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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Hyper Markov laws

7. More on hyper Markov laws

8. Structure estimation and Bayes factors

9. More on structure estimation.
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Log–linear models

A denotes a set of (pairwise incomparable) subsets of V .

A density f factorizes w.r.t. A

f(x) =
∏
a∈A

ψa(x).

The set of distributions PA which factorize w.r.t. A is the
hierarchical log–linear model generated by the A.

A is the generating class of the log-linear model.

3



Dependence graph

The dependence graph G(P) for a family of distributions P
is the smallest graph G so that

α⊥⊥P β |V \ {α, β} for all P ∈ P.

The dependence graph of a log-linear model PA is then
determined by

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

Sets in A are complete in G(A) and therefore distributions
in PA factorize according to G(A).

They are also global, local, and pairwise Markov w.r.t.
G(A).
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Conformal log-linear model

The set C(G) of cliques of G is a generating class for the
log–linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A = C(G(A)), A is
conformal .

Conformal log-linear models can be completely described in
terms of conditional independence.

For more general log-linear models factor graphs are needed
to yield a faithful representation of the factorization. MIM
(software by David Edwards www.hypergraph.dk), uses
the term interaction graph.
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Likelihood equations

For any generating class A it holds that the maximum
likelihood estimate p̂ of p is the unique element of PA
which satisfies the system of equations

np̂(xa) = n(xa),∀a ∈ A, xa ∈ Xa. (1)

The system of equations (1) expresses the fitting of the
marginals in A.

In general, the equations cannot be solved explicitly, but
iterative methods are needed.
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Iterative Proportional Scaling

For a ∈ A define the scaling operation on p:

(Tap)(x)← p(x)
n(xa)
np(xa)

, x ∈ X . (2)

The operation Ta fits the a-marginal. Now, make any
ordering of the generators A = {a1, . . . , ak}. Define S by

Sp = Tak
· · ·Ta2Ta1p.

Let p0(x)← 1/|X |, pn = Spn−1, n = 1, . . . .

It then holds that limn→∞ pn = p̂ where p̂ is the unique
maximum likelihood estimate of p ∈ PA.

It is easy to show that p̂(x) > 0 for all x ∈ X if and only if
p̂ ∈ PA.
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IPS by probability propagation

A chordal cover of A is a chordal graph G so that for all
a ∈ A, a are complete subsets of G.

1. Find chordal cover G of A and arrange cliques C of G
in a junction tree;

2. Represent p implicitly as p(x) =
∏

C∈C ψC(x)∏
S∈S ψS(x) ;

3. Replace (2) with

ψC(xC)← ψC(xC)
n(xa)
np(xa)

, xC ∈ XC ,

where a ⊆ C and p(xa) is calculated by probability
propagation.
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Closed form maximum likelihood

A is decomposable if A = C where C are the cliques of a
chordal graph.

The IPS-algorithm converges after at a finite number of
cycles (at most two) if and only if A is decomposable.

The MLE for p under the log-linear model A = C(G) is

p̂(x) =
∏
C∈C n(xC)

n
∏
S∈S n(xS)ν(S)

,

where ν(S) is the usual multiplicity of a separator.

In fact, with a suitably chosen ordering (e.g. MCS) of the
cliques, the IPS-algorithm converges in a single cycle.
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Gaussian likelihood function

The likelihood function based on a sample of size n is

L(K) ∝ (detK)n/2e− tr(KW )/2,

where W is the Wishart matrix of sums of squares and
products, W ∼ W|V |(n,Σ) with Σ−1 = K ∈ S+(G), where
S+(G) are the positive definite matrices with
α 6∼ β =⇒ kαβ = 0.

The MLE of K̂ is the unique element of S+(G) satisfying

nΣ̂cc = wcc for all cliques c ∈ C(G).
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Iterative Proportional Scaling

For K ∈ S+(G) and c ∈ C, define the operation of
‘adjusting the c-marginal’ as follows. Let a = V \ c and

TcK =
(
n(wcc)−1 +Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (3)

Next we choose any ordering (c1, . . . , ck) of the cliques in
G. Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Tc1 · · ·Tck
)Kr.

It then holds that K̂ = limr→∞Kr, provided the maximum
likelihood estimate K̂ of K exists.
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Chordal graphs

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in at most two
cycles, as in the discrete case.

The maximum likelihood estimates exists if and only if
n ≥ |C| for all C ∈ C. Then

K̂ = n

{∑
C∈C

[
(wC)−1

]V
−
∑
S∈S

ν(S)
[
(wS)−1

]V}
.

the symbol [A]V denotes for A = {aγµ}γ∈d,µ∈e the matrix
obtained from A by filling up with zero entries to obtain
full dimension.
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Existence of the MLE

The general problem of existence of the MLE is non-trivial:

If n < supa∈A |a| the MLE does not exist.

If n ≥ supC∈C |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.

For n between these values the general situation is unclear.

For the k-cycle it holds (Buhl 1993) that for n = 2,

P{MLE exists |Σ = I} = 1− 2
(k − 1)!

