1} + X_{i2})/2, V_i = (X_{i1} - X_{i2})/2.$
	These are again independent and normally distributed as
	$U_i \sim \mathcal{N}(\mu_i, au^2), V_i \sim \mathcal{N}(0, au^2),$
(ロ)(通)(ミ)、ミ)、ミーシーを一つ文化 Staffers January Distancing (Online)	where $\tau^2 = \sigma^2/2$.
Ancillary cot Ancillary cot Many misance parameters Pseudo likelihoods	Ancillary cut Ancillary cut Many nuisance parameters Pzeudo likelihoods
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c;	Clearly, we might as well consider (U_i, V_i) as the original data. Also, the pair (U, W) is minimal sufficient, where $U = (U_1, \ldots, U_n)$ and $W = \sum_i V_i^2$, hence the likelihood function becomes
C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as	$ \begin{array}{lll} \mathcal{L}(\mu,\tau^2) & \propto & (\tau^2)^{-n/2} e^{-\frac{1}{2\tau^2} \sum_i (u_i - \mu_i)^2} (\tau^2)^{-n/2} e^{-\frac{1}{2\tau^2} \sum_i v_i^2} \\ & = & e^{-\frac{1}{2\tau^2} \sum_i (u_i - \mu_i)^2} (\tau^2)^{-n} e^{-\frac{w}{2\tau^2}}. \end{array} $
$L(heta \mid x) \propto f(s,c; heta) = f(s \mid c;\psi)f(c;\lambda)$	Thus the maximum likelihood estimator is
and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ .	$\hat{\mu}_i = U_i, i = 1, \dots, n; \hat{\tau}^2 = W/2n.$
We also say that C is a <i>cut</i> for λ and would then ► base inference about λ on the marginal distribution of C;	But $W \sim \tau^2 \chi^2(n)$, so for large n , $\hat{\tau}^2 \approx n\tau^2/(2n) = \tau^2/2!!$ So the additional parameters μ_i are a serious nuisance if τ^2 is the parameter of interest.
<ロン・(グラン・ミン・モン そうの) Steffen Lauritzen, University of Oxford More on muisance parameters	 ・ (ク・・ミン・ミン・ミン・ミン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン・シン
Ancillary cut Many nuisance parameters Psrudo Bikelihoods	Ancillary cut Many nuisance parameters Peseudo Bethibods Profile: Ricelitioad Profile: Ricelitioad
	integrated included
 Suppose that there is a minimal sufficient statistic T = t(X) partitioned as T = (S, C) = (s(X), c(X)) where: C1: the distribution of C depends on λ but not on ψ; C2: the conditional distribution of S given C = c depends on ψ but not λ, for all c; C3: the parameters vary independently, i.e. Θ = Ψ × Λ. Then the likelihood function factorizes as L(θ x) ∝ f(s, c; θ) = f(s c; ψ)f(c; λ) and we say that C is ancillary for ψ, S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ. We also say that C is a cut for λ and would then 	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as <i>pseudo-likelihood</i> functions. Examples include: <i>conditional</i> likelihood, <i>marginal</i> likelihood, <i>profile</i> likelihood, <i>integrated</i> likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta \mid x) \propto f(s, c; \theta) = f(s \mid c; \psi)f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ . We also say that C is a cut for λ and would then • base inference about λ on the marginal distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as <i>pseudo-likelihood</i> functions. Examples include: <i>conditional</i> likelihood, <i>marginal</i> likelihood, <i>profile</i> likelihood, <i>integrated</i> likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always be satisfactory.
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: 1: the distribution of C depends on λ but not on ψ ; 2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; 3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta x) \propto f(s, c; \theta) = f(s c; \psi)f(c; \lambda)$ and we say that C is <i>ancillary for</i> ψ , S is <i>conditionally sufficient for</i> ψ given C, and C is <i>marginally sufficient for</i> λ . We also say that C is a <i>cut</i> for λ and would then • base inference about λ on the marginal distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$.	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as <i>pseudo-likelihood</i> functions. The provide the sample of the sample of the sample provide the sample of the sample of the sample of the sample provide the sample of the sample of the sample of the sample provide the sample of the sample of the sample of the sample provide the sample of the sample of the sample of the sample provide the sample of the sa
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta x) \propto f(s, c; \theta) = f(s c; \psi)f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ . We also say that C is a cut for λ and would then • base inference about λ on the marginal distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$. More on misance parameters Marging and Margine and Margin	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as pseudo-likelihood functions. Experiments include: conditional likelihood, marginal likelihood, profile likelihood, integrated likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always be satisfactory. Stefen Lutters, Universited Texas Constrained Stefan Lutters and the steries of the sterie
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta \mid x) \propto f(s, c; \theta) = f(s \mid c; \psi)f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C , and C is ancillary for ψ , S is conditionally sufficient for ψ given C , and C is a cut for λ and would then • base inference about ψ on the marginal distribution of C ; • base inference about ψ on the conditional distribution of S given $C = c$. Stefen Lawtren, University of Over Marguing and σ^2 are unknown. Recall that $(U, V) = (\bar{X}, S^2 = \sum_i (X_i - \bar{X}_i)^2)$ is minimal sufficient and the likelihood function is	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as <i>pseudo-likelihood</i> functions. Examples include: <i>conditional</i> likelihood, <i>marginal</i> likelihood, <i>profile</i> likelihood, <i>integrated</i> likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always be satisfactory. <u>Suppose we can write the joint density of a sufficient statistic</u> T = (U, V) as $f(u; \lambda, \psi)f(v u; \psi)$,
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta x) \propto f(s, c; \theta) = f(s c; \psi)f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ . We also say that C is a cut for λ and would then • base inference about λ on the marginal distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$. Steller lawlend for Δ mode on the marginal distribution of S given $C = c$. Consider a sample $X = (X_1, \dots, X_n)$ from a normal distribution $\mathcal{N}(\mu, \sigma^2)$ where both μ and σ^2 are unknown. Recall that $(U, V) = (\tilde{X}, S^2 = \sum_i (X_i - \tilde{X}_i)^2)$ is minimal sufficient and the likelihood function is $L(\mu, \sigma^2 x) \propto f(u; \mu, \sigma^2)f(v; \sigma^2)$.	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as <i>pseudo-likelihood</i> functions. Examples include: conditional likelihood, <i>marginal</i> likelihood, <i>profile</i> likelihood, <i>integrated</i> likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always be satisfactory. <u>Steffen Lawtzen, University of Oxfort Margine Bibliotical</u> <u>Reade Bibliotical</u> <u>Bibliotical Bibliotical</u> <u>Suppose we can write the joint density of a sufficient statistic T = (U, V) as $f(u; \lambda, \psi) f(v u; \psi)$, where ψ is the parameter of interest. Then, for fixed ψ, U is</u>
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta x) \propto f(s, c; \theta) = f(s c; \psi)f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ . We also say that C is a cut for λ and would then • base inference about λ on the marginal distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$. Suffect Landren, University of Offer Mary making inference Mary making inference Mary making inference $Mary making inferenceMary making infe$	The previous example shows that straight likelihood considerations may not lead to meaningful results when only a part of the parameter is considered. There are a number of suggestions for modifying the likelihood function to extract the evidence in the sample concerning a parameter of interest ψ when $\theta = (\psi, \lambda)$. Such modifications are generally known as <i>pseudo-likelihood</i> functions. Examples include: conditional likelihood, <i>marginal</i> likelihood, <i>profile</i> likelihood, <i>integrated</i> likelihood, and others, for example local, partial, restricted, residual, penalized, etc. The many names bear witness that straight likelihood considerations may not always be satisfactory. State tartee, University of Otor Margin Margin and The State State State Teacher Market Market State S
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta x) \propto f(s, c; \theta) = f(s c; \psi)f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ . We also say that C is a cut for λ and would then • base inference about λ on the marginal distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$.	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>
Suppose that there is a minimal sufficient statistic $T = t(X)$ partitioned as $T = (S, C) = (s(X), c(X))$ where: C1: the distribution of C depends on λ but not on ψ ; C2: the conditional distribution of S given $C = c$ depends on ψ but not λ , for all c ; C3: the parameters vary independently, i.e. $\Theta = \Psi \times \Lambda$. Then the likelihood function factorizes as $L(\theta x) \propto f(s, c; \theta) = f(s c; \psi) f(c; \lambda)$ and we say that C is ancillary for ψ , S is conditionally sufficient for ψ given C, and C is marginally sufficient for λ . We also say that C is a cut for λ and would then • base inference about ψ on the conditional distribution of C; • base inference about ψ on the conditional distribution of S given $C = c$. Stelfor Lauftern, University of Original Market M and σ^2 are unknown. Recall that $(U, V) = (\bar{X}, S^2 = \sum_i (X_i - \bar{X}_i)^2)$ is minimal sufficient and the likelihood function is $L(\mu, \sigma^2 x) \propto f(u; \mu, \sigma^2) f(v; \sigma^2)$. If we do straight maximum likelihood estimation, we have $\hat{\mu} = U = \bar{X}, \hat{\sigma}^2 = V/n$. However, most statisticians agree that it is sensible to use $\hat{\sigma}^2 = V/(n-1)$ as the estimator of σ^2 . Is this reasonable and is there a general rationale for this? Note that the common unbiasedness argument does not work as $\tilde{\sigma}$	<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>

