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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on Hyper Markov Laws

8. Structure estimation and Bayes factors

9. More on structure estimation.
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Types of approach

• Methods for judging adequacy of structure such as

– Tests of significance

– Penalised likelihood scores

Iκ(G) = log L̂− κ dim(G)

with κ = 1 for AIC Akaike (1974), or
κ = 1

2 log n for BIC (Schwarz 1978).

– Bayesian posterior probabilities.

• Search strategies through space of possible
structures, more or less based on heuristics.
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Estimating trees

Assume P factorizes w.r.t. an unknown tree T . MLE τ̂ of
T has maximal weight, where the weight of τ is

w(τ) =
∑

e∈E(τ)

wn(e) =
∑

e∈E(τ)

Hn(e)

and Hn(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge
e = {u, v}. For Gaussian trees this becomes

wn(e) = −1
2

log(1− r2
e),

where r2
e is correlation coeffient along edge e = {u, v}.
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Highest AIC or BIC scoring forest also available as MWSF,
with modified weights

wpen
n (e) = nwn(e)− κndfe,

with κn = 1 for AIC, κn = 1
2 log n for BIC and dfe the

degrees of freedom for independence along e.

Use maximal weight spanning tree (or forest) algorithm
from weights W = (wuv, u, v ∈ V ).
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Bayes factors

For G ∈ Γ, ΘG is associated parameter space so that P
factorizes w.r.t. G if P = Pθ for some θ ∈ ΘG . LG is prior
law on ΘG .

The Bayes factor for discriminating between G1 and G2

based on X(n) = x(n) is

BF(G1 : G2) =
f(x(n) | G1)
f(x(n) | G2)

,

where

f(x(n) | G) =
∫

ΘG

f(x(n) | G, θ)LG(dθ)

is known as the marginal likelihood of G.
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Posterior distribution over graphs

If π(G) is a prior probability distribution over a given set of
graphs Γ, the posterior distribution is determined as

π∗(G) = π(G |x(n)) ∝ f(x(n) | G)π(G)

or equivalently

π∗(G1)
π∗(G2)

= BF(G1 : G2)
π(G1)
π(G2)

.

The BIC is an O(1)-approximation to log BF using
Laplace’s method of integrals on the marginal likelihood.

Bayesian analysis looks for the MAP estimate G∗
maximizing π∗(G) over Γ, or attempts to sample from the
posterior using e.g. Monte-Carlo methods.
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Hyper inverse Wishart laws

Denote the normalisation constant of the hyper inverse
Wishart density as

h(δ,Φ;G) =
∫
S+(G)

(detK)δ/2e− tr(KΦ) dK,

The marginal likelihood is then

f(x(n) | G) =
h(δ + n, Φ + Wn;G)

h(δ,Φ;G)
.

where

h(δ,Φ;G) =

∏
Q∈Q h(δ,ΦQ;GQ)∏

S∈S h(δ,ΦS ;S)νG(S)
.
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For chordal graphs all terms reduce to known Wishart
constants.

In general, Monte-Carlo simulation or similar methods must
be used (Atay-Kayis and Massam 2005).
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Bayes factors for forests

Trees and forests are decomposable graphs, so for a forest
φ we get

π∗(φ) ∝
∏

e∈E(φ) f(x(n)
e )∏

v∈V f(x(n)
v )dφ(v)−1

∝
∏

e∈E(φ)

BF(e),

where BF(e) is the Bayes factor for independence along the
edge e:

BF(e) =
f(x(n)

u , x
(n)
v )

f(x(n)
u )f(x(n)

v )
.
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MAP estimates of forests can thus be computed using an
MWSF algorithm, using w(e) = log BF (e) as weights.

When φ is restricted to contain a single tree, the
normalization constant can be explicitly obtained via the
Matrix Tree Theorem, see e.g. Bollobás (1998).

Algorithms exist for generating random spanning trees
(Aldous 1990), so full posterior analysis is in principle
possible for trees.

Only heuristics available for MAP estimators or maximizing
penalized likelihoods such as AIC or BIC, for other than
trees.
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Directed hyper Markov property

L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ is
directed Markov on D for all θ ∈ Θ and

θv | pa(v)⊥⊥L θnd(v) | θpa(v).

A law L is directed hyper Markov on D if and only if LA is
hyper Markov on (DA)m for any ancestral set A ⊆ V .

L is strongly directed hyper Markov if in addition
θv | pa(v)⊥⊥L θpa(v) for all v or, equivalently if the
conditional distributions θv | pa(v), v ∈ V are mutually
independent.

Graphically, this is most easily displayed by introducing one
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additional parent θv | pa(v) for every vertex V in D, so then

f(x | θ) =
∏
v∈V

f(xv |xpa(v), θv | pa(v)).

Exploiting independence and taking expectations over θ
yields that also marginally ,

f(x | D) =
∫

ΘD

f(x | θ)LD(θ) =
∏
v∈V

f(xv |xpa(v)).

If L is strongly directed hyper Markov and L∗ it holds that
also the posterior law L∗ is is strongly directed hyper
Markov and

L∗(θv | pa(v)) ∝ f(xv |xpa(v), θv | pa(v))L(θv | pa(v))

(Spiegelhalter and Lauritzen 1990).
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Markov equivalence

D and D′ are equivalent if and only if:

1. D and D′ have same skeleton (ignoring directions)

2. D and D′ have same unmarried parents

so

s - s
s
@

@R? s ≡ s - s s
s
?@
@I

but

s - s -

s
@

@R? s 6≡ s - s - s
s
6@

@R
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Searching equivalence classes

In general, there is no hope of distinguishing Markov
equivalent DAGs, so D can at best be identified up to
Markov equivalence.

