Hyper Markov Laws

Lecture 6 Saint Flour Summerschool, July 13, 2006 Steffen L. Lauritzen, University of Oxford

Overview of lectures

- 1. Conditional independence and Markov properties
- 2. More on Markov properties
- 3. Graph decompositions and junction trees
- 4. Probability propagation and related algorithms
- 5. Log-linear and Gaussian graphical models
- 6. Hyper Markov laws
- 7. More on hyper Markov laws
- 8. Structure estimation and Bayes factors
- 9. More on structure estimation.

Log-linear models

 \mathcal{A} denotes a set of (pairwise incomparable) subsets of V. A density *f* factorizes w.r.t. \mathcal{A}

$$f(x) = \prod_{a \in \mathcal{A}} \psi_a(x).$$

The set of distributions $\mathcal{P}_{\mathcal{A}}$ which factorize w.r.t. \mathcal{A} is the *hierarchical log-linear model* generated by the \mathcal{A} .

 ${\mathcal A}$ is the *generating class* of the log-linear model.

Dependence graph

The *dependence graph* $\mathcal{G}(\mathcal{P})$ for a family of distributions \mathcal{P} is the smallest graph \mathcal{G} so that

 $\alpha \perp P \beta \mid V \setminus \{\alpha, \beta\}$ for all $P \in \mathcal{P}$.

The dependence graph of a log-linear model $\mathcal{P}_{\mathcal{A}}$ is then determined by

$$\alpha \sim \beta \iff \exists a \in \mathcal{A} : \alpha, \beta \in a.$$

Sets in \mathcal{A} are complete in $\mathcal{G}(\mathcal{A})$ and therefore *distributions* in $\mathcal{P}_{\mathcal{A}}$ factorize according to $\mathcal{G}(\mathcal{A})$.

They are also global, local, and pairwise Markov w.r.t. $\mathcal{G}(\mathcal{A}).$

Conformal log-linear model

The set C(G) of cliques of G is a generating class for the log–linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the restrictions imposed by \mathcal{A} , i.e. if $\mathcal{A} = \mathcal{C}(\mathcal{G}(\mathcal{A})), \mathcal{A}$ is *conformal*.

Conformal log-linear models can be completely described in terms of conditional independence.

For more general log-linear models *factor graphs* are needed to yield a faithful representation of the factorization. MIM (software by David Edwards www.hypergraph.dk), uses the term *interaction graph*.

Likelihood equations

For any generating class \mathcal{A} it holds that the maximum likelihood estimate \hat{p} of p is the unique element of $\overline{\mathcal{P}_{\mathcal{A}}}$ which satisfies the system of equations

$$n\hat{p}(x_a) = n(x_a), \forall a \in \mathcal{A}, x_a \in \mathcal{X}_a.$$
 (1)

The system of equations (1) expresses the *fitting of the* marginals in A.

In general, the equations cannot be solved explicitly, but iterative methods are needed.

Iterative Proportional Scaling

For $a \in \mathcal{A}$ define the *scaling* operation on p:

$$(T_a p)(x) \leftarrow p(x) \frac{n(x_a)}{np(x_a)}, \quad x \in \mathcal{X}.$$
 (2)

The operation T_a fits the *a*-marginal. Now, make any ordering of the generators $\mathcal{A} = \{a_1, \ldots, a_k\}$. Define S by

$$Sp = T_{a_k} \cdots T_{a_2} T_{a_1} p.$$

Let $p_0(x) \leftarrow 1/|\mathcal{X}|, \quad p_n = Sp_{n-1}, n = 1,$

It then holds that $\lim_{n\to\infty} p_n = \hat{p}$ where \hat{p} is the unique maximum likelihood estimate of $p \in \overline{\mathcal{P}_A}$.

It is easy to show that $\hat{p}(x) > 0$ for all $x \in \mathcal{X}$ if and only if $\hat{p} \in \mathcal{P}_{\mathcal{A}}$.

IPS by probability propagation

A *chordal cover* of A is a chordal graph G so that for all $a \in A$, a are complete subsets of G.