In the normal example with many nuisance parameters, $U = (U_i, i = 1, ..., n)$ is sufficient for the nuisance parameter $\lambda = (\mu_i, i = 1, \dots, n)$ and for $\psi = \tau^2$

$$L(\tau^{2}; w \mid u) = f(w \mid u; \tau^{2}) = f(w; \tau^{2}) = (\tau^{2})^{-n/2} e^{-\frac{w}{2\tau^{2}}}.$$

This gives the conditional MLE $\hat{\tau}_{|\mu}^2=W/n$ which is more sensible. It may be argued that $U_i \sim \mathcal{N}(\mu_i, \tau^2)$ cannot possibly have useful information about τ^2 . Or at least that the information it may have is not useful.

Although the profile likelihood generally can be very useful, it does not help in the the normal example with many nuisance parameters with $\lambda = (\mu_i, i = 1, \dots, n)$ and $\psi = \tau^2$ we get

$$\hat{L}(\tau^2; w) = f(u; \hat{\mu}, \tau^2) f(w; \tau^2) = (\tau^2)^{-n} e^{-\frac{w}{2\tau^2}},$$

hence also peaks in the wrong place, at $\hat{\tau}^2 = W/(2n)$. We shall later return to various attempts at modifying the profile likelihood.

	(ロ)((日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日		(비)(권)(문)(문)(문)(문)
Steffen Lauritzen, University of Oxford	More on nuisance parameters	Steffen Lauritzen, University of Oxford	More on nuisance parameters
Ancillary cut Many nuisance parameters Pseudo likelihoods	Conditional likelihood Marginal likelihood Profile likelihood Integrated likelihood	Ancillary cut Many nuisance parameters Pseudo likelihoods	Conditional likelihood Marginal likelihood Profile likelihood Integrated likelihood
This uses conditioning the other wa write the joint density of a sufficier	ay around. Suppose we can at statistic $T = (U, V)$ as	Another way of removing nuisance is to use integration. This metho demands the specification of a pr nuisance parameter for fixed ψ .	te parameters from the likelihood d is essentially Bayesian and ior distribution $\pi(\lambda \psi)$ of the
$f(u v; \lambda, \psi$	$f(\mathbf{v};\psi),$	The integrated likelihood function	n is then defined as
where ψ is the parameter of interes	st. Then the nuisance parameter	$\bar{L}(\psi) = \int L(\psi)$	$(\lambda, \lambda)\pi(\lambda \psi) d\lambda.$

 $\boldsymbol{\lambda}$ can be eliminated by marginalization as it does not enter in the marginal distribution of V. Inference for ψ can now be based on the marginal likelihood function

 $L(\psi; \mathbf{v}) = f(\mathbf{v}; \psi).$

The issue is also here whether (useful) information about ψ is lost by ignoring the factor $f(u | v; \lambda, \psi)$.

 $L(\psi) = \int L(\psi, \lambda)\pi(\lambda | \psi)$

The integrated likelihood has the same fundamental relation to the marginal prior and posterior distributions as the ordinary likelihood. For if $\pi(\psi)$ is the prior on ψ , the full posterior distribution is determined as

 $\pi^*(\psi,\lambda) \propto \pi(\psi)\pi(\lambda \,|\, \psi) L(\psi,\lambda)$

and thus, by integration

$$\pi^*(\psi) \propto \int \pi^*(\psi, \lambda) d\lambda = \pi(\psi) \overline{L}(\psi).$$

In the normal example with many nuisance parameters with $\lambda = (\mu_i, i = 1, \dots, n)$ and $\psi = \tau^2$ we get

$$L(\tau^{2};w) = f(w;\tau^{2}) = (\tau^{2})^{-n/2} e^{-\frac{w}{2\tau^{2}}},$$

which in this case is identical to the conditional likelihood function considered earlier and hence $\hat{\tau}_w^2 = W/n$.

Marginal likelihood is in this case also known as residual likelihood because it is based on the residuals

$$V_i = X_i - \hat{\mu}_i = X_{i1} - \frac{X_{i1} + X_{i2}}{2} = \frac{X_{i1} - X_{i2}}{2}$$

The corresponding estimates are then known as **REML** estimates.

In the normal example with many nuisance parameters, we may for example consider μ_i independent and normally distributed as $\mu_i \sim \mathcal{N}(\alpha, \omega^2)$, where (α, ω^2) represent prior knowledge about the population from which μ_i 's are taken.

The integrated likelihood for τ^2 can then be calculated as

$$\overline{L}(\tau^2) = f(w;\tau^2) \int \prod_i f(u_i;\mu_i) \pi(\mu_i;\alpha,\omega^2) \, d\mu_i.$$

The integral can be recognized as the marginal distribution of Uwhere now U_i are independent and identically distributed as $\mathcal{N}(\alpha, \tau^2 + \omega^2).$

	(日) (日) (日) (日) (日) (日) (日)		· · · · · · · · · · · · · · · · · · ·
Steffen Lauritzen, University of Oxford	More on nuisance parameters	Steffen Lauritzen, University of Oxford	More on nuisance parameters
Ancillary cut Many nuisance parameters Pseudo likelihoods	Conditional likelihood Marginal likelihood Profile likelihood Integrated likelihood	Ancillary cut Many nuisance parameters Pseudo likelihoods	Conditional likelihood Marginal likelihood Profile likelihood Integrated likelihood
		Thus	
Marginal and conditional likelihoc ignoring some of the data (by ma variability (by conditioning).	d changes the problem either by rginalization) or by ignoring their	$ \overline{L}(\tau^2) \propto f(w;\tau^2)(\tau^2 + \\ \propto (\tau^2)^{-n/2} e^{-\frac{w}{2\tau^2}} $	$ \omega^{2})^{-n/2} e^{-\frac{1}{2(\tau^{2}+\omega^{2})}\sum_{i}(u_{i}-\alpha)^{2}} (\tau^{2}+\omega^{2})^{-n/2} e^{-\frac{q_{\alpha}(w)}{2(\tau^{2}+\omega^{2})}} $
Profile likelihood attempts to stic and likelihood function, but elimi maximization.	k to the original data distribution nates the nuisance parameters by	where $\mathcal{Q}_lpha(\mathcal{U})=\sum_{\alpha}$	$\sum_{i} (U_i - \alpha)^2.$
The profile likelihood function $\hat{L}(a)$	ψ) for ψ is defined as	In this calculation, ω^2 and α are	known and fixed. If these are

 $\hat{L}(\psi) = \sup_{\lambda} L(\psi, \lambda) = L\{\psi, \hat{\lambda}(\psi)\},\$

where ψ is the parameter of interest and $\hat{\lambda}(\psi)$ is the MLE of λ when ψ is considered fixed.

Steffen Lauritzen, University of Oxford More

'correct', in the sense that μ_i are in fact behaving as if they were i.i.d. $\mathcal{N}(\alpha, \omega^2)$, then the integrated likelihood will peak around the correct value, else the peak will be shifted to an incorrect position. So the influence of the prior prevails.