The number Dn of unlabelled DAGs with n vertices is given
by the recursion (Robinson 1977)

Dn =
n∑

i=1

(−1)i+1

(
n

i

)
2i(n−i)Dn−i

which grows superexponentially. For n = 10,
Dn ≈ 4.2× 1018. The number of equivalence classes is
smaller, but is conjectured still to grow superexponentially.
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Conjugate priors for DAGs

In the discrete case, the obvious conjugate prior is for fixed
v to let

{θv | paD(v)(xv |x∗paD(v)), xv ∈ Xv}

be Dirichlet distributed and independent for v ∈ V and
x∗paD(v) ∈ XpaD(v) (Spiegelhalter and Lauritzen 1990).

We can derive these Dirichlet distributions from a fixed
master Dirichlet distribution D(α), where
α = α(x), x ∈ X , by letting

{θv | pa(v)(xv |x∗paD(v))} ∼ D(α(xv, x∗paD(v)),

where as usual α(xa) =
∑

y:ya=xa
α(y).
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Typically, α is specified by letting α = λp0(x) where p0 is
an initial guess on the joint distribution, for example
specified through a DAG D0, and λ is the equivalent
sample size for the prior information.

The values α(xv, x∗paD(v)) = λp0(xv, x∗paD(v)) can then be

calculated by probability propagation.

Common default values is λ = 1 and α(x) = |X |−1.

A similar construction is possible in the Gaussian case using
the Wishart distribution (Geiger and Heckerman 1994) and
for mixed discrete Gaussian networks (Bøttcher 2001), the
latter implemented in the R-package DEAL (Bøttcher and
Dethlefsen 2003).

17



Characterization of strong hyper priors

In all cases, it was shown (Geiger and Heckerman 1997,
2002) that prior distributions constructed in this way are
the only distributions which are

1. modular:

paD(v) = paD′(v) =⇒ θv | paD(v) ∼ θv | paD′ (v);

2. score equivalent:

D ≡ D′ =⇒ f(x(n) | D) = f(x(n) | D′).
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Marginal likelihood

Bayes factors derived from these strongly directed hyper
Dirichlet priors have a simple form

f(x(n) | D) =
∏
v

∏
xpa(v)

Γ(α(xpaD(v)))
Γ(α(xpaD(v)) + n(xpaD(v)))

×
∏
xv

Γ(α(xv∪paD(v)) + n(xv∪paD(v)))
Γ(α(xv∪paD(v)))

.

(Cooper and Herskovits 1992;
Heckerman et al. 1995)

Challenge: Find good algorithm for sampling from the full
posterior over DAGs or equivalence classes of DAGs. Issue:
prior uniform over equivalence classes or over DAGs?
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Greedy equivalence class search

1. Initialize with empty DAG

2. Repeatedly search among equivalence classes with a
single additional edge and go to class with highest
score - until no improvement.

3. Repeatedly search among equivalence classes with a
single edge less and move to one with highest score -
until no improvement.

For BIC or Bayesian posterior score with directed hyper
Dirichlet priors, this algorithm yields consistent estimate of
equivalence class for P . (Chickering 2002)
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Markov mesh model
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Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases
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Tree model
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Bayesian GES on tree
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Chest clinic
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Bayesian GES
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Constraint-based search

Another alternative search algorithm is known as constraint
based search.

Essentially, the search methods generate queries of the type
“A⊥⊥B |S?”, and the answer to such a query divides Γ
into those graphs conforming with the query and those that
do not.

These type of methods were originally designed by
computer scientists in the context where P was fully
available, so queries could be answered without error.

The advantage of this type of method is that relatively few
queries are needed to identify a DAG D (or rather its
equivalence class).
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The disadvantage is that there seems to be no coherent
and principled method to answer the query in the presence
of statistical uncertainty, which is computable.
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SGS and PC algorithms

SGS-algorithm (Spirtes et al. 1993):

Step 1: Identify skeleton using that, for P faithful,

u 6∼ v ⇐⇒ ∃S ⊆ V \ {u, v} : Xu⊥⊥Xv | XS .

Begin with complete graph, check for S = ∅ and
remove edges when independence holds. Then
continue for increasing |S|.
PC-algorithm (same reference) exploits that only S
with S ⊆ bd(u) \ v or S ⊆ bd(v) \ u needs checking
where bd refers to current skeleton.

Step 2: Identify directions to be consistent with
independence relations found in Step 1.
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Exact properties of PC-algorithm

If P is faithful to DAG D, PC-algorithm finds D′ equivalent
to D.

It uses N independence checks where N is at most

N ≤ 2
(
|V |
2

) d∑
i=0

(
|V | − 1

i

)
≤ |V |d+1

(d− 1)!
,

where d is the maximal degree of any vertex in D.

So worst case complexity is exponential, but algorithm fast
for sparse graphs.

Sampling properties are less well understood although
consistency results exist.
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PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases
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PC algorithm

10000 simulated cases
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NPC algorithm

The NPC algorithm (Steck and Tresp 1996) stabilises the
PC algorithm by adding a necessary path condition.

The general idea has these elements:

1. When a query is decided negatively, ¬(A⊥⊥B |S), it
is taken at face value; When a query is decided
positively, A⊥⊥B |S, it is recorded with care;

2. If at some later stage, the PC algorithm would
remove an edge so that a negative query
¬(A⊥⊥B |S) would conflict with A⊥D B |S, the
removal of this edge is suppressed.

This leads to unresolved queries which are then
passed to the user.
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NPC algorithm

10000 simulated cases
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