- Find chordal cover G of A and arrange cliques C of G in a junction tree;
- 2. Represent p implicitly as $p(x) = \frac{\prod_{C \in \mathcal{C}} \psi_C(x)}{\prod_{S \in S} \psi_S(x)}$;
- 3. Replace (2) with

$$\psi_C(x_C) \leftarrow \psi_C(x_C) \frac{n(x_a)}{np(x_a)}, \quad x_C \in \mathcal{X}_C,$$

where $a \subseteq C$ and $p(x_a)$ is calculated by probability propagation.

Closed form maximum likelihood

 \mathcal{A} is *decomposable* if $\mathcal{A} = \mathcal{C}$ where \mathcal{C} are the cliques of a chordal graph.

The IPS-algorithm converges after at a finite number of cycles (at most two) if and only if A is decomposable.

The MLE for p under the log-linear model $\mathcal{A} = \mathcal{C}(\mathcal{G})$ is

$$\hat{p}(x) = \frac{\prod_{C \in \mathcal{C}} n(x_C)}{n \prod_{S \in \mathcal{S}} n(x_S)^{\nu(S)}},$$

where $\nu(S)$ is the usual multiplicity of a separator.

In fact, with a suitably chosen ordering (e.g. MCS) of the cliques, the IPS-algorithm converges in a single cycle.

Gaussian likelihood function

The likelihood function based on a sample of size n is $L(K) \propto (\det K)^{n/2} e^{-\operatorname{tr}(KW)/2},$

where W is the Wishart matrix of sums of squares and products, $W \sim \mathcal{W}_{|V|}(n, \Sigma)$ with $\Sigma^{-1} = K \in \mathcal{S}^+(\mathcal{G})$, where $\mathcal{S}^+(\mathcal{G})$ are the positive definite matrices with $\alpha \not\sim \beta \implies k_{\alpha\beta} = 0.$

The MLE of \hat{K} is the unique element of $\mathcal{S}^+(\mathcal{G})$ satisfying

 $n\hat{\Sigma}_{cc} = w_{cc}$ for all cliques $c \in \mathcal{C}(\mathcal{G})$.

Iterative Proportional Scaling

For $K \in S^+(\overline{G})$ and $c \in C$, define the operation of 'adjusting the c-marginal' as follows. Let $a = V \setminus c$ and

$$T_c K = \begin{pmatrix} n(w_{cc})^{-1} + K_{ca}(K_{aa})^{-1}K_{ac} & K_{ca} \\ K_{ac} & K_{aa} \end{pmatrix}.$$
 (3)

Next we choose any ordering (c_1, \ldots, c_k) of the cliques in \mathcal{G} . Choose further $K_0 = I$ and define for $r = 0, 1, \ldots$

$$K_{r+1} = (T_{c_1} \cdots T_{c_k}) K_r.$$

It then holds that $\hat{K} = \lim_{r \to \infty} K_r$, provided the maximum likelihood estimate \hat{K} of K exists.

Chordal graphs

If the graph ${\mathcal G}$ is chordal, we say that the graphical model is ${\it decomposable}.$

In this case, the IPS-algorithm converges in at most two cycles, as in the discrete case.

The maximum likelihood estimates exists if and only if $n \ge |C|$ for all $C \in C$. Then

$$\hat{K} = n \left\{ \sum_{C \in \mathcal{C}} \left[\left(w_C \right)^{-1} \right]^V - \sum_{S \in \mathcal{S}} \nu(S) \left[\left(w_S \right)^{-1} \right]^V \right\}.$$

the symbol $[A]^V$ denotes for $A = \{a_{\gamma\mu}\}_{\gamma \in d, \mu \in e}$ the matrix obtained from A by filling up with zero entries to obtain full dimension.

Existence of the MLE

The general problem of existence of the MLE is non-trivial: If $n < \sup_{a \in A} |a|$ the MLE does not exist. cover of A the MLE exists with probability one. For n between these values the general situation is unclear. For the k-cycle it holds (Buhl 1993) that for n = 2, $P\{\mathsf{MLE exists} \mid \Sigma = I\} = 1 - \frac{2}{(k-1)!},$ whereas for n = 1 the MLE does not exist and for $n \ge 3$ the MLE exists with probability one, as a k-cycle has a

chordal cover with maximal clique size 3.