Empirical Bayes or, equivalently(!), MLE in the random effects model, would also estimate α and ω^2 and get it right, as would *Hierarchical Bayes*, assigning a prior on $(\alpha, \omega_{\epsilon}^2)_{\epsilon}$, Steffen Lauritzen University of Oxford More on

The generalized linear model General

Thus, the likelihood equation for a fixed ϕ again equates the expectation of the sufficient statistic to the observed value. Interpreting vector functions componentwise this has the simple form

$$X^\top \mu(\beta) = X^\top y$$
 or equivalently

$$X^{\top}\{y - \mu(\beta)\} = 0$$

ity of O

expressing that the residual $y - \mu(\beta)$ is orthogonal to all columns of X.

From general theory of exponential families it is known that *there* is at most one solution $\hat{\beta}$ to this equation, despite the fact that the equation typically is non-linear in β , as $\mu(\beta) = g^{-1}(X\beta)$.

In the situation, where the dispersion parameter
$$\phi$$
 is considered

unknown it is therefore customary to use the estimator

Under reasonable assumption on the behaviour of the covariates x_i ,

 χ^2 -distribution with degrees of freedom n-p where X is assumed

D can be shown to be asymptotically distributed as a

to have full rank p.

$$\tilde{\phi} = \frac{D_1(\hat{\mu}, Y)}{n-p}$$

Note that this is not a maximum likelihood estimator, and there are good reasons for not using the MLE:

For a general link function, the score statistic can be written in the form

 $S(\beta) = Z^{\top}W\{y - \mu(\beta)\}/\phi$

where \boldsymbol{Z} is a matrix with elements

Steffen Lauritzen IIr

$$Z(\beta)_{ij} = \frac{\partial \eta_i}{\partial \beta_i}$$

and $W(\beta)$ is a diagonal matrix with diagonal elements equal to $W_{ii}=1/v\{\mu_i(\beta)\}.$

Fisher's method of scoring leads to a *iterative weighted least* squares regression procedure (IRLS) for solving these, which now can be used for all generalized linear models, only the calculation of the matrix *Z* and the weights *W* being special to the model considered, depending in a simple way on the link and variance functions. Details are omitted here.

teffen Lauritzen, University of Oxford Basic definitions The generalized linear model General link function

The goodness of fit of a specific generalized linear model is assessed in the usual way using the $\frac{deviance}{deviance}$

$$D(\hat{\mu}; y) = -2\{l(\hat{\mu}; y) - l(y; y)\} = -2\{h_1(\hat{\mu}; y) - h_1(y; y)\}/\phi = D_1(\hat{\mu}; y)/\phi,$$

where l(y; y) is the maximized log-likelihood in the saturated model and $l(\hat{\mu}; y)$ is the maximized log-likelihood in the model considered.

Steffen Lauritzen, University of Oxford Generalized linear mo

The symbol l_1 is used for the log-likelihood in the case $\phi=1$ and similarly for $\mathit{D}_1.$

Firstly, the problem of finding the MLE of ϕ could be computationally very difficult in general, and the computational problem very different for different variance functions.

Secondly, there would be a problem with the nuisance parameter β distorting the estimate, in particular if the dimension p of β is large.

The estimate for ϕ used is thus based on 'approximate marginal likelihood', estimating ϕ on the basis of the approximate χ^2 -distribution for the deviance. The MLE of μ is the same for all values of ϕ and is therefore appropriate as is.

en. University of Oxford

Basic definitions Basic properties	Basic definitions Basic properties Brandle cample Brandle cample Brandle cample A counterexample
The Multivariate Gaussian Distribution Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 6, Hilary Term 2008 February 1, 2008	If Σ is <i>positive definite</i> , i.e. if $\lambda^{\top}\Sigma\lambda > 0$ for $\lambda \neq 0$, the distribution has density on \mathcal{R}^d $f(x \xi, \Sigma) = (2\pi)^{-d/2} (\det K)^{1/2} e^{-(x-\xi)^{\top}K(x-\xi)/2}$, (2) where $K = \Sigma^{-1}$ is the <i>concentration matrix</i> of the distribution. We then also say that Σ is <i>regular</i> . If X_1, \ldots, X_d are independent and $X_i \sim \mathcal{N}(\xi_i, \sigma_i^2)$ their joint density has the form (2) with $\Sigma = \operatorname{diag}(\sigma_i^2)$ and $K = \Sigma^{-1} = \operatorname{diag}(1/\sigma_i^2)$. Hence vectors of independent Gaussians are multivariate Gaussian.
د میں دور دور کی دور کی دور کی دور کی دور کی دور دور کی دور کی دور دور کی دو دور کی دور کی	・ロー・パー・コー・パー・シー・シー うくへ Stellen Lauritzen, University of Oxford The Multivariate Gaussian Distribution
The multivariate Gaussian United Caussian Unit	The multivariate Gaussian Basic definition Basic properties Basic properties Brandate case Brandate Br
A d-dimensional random vector $X = (X_1,, X_d)$ is has a multivariate Gaussian distribution or normal distribution on \mathcal{R}^d if there is a vector $\xi \in \mathcal{R}^d$ and a $d \times d$ matrix Σ such that $\lambda^\top X \sim \mathcal{N}(\lambda^\top \xi, \lambda^\top \Sigma \lambda)$ for all $\lambda \in \mathbb{R}^d$. (1) We then write $X \sim \mathcal{N}_d(\xi, \Sigma)$. Taking $\lambda = e_i$ or $\lambda = e_i + e_j$ where e_i is the unit vector with <i>i</i> -th coordinate 1 and the remaining equal to zero yields: $X_i \sim \mathcal{N}(\xi_i, \sigma_{ii})$, $\operatorname{Cov}(X_i, X_j) = \sigma_{ij}$. Hence ξ is the mean vector and Σ the covariance matrix of the	In the bivariate case it is traditional to write $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \rho \\ \sigma_1 \sigma_2 \rho & \sigma_2^2 \end{pmatrix},$ with ρ being the <i>correlation</i> between X_1 and X_2 . Then $\det(\Sigma) = \sigma_1^2 \sigma_2^2 (1 - \rho^2) = \det(K)^{-1}$ and $K = \frac{1}{\sigma_1^2 \sigma_2^2 (1 - \rho^2)} \begin{pmatrix} \sigma_2^2 & -\sigma_1 \sigma_2 \rho \\ -\sigma_1 \sigma_2 \rho & \sigma_1^2 \end{pmatrix}.$
distribution.	
Stelfen Lawitzen, University of Oxford The Multivariate Gaussian Distribution The multivariate Gaussian	CD + CD + C2 + C2 + こう くび Stelfen Lauritzen, University of Oxford The Multivariate Gaussian Distribution The multivariate Gaussian
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $
Basic definitions Basic definitions Basic properties Basic properties	Basic definition Basic properties Basic properties Basic properties
Assume $X^{\top} = (X_1, X_2, X_3)$ with X_i independent and $X_i \sim \mathcal{N}(\xi_i, \sigma_i^2)$. Then $\lambda^{\top} X = \lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 \sim \mathcal{N}(\mu, \tau^2)$ with $\mu = \lambda^{\top} \xi = \lambda_1 \xi_1 + \lambda_2 \xi_2 + \lambda_3 \xi_3, \tau^2 = \lambda_1^2 \sigma_1^2 + \lambda_2^2 \sigma_2^2 + \lambda_3^2 \sigma_3^2.$ Hence $X \sim \mathcal{N}_3(\xi, \Sigma)$ with $\xi^{\top} = (\xi_1, \xi_2, \xi_3)$ and $\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{pmatrix}.$	The marginal distributions of a vector X can all be Gaussian without the joint being multivariate Gaussian: For example, let $X_1 \sim \mathcal{N}(0, 1)$, and define X_2 as $X_2 = \begin{cases} X_1 & \text{if } X_1 > c \\ -X_1 & \text{otherwise.} \end{cases}$ Then, using the symmetry of the univariate Gausssian distribution, X_2 is also distributed as $\mathcal{N}(0, 1)$.