,

whereas for n = 1 the MLE does not exist and for n ≥ 3
the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.
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Special Wishart distributions

The formula

Σ̂ = n

{∑
C∈C

[
(WC)−1

]V
−
∑
S∈S

ν(S)
[
(WS)−1

]V}−1

specifies Σ̂ as a random matrix.

The distribution of this random Wishart-type matrix is
partly reflecting Markov properties of the graph G.

This is also true for the distribution of Σ̂ for a non-chordal
graph G but not to the same degree.

Before we delve further into this, we shall need some more
terminology.
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Laws and distributions

Families of distributions may not always be simply
parameterized, or we may want to describe the families
without specific reference to a parametrization.

Generally we think of

P = {Pθ, θ ∈ Θ}

and sometimes identify Θ with P which is justified when
the parametrization

θ → Pθ

is one-to-one and onto.

In a Gaussian graphical model θ = K ∈ S+(G) is uniquely
identifying any regular Gaussian distribution satisfying the
Markov properties w.r.t. G.
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The case when P = PA is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence.

In any case, any probability measure on P (or on Θ)
represents a random element of P, i.e. a random
distribution. The sampling distribution of the MLE p̂ is an
example of such a measure.

To keep heads straight we refer to a probability measure on
P as a law , whereas a distribution is a probability measure
on X .

Thus we shall e.g. speak of the Wishart law as we think of
it specifying a distribution of f(· |Σ).
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Hyper Markov Laws

We identify θ ∈ Θ and Pθ ∈ P, so e.g. θA for A ⊆ V
denotes the distribution of XA under Pθ and θA |B the
family of conditional distributions of XA given XB , etc.

For a law L on Θ we write

A⊥⊥LB |S ⇐⇒ θA∪S ⊥⊥L θB∪S | θS .

A law L on Θ is hyper Markov w.r.t. G if

(i) All θ ∈ Θ are globally Markov w.r.t. G;

(ii) A⊥⊥LB |S whenever S is complete and A⊥G B |S.

Note the conditional independence is only required to hold
for graph decompositions.
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Hyper Markov property
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If θ follows a hyper Markov law for this graph, it holds for
example that

θ1235⊥⊥ θ24567 | θ25.

We shall later show that this is indeed true for θ̂ = p̂ or Σ̂
in the graphical model with this graph, i.e.

Σ̂1235⊥⊥ Σ̂24567 | Σ̂25.
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Consequences of the hyper Markov property

Clearly, if A⊥⊥LB |S, we have for example also (using
property (C2) of conditional independence)

θA⊥⊥L θB | θS
since θA and θB are functions of θA∪S and θB∪S
respectively.

But the converse is false! θA⊥⊥L θB | θS does not imply
θA∪S ⊥⊥L θB∪S | θS , since θA∪S is not a function of
(θA, θS). In contrast, XA∪B is indeed a (one-to-one)
function of (XA, XB).

However it generally holds that

A⊥⊥LB |S ⇐⇒ θA |S ⊥⊥L θB |S | θS .
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Simple example

Consider the conditional independence model with graph

s s s
I J K

Here the MLE based on data X(n) = (X1, . . . , Xn) is

p̂ijk =
Nij+N+jk

nN+j+

and

p̂ij+ =
Nij+
n

, p̂+jk =
N+jk

n
, p̂+j+ =

N+j+

n
.
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Clearly, it holds that p̂ is Markov on G and

{Nij+}⊥⊥{N+jk} | {X(n)
j }.

But since e.g.

P ({Nij+ = nij} | {X(n)
j }) =

∏
j

(
n+j+!∏
i nij+!

∏
i

p
nij+
ij+

)
,

we have
{Nij+}⊥⊥{X(n)

j } | {N+j+}

and hence
{Nij+}⊥⊥{N+jk} | {N+j+},

which yields the hyper Markov property.
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Chordal graphs

If G is chordal and θ is hyper Markov on G, it holds that

A⊥G B |S =⇒ A⊥⊥LB |S

i.e. it is not necessary to specify that S is a complete
separator to obtain the relevant conditional independence.

This follows essentially because for a chordal graph it holds
that

A⊥G B |S =⇒ ∃S∗ ⊆ S : A⊥G B |S∗ with S∗ complete.

If G is not chordal, we can form G by completing all prime
components of G.
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Then if θ is hyper Markov on G, it is also hyper Markov on
G, and thus

A⊥G B |S =⇒ A⊥⊥LB |S.

But the similar result would be false for an arbitrary chordal
cover of G.
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Directed hyper Markov property

We have similar notions and results in the directed case.

Say L = L(θ) is directed hyper Markov w.r.t. a DAG D if θ
is directed Markov on D for all θ ∈ Θ and

θv∪pa(v)⊥⊥L θnd(v) | θpa(v),

or equivalently θv | pa(v)⊥⊥L θnd(v) | θpa(v), or equivalently
for a well-ordering

θv∪pa(v)⊥⊥L θpr(v) | θpa(v).

In general there is no similar statement corresponding to
the global property and d-separation.

However, if D is perfect, L is directed hyper Markov w.r.t.
D if and only if L is hyper Markov w.r.t. G = σ(D) = Dm.
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