Special Wishart distributions

The formula

$$\hat{\Sigma} = n \left\{ \sum_{C \in \mathcal{C}} \left[\left(W_C \right)^{-1} \right]^V - \sum_{S \in \mathcal{S}} \nu(S) \left[\left(W_S \right)^{-1} \right]^V \right\}^{-1}$$

specifies $\hat{\Sigma}$ as a random matrix.

The distribution of this random Wishart-type matrix is partly reflecting Markov properties of the graph \mathcal{G} .

This is also true for the distribution of $\hat{\Sigma}$ for a non-chordal graph \mathcal{G} but not to the same degree.

Before we delve further into this, we shall need some more terminology.

Laws and distributions

Families of distributions may not always be simply parameterized, or we may want to describe the families without specific reference to a parametrization.

Generally we think of

 $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$

and sometimes identify Θ with ${\mathcal P}$ which is justified when the parametrization

$$\theta \to P_{\theta}$$

is one-to-one and onto.

In a Gaussian graphical model $\theta = K \in S^+(\mathcal{G})$ is uniquely identifying any regular Gaussian distribution satisfying the Markov properties w.r.t. \mathcal{G} .

The case when $\mathcal{P} = \mathcal{P}_{\mathcal{A}}$ is more complex, and a specific parametrization needs to be chosen to make a simple and one-to-one correspondence.

In any case, any probability measure on \mathcal{P} (or on Θ) represents a random element of \mathcal{P} , i.e. a random distribution. The *sampling distribution of the MLE* \hat{p} is an example of such a measure.

To keep heads straight we refer to a probability measure on \mathcal{P} as a *law*, whereas a *distribution* is a probability measure on \mathcal{X} .

Thus we shall e.g. speak of the *Wishart law* as we think of it specifying a distribution of $f(\cdot | \Sigma)$.

Hyper Markov Laws

We identify $\theta \in \Theta$ and $P_{\theta} \in \mathcal{P}$, so e.g. θ_A for $A \subseteq V$ denotes the distribution of X_A under P_{θ} and θ_{A+B} the family of conditional distributions of X_A given X_B , etc. For a law $\mathcal L$ on Θ we write $A \perp c B \mid S \iff \theta_{A \mid S} \perp c \theta_{B \mid S} \mid \theta_S.$ A law \mathcal{L} on Θ is *hyper Markov* w.r.t. \mathcal{G} if (i) All $\theta \in \Theta$ are globally Markov w.r.t. \mathcal{G} ; (ii) $A \perp _{\mathcal{C}} B \mid S$ whenever S is complete and $A \perp_{\mathcal{C}} B \mid S$.

Note the conditional independence is only required to hold for *graph decompositions*.

If $\boldsymbol{\theta}$ follows a hyper Markov law for this graph, it holds for example that

 $\theta_{1235} \perp \!\!\!\perp \theta_{24567} \, | \, \theta_{25}.$

We shall later show that this is indeed true for $\hat{\theta} = \hat{p}$ or $\hat{\Sigma}$ in the graphical model with this graph, i.e.

$$\hat{\Sigma}_{1235} \perp \!\!\!\perp \hat{\Sigma}_{24567} \, \big| \, \hat{\Sigma}_{25}.$$

Consequences of the hyper Markov property

Clearly, if $A \perp\!\!\!\perp_{\mathcal{L}} B \mid S$, we have for example also (using property (C2) of conditional independence)

 $\theta_A \perp\!\!\perp_{\mathcal{L}} \theta_B \mid \theta_S$

since θ_A and θ_B are functions of $\theta_{A\cup S}$ and $\theta_{B\cup S}$ respectively.

But the converse is false! $\theta_A \perp_{\mathcal{L}} \theta_B | \theta_S$ does not imply $\theta_{A \cup S} \perp_{\mathcal{L}} \theta_{B \cup S} | \theta_S$, since $\theta_{A \cup S}$ is not a function of (θ_A, θ_S) . In contrast, $X_{A \cup B}$ is indeed a (one-to-one) function of (X_A, X_B) .