The multivariate Gaussian Basic definitions Basic properties Basic properties	Adding independent Laisasans Basic definitions Basic properties Cardinal distributions Cardinal distributions
However, the joint distribution is not Gaussian unless $c = 0$ since, for example, $Y = X_1 + X_2$ satisfies $P(Y = 0) = P(X_2 = -X_1) = P(X_1 \le c) = \Phi(c) - \Phi(-c).$ Note that for $c = 0$, the correlation ρ between X_1 and X_2 is 1 whereas for $c = \infty$, $\rho = -1$. It follows that there is a value of c so that X_1 and X_2 are uncorrelated, and still not jointly Gaussian.	If Σ_{22} is regular, it further holds that $X_1 \mid X_2 = x_2 \sim \mathcal{N}_r(\xi_{1 2}, \Sigma_{1 2}),$ where $\xi_{1 2} = \xi_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \xi_2) \text{and} \Sigma_{1 2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$ In particular, if $\Sigma_{12} = 0$ if and only if X_1 and X_2 are independent.
・ロン (書) (主) (主) (主) (う)	(D) (0) (2) (3) \$ 00(
Steffen Laurizen, University of Oxford The Multivariate Gaussian Distribution Cading independent Gaussians Linger transformations Basic definitions Basic properties Conditional distributions Example	Stelfen Lauritzen, University of Oxford The Multivariate Gaussian Distribution Adding independent Gaussian Exist definitions Basic properties Conditional distributions Example
Adding two independent Gaussians yields a Gaussian: If $X_1 \sim \mathcal{N}_d(\xi_1, \Sigma_1)$ and $X_2 \sim \mathcal{N}_d(\xi_2, \Sigma_2)$ and $X_1 \perp X_2$ $X_1 + X_2 \sim \mathcal{N}_d(\xi_1 + \xi_2, \Sigma_1 + \Sigma_2)$. To see this, just note that $\lambda^{\top}(X_1 + X_2) = \lambda^{\top}X_1 + \lambda^{\top}X_2$ and use the univariate addition property. State definition Back opports Linear transformations preserve multivariate normality: If A is an $r \times d$ matrix, $b \in \mathcal{R}^r$ and $X \sim \mathcal{N}_d(\xi, \Sigma)$, then $Y = AX + b \sim \mathcal{N}_r(A\xi + b, A\Sigma A^{\top})$.	From the matrix identities $\begin{aligned} \kappa_{11}^{-1} &= \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} = \Sigma_{1 2} \qquad (3) \\ \text{and} \\ \kappa_{11}^{-1}\kappa_{12} &= -\Sigma_{12}\Sigma_{22}^{-1}, \qquad (4) \\ \text{it follows that then the conditional expectation and concentrations also can be calculated as} \\ \kappa_{1 2} &= \xi_1 - \kappa_{11}^{-1}\kappa_{12}(x_2 - \xi_2) \text{and} \kappa_{1 2} &= \kappa_{11}. \\ Note that the marginal covariance is simply expressed in terms of \Sigma where as the conditional concentration is simply expressed in terms of \Sigma where as the conditional concentration is simply expressed in terms of K.Steffer Lawtree, University of OrderSteffer Lawtree, University of OrderSteffer Lawtree, University of OrderConsider \mathcal{N}_3(0, \Sigma) with covariance matrix\Sigma = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}. The concentration matrix is$
$\gamma^{T} Y = \gamma^{T} (AX + b) = (A^{T} \gamma)^{T} X + \gamma^{T} b$	$\mathcal{K} = \Sigma^{-1} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 1 & 0 \\ 0 & 2 & -1 \end{pmatrix}.$
$ \begin{array}{l} \textbf{Steffer Lawtzen, University of Oxford Basic definitions \\ \hline \textbf{Basic definitions Basic properties} \end{array} \begin{array}{l} The Multivariate Cancelans Distributions \\ \hline \textbf{Conditional distributions $	$\begin{split} \textbf{Stelfer Laurizeru, University of Oxford} \\ \hline \textbf{Exatt definitions} \\ \hline \textbf{Bast definitions} \\ \hline \textbf{Bast properties} \\ \hline \textbf{Conditional distribution of } (X_2, X_3) \text{ has covariance and concentration matrix} \\ \hline \boldsymbol{\Sigma}_{23} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, (\boldsymbol{\Sigma}_{23})^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}. \\ \hline \textbf{The conditional distribution of } (X_1, X_2) \text{ given } X_3 \text{ has concentration and covariance matrix} \\ \hline \boldsymbol{K}_{12} = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}, \boldsymbol{\Sigma}_{12 3} = (\boldsymbol{K}_{12})^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}. \end{split}$
$A = (0_{sr} \ l_s) .$ where 0_{sr} is an $s \times r$ matrix of zeros and l_s is the $s \times s$ identity matrix.	Similarly, $\mathbf{V}(X_1 \mid X_2, X_3) = 1/k_{11} = 1/3$, etc.

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{-\infty}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} e^{-\lambda(r)} h(r) - r^{2/2} dr$$

$$\frac{1}{1 + 1} = \int_{0}^{\infty} e^{-\lambda(r)} h(r) \int_{0}^{\infty} h(r) + h(r) = h(r) = h(r)$$

$$\frac{1}{1 + 1} = h(r) = h$$

 < □> < 0</td>
 < 2> < 2>

 Steffen Lauritzen, University of Oxford
 Laplace's Method of Integration

 < □ + () → () → () → () → ()</td>

 Stelfen Lauritzen, University of Oxford

 Laplace's Method of Integration

Alternatively, if the variation of h around y* is not neglible, or a
more accurate approximation is desired, one can incorporate h in g
asThe multivariate case is completely analogous. Here we again write
$$g(y) = g(y) - \frac{1}{\lambda} \log h(y)$$
and get the approximation $l = \int_{a}^{b} e^{-\lambda g(y)} h(y) dy$
 $= \int_{a}^{b} e^{-\lambda g(y)} h(y) dy$
 $= e^{-\lambda g(y)} h(y) dy$
 $= e^{-\lambda g(y)} \sqrt{\frac{2\pi}{\lambda g'_{\lambda}(y)}} \left\{ 1 + \frac{5\tilde{\rho}_{3} - 3\tilde{\rho}_{4}}{24\lambda} + O\left(\frac{1}{\lambda^{2}}\right) \right\},$ The multivariate case is completely analogous. Here we again write
 $g(y) = g(y^{*}) + \frac{\partial g(y^{*})}{\partial y} (y - y^{*}) + (y - y^{*})^{T} \frac{\partial^{2} g(y^{*})}{\partial y \partial y^{T}} (y - y^{*})/2 + \cdots$
and exploit that the vector of partial derivatives $\frac{\partial g(y^{*})}{\partial y}$ must
vanish, whereby $l = \int_{a}^{b} e^{-\lambda g(y)} h(y) dy$
 $= e^{-\lambda g(y^{*})} h(y^{*}) \int_{\chi^{2}} \frac{2\pi}{\delta g'_{\lambda}(y)} \left\{ 1 + \frac{5\tilde{\rho}_{3} - 3\tilde{\rho}_{4}}{24\lambda} + O\left(\frac{1}{\lambda^{2}}\right) \right\},$ $l = \int_{B} e^{-\lambda g(y)} h(y) dy$
 $= e^{-\lambda g(y^{*})} h(y^{*}) (2\pi/\lambda) d^{2} \left| \frac{\partial^{2} g(y^{*})}{\partial y \partial y^{T}} \right|^{-1/2} \left\{ 1 + O\left(\frac{1}{\lambda}\right) \right\}.$ where now \tilde{y}_{λ} maximizes $\tilde{g}_{\lambda}(y)$, and other quantities are similarly
defined.Stefar Lutrice, University of OxidStefar Lutrice, University of OxidLeptex's Method of Integration

Bayesian posterior distributions Approximate Bayes factors

To study the asymptotic behaviour of the Bayes factor we take logarithms and collect terms of similar order to get

$$\log B = n\{\overline{l}_n(\hat{\theta}_1) - \overline{l}_n(\hat{\theta}_2)\} + \frac{d_2 - d_1}{2} \log n \\ - \frac{1}{2} \log \left\{ \left| j_1(\hat{\theta}_2) \right| / \left| j_1(\hat{\theta}_1) \right| \right\} - \frac{d_2 - d_1}{2} \log(2\pi) + O(n^{-1}).$$

The dominating terms are those on the first line, as all other terms are of smaller order for $n\to\infty.$ Ignoring the latter we get

 $\log B \approx \{I(\hat{ heta}_1) - I(\hat{ heta}_2)\} - rac{d_1 - d_2}{2}\log n.$

The right-hand side is the Bayesian Information Criterion (BIC). It reflects that, for large n, the Bayes factor will favour the model with highest maximized likelihood (the first term), but will also penalize the model having the largest number of parameters.

Maximized likelihood Bsyesian methods	Maximized likelihood Bayesian methods Hypothesis testing
Model comparison and selection Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008	 This approach has several problems, including: it does not make clear sense unless M₂ has been established as adequate it does not make sense if the models M_i are not nested when many models M_i are considered, it is hard to control the probability of favouring an incorrect model by chance.
(日) (日) (日) (王) (王) (王) (日)	(ロ) (日) (王) (王) 王) つうや
Steffen Lauritzen, University of Oxford Model comparison and selection Maximized likelihood Burgeiaan methods Hypothesis testing	Steffen Lawitzen, University of Oxford Model comparison and selection Mainrized likelihood Bayesian information criterion
Consider two alternative models $M_1 = \{f(x; \theta), \theta \in \Theta_1\}$ and $M_2 = \{f(x; \theta), \theta \in \Theta_2\}$ for a sample $(X = x) = (X_1 = x_1, \dots, X_n = x_n).$ We can apparently address the question of which of these are more adequate by considering the likelihood ratio $\Lambda = \frac{\sup_{\Theta_1} L(\theta)}{\sup_{\Theta_2} L(\theta)} = \frac{L(\hat{\theta}_1)}{L(\hat{\theta}_2)}.$ Note that the quantities $L(\hat{\theta}_i)$ can be considered as the <i>profile</i> <i>likelihood</i> \hat{L}_i of the 'model label' <i>i</i> , considering θ as a nuisance parameter.	The Bayes factor B in favour of M_1 over M_2 is $B = \frac{f(x \mid M_1)}{f(x \mid M_2)} = \frac{\int_{\Theta_1} f(x \mid \theta, M_1) \pi_1(\theta) d\theta}{\int_{\Theta_2} f(x \mid \theta, M_2) \pi_2(\theta) d\theta} = \frac{\overline{L}_1}{\overline{L}_2},$ where \overline{L}_i are the <i>integrated likelihoods</i> for the models M_i . When the integrated likelihood is approximated with using Laplace's method, we get the Bayesian Information Criterion $\overline{L}_i \approx \text{constant} + \text{BIC}_i = l(\hat{\theta}_i) - \frac{d_i}{2} \log n.$ The prior distributions π_i do not enter in the expression for BIC which may or may not be seen as an advantage. Models with a <i>high</i> value of BIC would be preferred over models with a low value of BIC.
イロン・(ク)・(ミン・ミン・ミー・ミークの() Stelfen Lauritzen, University of Oxford Model comparison and selection	くロン・(ゴン・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)
If the models are <i>nested</i> in the sense that $\Theta_1 \subseteq \Theta_2$ the likelihood ratio $\Lambda = \frac{\sup_{\Theta_1} L(\theta)}{\sup_{\Theta_2} L(\theta)} = \frac{L(\hat{\theta}_1)}{L(\hat{\theta}_2)}$ will always be less than or equal to 1, so will always prefer the larger model as a description for the data. There are many reasons this is not adequate, hence Λ as above is rarely used as a measure of relative accuracy of two models.	Boyestan information criterionPrediction ristPrediction ristPrediction ristOne can get a more accurate approximation of the Bayes factor by adding terms $-\frac{1}{2} \log \left\{ \left j_i(\hat{\theta}_2) \right \right\} + \frac{d_i}{2} \log(2\pi)$ but this correction is not increasing with n , so it is most commonly ignored.For the comparison of two models we get $\Delta BIC = l(\hat{\theta}_1) - l(\hat{\theta}_2) + \frac{d_1 - d_2}{2} \log n$ $= -\log \Lambda + \frac{d_1 - d_2}{2} \log n$.Thus, in comparison with straight maximized likelihood, the simpler model gets preference by entertaining a lower penalty.
くロン・(型)・(き)・(き)・(き)・(き)・(き)・(き)・(き)・(き)・(き)・(き	Steffen Lauritzen, University of Oxford Model comparison and selection
If the models are nested, one may in principle consider the <i>p</i> -value $p = P\{-2 \log \Lambda \ge -2 \log \lambda_{obs}; M_1\} $ (1) i.e. the probability that the ratio Λ is less that the observed value, assuming the simpler model is true. If the <i>p</i> -value is very small, corresponding to Λ_1 being unusually small, this will be taken as evidence against M_1 , and so M_2 is favoured. In contrast, if <i>p</i> is moderate, M_1 would be favoured over M_2 as the simpler explanation of the data.	In the nested case, if $d_1 < d_2$ and the true value of the parameter $\theta_0 \in M_1 \subseteq M_2$, the deviance $-2 \log \Lambda$ would under suitable regularity conditions be approximately $\chi^2(d_2 - d_1)$ and the penalty term will thus dominate for large values of n , so the simpler model will be correctly chosen. In this sense, <i>BIC will asymptotically choose the simplest model which is correct.</i>

Maximized likelihood Bayesian methods Prediction risk AIC	Maximized likelihood Bzyeslan methods Prediction risk Mattows C _p
This classic criterion has been developed to choose between different subsets of variables in linear regression. Consider the problem of predicting an <i>n</i> -dimensional vector Y with expectation μ from explanatory variables X. The total mean square prediction error would be $\mathbf{E}(Y - \hat{Y} ^2) = \mathbf{E}\{ \mu - \hat{\mu} ^2\} + \mathbf{E}\{ Y - \mathbf{E}(Y) ^2\},$ where $ v ^2 = \sum_i v_i^2$ is the squared error norm. The second term in this expression is the intrinsic random error and we can do nothing about it. The first term is the squared prediction risk $R = \mathbf{E}\{ \mu - \hat{\mu} ^2\}$ and we would wish to choose a model for $\mu(X)$ which makes this	The corresponding residual sum of squares has expectation $\mathbf{E}(\text{RSS}) = \mathbf{E}\{ Y - X(S)\hat{\beta} ^2\} = (n - d)\sigma^2 + B(S).$ Thus, if we add $(2d - n)\sigma^2$ to both sides this equation, we get an unbiased estimate of the prediction risk from the residual sum of squares $\hat{R}(S) = \text{RSS} + (2d - n)\sigma^2.$ Mallows C_p uses now an unbiased estimate of σ^2 , typically based on the residual sum of squares for the model with all the variables included, to estimate the risk so that $C_p = \frac{\text{RSS}}{\hat{\sigma}^2} + 2d - n.$ Choosing a model S can now be based on this criterion. Note that
risk small.	this also penalizes models with many parameters.
Steffen Lauritzen, University of Oxford Model comparison and selection Maximized likelihood Bayesian methods Predetion risk AIC	Stellen Lauritzen, University of Oxford Model comparison and selection Maximized Bielhood Mallows Cp Bygelan methods AIC
If it holds that $\mu = X\beta$ and we use a linear model of the form $\mu_S(X) = X(S)\beta_S$ where S is a subset of d elements of the covariates so	Akaike's Information Criterion (AIC) is based on exactly the same idea as C_{ρ} , but it is more general and is not restricted to regression models. Akaike suggests assessing the prediction error by the <i>Kullback-Leibler distance</i> to the true distribution g:
$x_i(S) = (x_{ij}, j \in S)$	$D(g,\theta) = \int g(x) \log f(x,\theta) dx - \int g(x) \log g(x) dx = S(g,\theta) + H(g).$
we thus have the prediction risk $R = {\sf E}\{ Xeta - X(S)\hateta_S ^2\} = d\sigma^2 + B(S)$	The AIC is an approximately unbiased estimate of $-2nS(g,\hat{ heta})$ which can be shown to reduce to
where $B(S)$ is a bias term	$AIC_i = l(\hat{ heta}_i) - d_i$
$B(S) = \mu - \mu_S(X) ^2 = X\beta - X(S)\beta_S ^2$ with $B(S) = 0$ if the true distribution satisfies $\beta_j = 0$ for $j \notin S$.	so $ extsf{SO} \Delta AIC = -\log \Lambda + (d_1 - d_2).$

AIC gives typically lower penalt

Steffen Lauritzen, University of Oxford Model or

on and se

AIC gives typically lower penalty for complexity than BIC.