However it generally holds that

 $A \perp\!\!\!\perp_{\mathcal{L}} B \mid S \iff \theta_{A \mid S} \perp\!\!\!\perp_{\mathcal{L}} \theta_{B \mid S} \mid \theta_{S}.$

Simple example

Consider the conditional independence model with graph

Here the MLE based on data $X^{(n)} = (X^1, \dots, X^n)$ is

$$\hat{p}_{ijk} = \frac{N_{ij+}N_{+jk}}{nN_{+j+}}$$

and

$$\hat{p}_{ij+} = \frac{N_{ij+}}{n}, \quad \hat{p}_{+jk} = \frac{N_{+jk}}{n}, \quad \hat{p}_{+j+} = \frac{N_{+j+}}{n}.$$

Clearly, it holds that \hat{p} is Markov on \mathcal{G} and $\{N_{ij+}\} \perp\!\!\!\perp \{N_{+jk}\} \,|\, \{X_j^{(n)}\}.$ But since e.g.

$$P(\{N_{ij+} = n_{ij}\} | \{X_j^{(n)}\}) = \prod_j \left(\frac{n_{+j+}!}{\prod_i n_{ij+}!} \prod_i p_{ij+}^{n_{ij+}}\right),$$

we have

$$\{N_{ij+}\} \perp \{X_j^{(n)}\} \mid \{N_{+j+}\}$$

and hence

$$\{N_{ij+}\} \perp \{N_{+jk}\} \mid \{N_{+j+}\},\$$

which yields the hyper Markov property.

Chordal graphs

If G is chordal and θ is hyper Markov on G, it holds that

 $A \perp_{\mathcal{G}} B \mid S \implies A \perp_{\mathcal{L}} B \mid S$

i.e. it is not necessary to specify that S is a complete separator to obtain the relevant conditional independence.

This follows essentially because for a chordal graph it holds that

 $A \perp_{\mathcal{G}} B \mid S \implies \exists S^* \subseteq S : A \perp_{\mathcal{G}} B \mid S^*$ with S^* complete.

If \mathcal{G} is not chordal, we can form $\overline{\mathcal{G}}$ by completing all prime components of \mathcal{G} .

Then if θ is hyper Markov on \mathcal{G} , it is also hyper Markov on $\overline{\mathcal{G}}$, and thus

$$A \perp_{\overline{\mathcal{G}}} B \mid S \implies A \perp \!\!\!\perp_{\mathcal{L}} B \mid S.$$

But the similar result would be *false* for an arbitrary chordal cover of \mathcal{G} .

Directed hyper Markov property

We have similar notions and results in the directed case. Say $\mathcal{L} = \mathcal{L}(\theta)$ is *directed hyper Markov* w.r.t. a DAG \mathcal{D} if θ is directed Markov on \mathcal{D} for all $\theta \in \Theta$ and

 $\theta_{v \cup \mathrm{pa}(v)} \perp\!\!\!\perp_{\mathcal{L}} \theta_{\mathrm{nd}(v)} \, \big| \, \theta_{\mathrm{pa}(v)},$

or equivalently $\theta_{v \mid \operatorname{pa}(v)} \perp \!\!\!\!\perp_{\mathcal{L}} \theta_{\operatorname{nd}(v)} \mid \theta_{\operatorname{pa}(v)}$, or equivalently for a well-ordering

$$\theta_{v \cup \mathrm{pa}(v)} \perp \mathcal{L} \theta_{\mathrm{pr}(v)} | \theta_{\mathrm{pa}(v)}.$$

In general there is no similar statement corresponding to the global property and d-separation.

However, if \mathcal{D} is perfect, \mathcal{L} is directed hyper Markov w.r.t. \mathcal{D} if and only if \mathcal{L} is hyper Markov w.r.t. $\mathcal{G} = \sigma(\mathcal{D}) = \mathcal{D}^m$.

References

Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. *Scandinavian Journal of Statistics*, **20**, 263–70.