Engeworth expansion Saddle-point expansion MLE in exponential family

Similar methods can be used to show that, in wide generality, if A is ancillary so that $(\hat{\theta},A)$ is minimal sufficient, then approximately, and quite often exactly,

$$f(\hat{\theta} | A = a; \theta) \approx \propto \frac{L(\theta)}{L(\hat{\theta})} |j(\hat{\theta})|^{1/2},$$

which is known as **Barndorff–Nielsen's formula**. Note that normalization constant may depend on θ and a. Note similarity to the approximate Bayesian posterior:

 $\pi^*(\theta) \approx \propto \frac{L(\theta)}{L(\hat{\theta})} \left| j(\hat{\theta}) \right|^{1/2}$

where we have ignored the contribution $\pi(\theta)/\pi(\hat{\theta})$ from the prior. Only the interpretations are different!

Steffen Lauritzen, University of Oxford Maximum likelihood asymptotics

The multivariate Gaussian distribution Trace of matrix Gaussian fikelihoods Sample with known mean The Wishart distribution Maximizing the likelihood	The multivariate Gaussian distribution Definition Gaussian likelihoods Basic properties The Wishart distribution Wishart density
Rewriting the likelihood function as $\log L(K) = \frac{n}{2} \log(\det K) - tr(KW)/2$ we can of course also differentiate to find the maximum, leading to $\frac{\partial}{\partial k_{ij}} \log(\det K) = w_{ij}/n,$ which in combination with the previous result yields $\frac{\partial}{\partial K} \log(\det K) = K^{-1}.$ This can also be derived directly by writing out the determinant, and it holds for any non-singular square matrix!	If W_1 and W_2 are independent with $W_i \sim W_d(n_i, \Sigma)$, then $W_1 + W_2 \sim W_d(n_1 + n_2, \Sigma)$. If A is an $r \times d$ matrix and $W \sim W_d(n, \Sigma)$, then $AWA^\top \sim W_r(n, A\Sigma A^\top)$. For $r = 1$ we get that when $W \sim W_d(n, \Sigma)$ and $\lambda \in R^d$, $\lambda^\top W \lambda \sim \sigma_\lambda^2 \chi^2(n)$, where $\sigma_\lambda^2 = \lambda^\top \Sigma \lambda$.
・ロー・パラ・・ミュ・ショー その へん Steffen Lawitzen, University of Oxford Multivarte Gaussian Analysis The multivariate Gaussian distribution Gaussian Biothoods Biote properties The Wohard distribution Withow distribution	Steffen Lawitzen, University of Oxford Muttersteine Cassian Analysis The multivariate Cassian distribution Cassian Identification Definition Basic properties The Multivariate Cassian Identification Basic properties The Wohard distribution Basic properties
The Wishart distribution is the sampling distribution of the matrix of sums of squares and products. More precisely: A random $d \times d$ matrix W has a <i>d</i> -dimensional Wishart distribution with parameter Σ and <i>n</i> degrees of freedom if	If $W \sim W_d(n, \Sigma)$, where Σ is regular, then W is regular with probability one if and only if $n \ge d$. When $n \ge d$ the Wishart distribution has density
$W \stackrel{\mathcal{D}}{=} \sum_{i=1}^{n} X_{\nu} X_{\nu}^{\top}$	$f_d(w \mid n, \Sigma) = c(d, n)^{-1} (\det \Sigma)^{-n/2} (\det w)^{(n-d-1)/2} e^{-\operatorname{tr}(\Sigma^{-1}w)/2}$
where $X_ u \sim \mathcal{N}_d(0,\Sigma).$ We then write $W \sim \mathcal{W}_d(n,\Sigma).$	for w positive definite, and 0 otherwise. The Wishart constant $c(d, n)$ is
The Wishart is the multivariate analogue to the χ^2 : $\mathcal{W}_1(n,\sigma^2)=\sigma^2\chi^2(n).$	$c(d, n) = 2^{nd/2} (2\pi)^{d(d-1)/4} \prod_{i=1}^d \Gamma\{(n+1-i)/2\}.$
If $W \sim \mathcal{W}_d(n, \Sigma)$ its mean is $\mathbf{E}(W) = n\Sigma$.	(D)((B)((B)((B)((B)((B)((B)((B)((B)((B)(

ty of Oxford

Steffen Lauritzen, University of Oxford Multivariate Ga

Wilks' distribution Hoteling's 7 ²	Wits' distribution Hotelings 7 ² A matrix identity
Wilks' A and Hotelling's <i>T</i> ² . Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 13, Hilary Term 2008 March 2, 2008	We first need a useful result about determinants of block matrices. If A is a $d \times d$ symmetric matrix partitioned into blocks of dimension $r \times r$, $r \times s$, and $s \times s$ as $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$ <i>it holds that</i> $\det A = \det(A_{11} - A_{12}A_{22}^{-1}A_{21})\det(A_{22}).$ (1) Here the entire expression should be considered equal to 0 if A_{22} is not invertible and $\det(A_{22}) = 0.$
Steffen Lauritzen, University of Oxford Wilke' A and Hotelling's 7 ² . Wilke' darbhation Hotsling's 7 ² . Orfeition Rativi identity Tot in independence	Stellen Laurizen, University of Oxford Wilke' A and Hotelling's 7 ² . Definition Poleinition Mike' distribution Hotelling's 7 ² . Relation Bata distribution Relations.
If X and Y are independent , $X \sim \Gamma(\alpha_x, \gamma)$, and $Y \sim \Gamma(\alpha_y, \gamma)$, then the ratio $X/(X + Y)$ follows a Beta distribution: $B = \frac{X}{X + Y} \sim \mathcal{B}(\alpha_x, \alpha_y).$ A multivariate analogue of this result involves the Wishart distribution and asserts. If $W_1 \sim W_d(f_1, \Sigma)$ and $W_2 \sim W_d(f_2, \Sigma)$ with $f_1 \ge d$, then the distribution of $\Lambda = \frac{\det(W_1)}{\det(W_1 + W_2)}$ does not depend on Σ and is denoted by $\Lambda(d, f_1, f_2)$. The distribution is known as Wilks' distribution.	This follows from a simple calculation $det(A) = det\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} det\begin{pmatrix} I_{r\times r} & 0_{r\times s} \\ -A_{22}^{-1}A_{21} & I_{s\times s} \end{pmatrix}$ $= det\begin{pmatrix} A_{11} - A_{12}A_{22}^{-1}A_{21} & A_{12} \\ 0_{s\times r} & A_{22} \end{pmatrix}$ $= det(A_{11} - A_{12}A_{22}^{-1}A_{21}) det(A_{22}).$
くロン・イワ・・ミン・ミン・ミン・ミン・ミン・シーンの人で Stelfen Lauritzen, University of Oxford Wilks' A and Hotelling's 7 ² .	$(\Box \mapsto (\bigcirc + : \ge) : \ge :) = (\bigcirc (\bigcirc : : \ge) : \ge :) = (\bigcirc (\bigcirc : : \ge) : = : = :) = (\bigcirc (\bigcirc : : : \ge : : \ge : : = :) = (\bigcirc (\bigcirc : : : : : : : : : : : : : : : : :$
Wilks' distribution Hotelling's 7 ² A matrix identity Test. for independence	Witks' distribution Hotelling's 7 ² Test for independence
To see that the distribution of Λ does not depend on Σ , we choose a matrix A such that $A\Sigma A^{\top} = I_d$. Then $\tilde{W}_i = AW_i A^{\top} \sim W_d(f_i, I_d)$ and $\tilde{\Lambda} = \frac{\det(\tilde{W}_1)}{\det(\tilde{W}_1 + \tilde{W}_2)} = \frac{\det(A) \det(W_1) \det(A^{\top})}{\det(A) \det(W_1 + W_2) \det(A^{\top})} = \Lambda.$ Clearly, the distribution of $\tilde{\Lambda}$ does not depend on Σ and as $\tilde{\Lambda} = \Lambda$ this also holds for the latter.	Consider a partitioning of W and Σ into blocks as $W = \begin{pmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix},$ where Σ_{11} is an $r \times r$ matrix, Σ_{22} is $s \times s$, etc. If $W \sim W_d(f, \Sigma)$ and $\Sigma_{12} = \Sigma_{21} = 0$ then $\frac{\det(W)}{\det(W_{11})\det(W_{22})} \sim \Lambda(r, f - s, s) = \Lambda(s, f - r, r).$
Steffen Lauritzen, University of Oxford Wilks' A and Hotelling's 7 ² . Wilks' dastribution Wilks' dastribution Hotelling's 7 ² Definition Readin to Beta distribution A matrix identity Test for Independence	・ロ・・ヴ・・ミ・・シー ミックへ Stellen Laurizen, University of Oxford Wilky' A and Hotelling's 7 ² . Definition Relation Deta distribution Hotelling's 7 ²
Wilks' distribution is closely related to the Beta distribution. It holds that $\Lambda \stackrel{\mathcal{D}}{=} \prod_{i=1}^{d} B_i$ where B_i are independent and follow Beta distributions with $B_i \sim \mathcal{B}\{(f_1 + 1 - i)/2, f_2/2)\}.$ Indeed the distribution of $(W_1 + W_2)^{-1}W_1$	To see this is true we first use the matrix identity (1) to write $\frac{\det(W)}{\det(W_{11})\det(W_{22})} = \frac{\det(W_{1 2})}{\det(W_{11})} = \frac{\det(W_{1 2})}{\det(W_{1 2} + W_{12}W_{22}^{-1}W_{21})},$ where $W_{1 2} = W_{11} - W_{12}W_{22}^{-1}W_{21}$. Next we need to use that if $\Sigma_{12} = 0$ and thus $\Sigma_{1 2} = \Sigma_{11}$, it further holds that $W_{1 2}$ and $W_{12}W_{22}^{-1}W_{21}$ are independent and both Wishart distributed as $W_{1 2} \sim W_r(f - s, \Sigma_{11}), W_{12}W_{22}^{-1}W_{21} \sim W_r(s, \Sigma_{11}).$
is also known as the multivariate Beta distribution.	We abstain from giving further details.

ty of Oxford

sity of Oxford

Wilks' distribution and Hotelling's T^2	Wilks' distribution and Hotelling's 72 Inverse Wishart distribution Posterior updating
Conjugate Bayesian analysis	Conjugate Bayesian analysis Bayes factor for independence
Inverse Wishart Distribution and Conjugate Bayesian Analysis Steffen Lauritzen, University of Oxford BS2 Statistical Inference, Lecture 14, Hilary Term 2008 March 2, 2008	Recall that the Wishart density has the form $f_d(w \mid f, \Sigma) \propto (\det w)^{(f-d-1)/2} e^{-\operatorname{tr}(\Sigma^{-1}w)/2}.$ Since the likelihood function for Σ is $L(K) = (\det K)^{f/2} e^{-\operatorname{tr}(KW)/2},$ a conjugate family of distributions for K is given by $\pi(K; a, \Psi) \propto (\det K)^{a/2-1} e^{-\operatorname{tr}(K\Psi)/2},$ which thus specifies a Wishart distribution for the concentration matrix.
Steffen Lamitzen, University of Oxford Wikk' distribution and Hoteling's 7 ² Conjugate Bayesian analysis	Steffen Lauritzen, University of Oxford Inverse Wishart Distribution and Conjugate Bayesian Analys Witks' distribution and Hotelling's 172 Inverse Wishart distribution Conjugate Bayesian analysis Experience distribution
If $W_1 \sim W_d(f_1, \Sigma)$ and $W_2 \sim W_d(f_2, \Sigma)$ with $f_1 \ge d$, then the distribution of $\Lambda = \frac{\det(W_1)}{\det(W_1 + W_2)}$ is Wilks' distribution and denoted by $\Lambda(d, f_1, f_2)$. It holds that $\Lambda \stackrel{\mathcal{D}}{=} \prod_{i=1}^d B_i$ where B_i are independent and follow Beta distributions with $B_i \sim \mathcal{B}\{(f_1 + 1 - i)/2, f_2/2)\}.$	We then say that Σ follows an inverse Wishart distribution if $K = \Sigma^{-1}$ follows a Wishart distribution, formally expressed as $\Sigma \sim \mathcal{IW}_d(\delta, \Psi) \iff K = \Sigma^{-1} \sim \mathcal{W}_d(\delta + d - 1, \Psi^{-1}),$ i.e. if the density of K has the form $f(K \mid \delta, \Psi) \propto (\det K)^{\delta/2-1}e^{-\operatorname{tr}(\Psi K)/2}.$ We repeat the expression for the standard Wishart density: $f_d(w \mid f, \Sigma) \propto (\det w)^{(f-d-1)/2}e^{-\operatorname{tr}(\Sigma^{-1}w)/2}.$ It follows that the family of inverse Wishart distributions is a conjugate family for Σ .
ロン・(アン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン	Steffen Lauritzen, University of Oxford Inverse Wishart Distribution and Conjugate Bayesian Analys
Wilk' distribution and Hoteling's 7 ² Conjugate Bayesian analysis Hoteling's 7 ²	Wilks' distribution and Hotelling's 172 Invester wanget a load rate from the second seco
Wilks' distribution occurs as the likelihood ratio test for independence. Consider $W \sim \mathcal{W}_d(f, \Sigma)$ and the hypothesis that $\Sigma_{12} = 0$ for a fixed block partitioning of Σ into $r \times r, r \times s$ and $s \times s$ matrices. The likelihood ratio statistic then becomes $\frac{L(\hat{K}_{11}, \hat{K}_{22})}{L(\hat{K})} = \left\{ \frac{\det(W)}{\det(W_{11})\det(W_{22})} \right\}^{n/2} = U^{n/2},$ where $U \sim \Lambda(r, f - s, s) = \Lambda(s, f - r, r).$ It follows that $\Lambda(d, f_1, f_2) = \Lambda(f_2, f_1 + f_2 - d, d).$	If the prior distribution of Σ is $\mathcal{IW}_d(\delta, \Psi)$ and $W \Sigma \sim \mathcal{W}_d(f, \Sigma)$, we get for the posterior density of K that $f(K \delta, \Psi, W) \propto (\det K)^{f/2} e^{-\operatorname{tr}(KW)/2} \times (\det K)^{\delta/2-1} e^{-\operatorname{tr}(\Psi K)/2} = (\det K)^{(f+\delta)/2-1} e^{-\operatorname{tr}(\Psi + W)K}/2$, and hence the posterior distribution is simply $\mathcal{IW}_d(\delta + f, \Psi + W) = \mathcal{IW}_d(\delta^*, \Psi^*)$. We can thus interpret the parameter δ as a prior equivalent sample size and Ψ as the value of a matrix of sums and squares and products from a previous sample.
Steffen Laurizen, University of Oxford Inverse Wikhart Distribution and Conjugate Bayesian Analysis Wikz' distribution and Hoteling's 7 ² Definition Totaling 7 Totaling in Independence	Steffen Laurizen, University of Oxford Inverse Wishart Distribution and Conjugate Bayesian Analys Witks' distribution and Hotelling's 7 ² Inverse Wishart distribution
This is the equivalent of Student's <i>t</i> -distribution. Let $Y \sim \mathcal{N}_d(\mu, c\Sigma), W \sim \mathcal{W}_d(f, \Sigma)$ with $f \ge d$, and $Y \perp W$. $T^2 = f(Y - \mu)^\top W^{-1}(Y - \mu)/c$ is known as Hotelling's T^2 . It holds that $\frac{1}{1 + T^2/f} \sim \Lambda(d, f, 1) = \Lambda(1, f - d + 1, d)$ and $\frac{f - d + 1}{fd} T^2 \sim F(d, f + 1 - d)$ where <i>F</i> denotes Fisher's <i>F</i> -distribution.	We need the full form of the Wishart density for <i>K</i> , as constants may become important and recall that $f_d(K \delta, \Psi) = q(d, \delta)^{-1} (\det \Psi)^{(\delta+d-1)/2} (\det K)^{\delta/2-1} e^{-tr(\Psi K)/2}$ The constant $q(d, \delta)$ is $q(d, \delta) = 2^{(\delta+d-1)d/2} (2\pi)^{d(d-1)/4} \prod_{i=1}^d \Gamma\{(\delta+d-i)/2\}.$

Wilks' distribution and Hotelling's T² Inverse vulsaria distribution Conjugate Bayesian analysis Bayes factor for independence

Consider now alternative models M_1 with Σ arbitrary and M_2 with Σ of block diagonal form:

$$\Sigma = \left(\begin{array}{cc} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{array} \right).$$

If the associated prior distributions are for M_1 that $\Sigma \sim \mathcal{IW}_d(\delta, I_d)$ and for M_2 that $\Sigma_{11} \sim \mathcal{IW}_r(\delta, I_r)$, $\Sigma_{22} \sim \mathcal{IW}_s(\delta, I_s)$, we can now calculate the Bayes factor.

(고) (관) (군) (군) (군) (군) (군)
 Steffen Lauritzen, University of Oxford
 Inverse Wishart Distribution and Conjugate Bayesian Analysis

Fixed state Evolving state Kalman filter	Fixed state Evolving state Kalman filter Prediction and filtering
Particle filters	Particle fittern Smoothing The previous considerations take on a particular dynamic form when also the parameter or <i>state</i> θ is changing with time. More precisely, we consider a Markovian model for the <i>state dynamics</i> of the form
Sequential Bayesian Updating	$f(\theta_0) = \pi(\theta_0), f(\theta_{i+1} \mid \theta_i) = f(\theta_{i+1} \mid \theta_i)$
Steffen Lauritzen, University of Oxford	where the evolving states $\theta_0, \theta_1, \ldots$ are not directly observed, but information about them are available through sequential
BS2 Statistical Inference, Lectures 15 and 16, Hilary Term 2008	observations $X_i = x_i$, where
March 6, 2008	$r(x_i v_i, x_{i-1}) = r(x_i v_i)$ so the joint density of states and observations is
	$f(\mathbf{x_n}, \theta_{\mathbf{n}}) = \pi(\theta_0) \prod_{i=1}^n f(\theta_{i+1} \mid \theta_i) f(x_i \mid \theta_i).$
(ロン(の)(言)(言) 言) こ) こう こう うえい ひんのつ Steffen Lauritzen, University of Oxford Sequential Bayesian Updating	<ロン・(ラン・(主)・(主)・(主)・(主)・(主)・(主)・(こ)・(う)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ)・(こ
Fixed state Evolving state Kalman filter Particle filters	Fired state Basic dynamic model Evolving state Fundamental tasks Kalman filter Prediction and filtering Particle filters Smoothing
We consider data arriving sequentially X_1, \ldots, X_n, \ldots and wish to update inference on an unknown parameter θ online. In a Bayesian setting, we have a prior distribution $\pi(\theta)$ and at time <i>n</i> we have a density for data conditional on θ as $f(x_1, \ldots, x_n \theta) = f(x_1 \theta)f(x_2 x_1, \theta) \cdots f(x_n \mathbf{x_{n-1}}, \theta)$ where we have let $\mathbf{x_i} = (x_1, \ldots, x_i)$. Note that we are not assuming X_1, \ldots, X_n, \ldots to be independent conditionally on θ . At time <i>n</i> , we may have updated our distribution of θ to its posterior $\pi_n(\theta) = f(\theta \mathbf{x_n}) \propto \pi(\theta)f(\mathbf{x_n} \theta)$.	This type of model is common in robotics, speech recognition, target tracking, and steering/control, for example of large ships, airplanes, and space ships. The natural tasks associated with inference about the evolving state θ_i are known as Filtering: Find $f(\theta_n \mathbf{x_n})$. What is the current state?
・ロ・・グ・・ミ・・ミ・ こ・ そのので Stellen Laurizen, University of Oxford Sequential Bayesian Updating	ィロ・ィグ・ィミ・ィミ・ そうので Stefen Lauritzen, University of Oxford Sequential Bayesian Updating
Fixed state Evolving state Kalman filter Particle filters	Fixed state Basic dynamic model Evolving state Findmannetal tasks Kalman filter Prediction and filtering Particle filtern
If we obtain a new observation $X_{n+1} = x_{n+1}$ we may either start afresh and write	
$\pi_{n+1}(heta) = f(heta \mid \mathbf{x_{n+1}}) \propto \pi(heta) f(\mathbf{x_{n+1}} \mid heta)$	This type of model is common in robotics, speech recognition, target tracking, and steering/control, for example of large ships,
or we could claim that just before time $n + 1$, our knowledge of θ is summarized in the distribution $\pi_n(\theta)$ so we just use this as a prior distribution for the new piece of information and update as	airplanes, and space snips. The natural tasks associated with inference about the evolving state θ_i are known as
$ ilde{\pi}_{n+1}(heta) \propto \pi_n(heta) f(x_{n+1} x_n, heta).$	Filtering: Find $f(\theta_n \mathbf{x}_n)$. What is the current state? Prediction: Find $f(\theta_{n+1} \mathbf{x}_n)$. What is the next state?
Indeed, these updates are identical since	(*##¥1) MJ
$\begin{aligned} \tilde{\pi}_{n+1}(\theta) &\propto & \pi_n(\theta) f(\mathbf{x}_{n+1} \mathbf{x}_n, \theta) \\ &\propto & \pi(\theta) f(\mathbf{x}_n \theta) f(\mathbf{x}_{n+1} \mathbf{x}_n, \theta) \\ &= & \pi(\theta) f(\mathbf{x}_{n+1} \theta) \propto \pi_{n+1}(\theta). \end{aligned}$	
Steffen Lauritzen, University of Oxford Sequential Bayesian Updating	Steffen Lauritzen, University of Oxford Sequential Bayesian Updating Fixed state Basic dynamic model
Evolving state Kalman filter Particle filters	Evolving state Fundamental tasks Kahanan filter Prediction and filtering Particle filters Smoothing
We may summarize these facts by replacing the usual expression for a Bayesian updating scheme	
posterior \propto prior $ imes$ likelihood	This type of model is common in robotics, speech recognition, target tracking, and steering/control, for example of large ships, airplage, and space ships
with revised \propto current \times new likelihood	The natural tasks associated with inference about the evolving state θ_i are known as
represented by the formula	Filtering: Find $f(\theta_n \mathbf{x_n})$. What is the current state?
$\pi_{n+1}(\theta) \propto \pi_n(\theta) \times L_{n+1}(\theta) = \pi_n(\theta) f(\mathbf{x}_{n+1} \mid \mathbf{x}_n, \theta).$	▶ <i>Prediction:</i> Find $f(\theta_{n+1} \mathbf{x}_n)$. What is the next state? ▶ Smoothing: Find $f(\theta_n \mathbf{x}_n)$ is $\leq n$. What was the part state at
In this dynamic perspective we notice that at time <i>n</i> we only need to keep a representation of π_n and otherwise can ignore the past. The current π_n contains all information needed to revise knowledge when confronted with new information $L_{n+1}(\theta)$.	• Sincoting, Find $r(v_j \mathbf{x}_n), j < n$. What was the past state at time j ?
We sometimes refer to this way of updating as recursive.	(ロ・パラ・イミ・イミ) そうのない Stafes Laudens Holescin of Oriest

Out the most recent developments in modern statistics is using distributions.
 Description of the most recent developments in modern statistics is using distribution (2) by a sample
 The approximate inverse variance of the integral (4) is for the constant function
$$h \equiv 1$$
 equal to

 $\mu(a_{\mu}|\mathbf{x}_{n}) \sim (b_{\mu}^{1}, ..., b_{m}^{M})$
 to that we would approximate any integral w.r.t. this density as
 $\int h(b_{\mu})f(b_{\mu}|\mathbf{x}_{n}) < (b_{\mu}^{1}, ..., b_{m}^{M})$
 The values $(b_{\mu}^{1}, ..., b_{m}^{M})$ are generally referred to as particles.

 The values $(b_{\mu}^{1}, ..., b_{m}^{M})$
 are generally referred to as particles.

 More generally, we may have the particles associated with weights

 $\mu(a_{\mu}|\mathbf{x}_{m}) < (b_{\mu}^{1}, ..., (b_{m}^{M}, w_{m}^{M}))$
 with $\sum_{\mu=1}^{M} (b_{\mu}(a_{\mu}|\mathbf{x}_{m}) < (b_{\mu}^{1}, w_{m}^{M})$
 with $\sum_{\mu=1}^{M} (b_{\mu}(a_{\mu}|\mathbf{x}_{m}) < (b_{\mu}^{1}, w_{m}) < (b_{\mu}^{1}, w_{m}^{M})$
 with $\sum_{\mu=1}^{M} (b_{\mu}(a_{$

the numerator being proportional to $f(\theta_{n+1}^i | \theta_n^i, x_{n+1})$. There are many possible proposal distributions but a common choice is a normal distribution with an approximately correct mean and slightly enlarged variance.

state Basic Monte Carlo r state Moving and reweight

 Steffen Lauritzen, University of Oxford
 Sequential Bayesian Updating