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Overview of lectures

Conditional independence and Markov properties
More on Markov properties

Graph decompositions and junction trees
Probability propagation and related algorithms
Log-linear and Gaussian graphical models

Hyper Markov laws

More on hyper Markov laws

Structure estimation and Bayes factors

More on structure estimation.



Log—linear models

A denotes a set of (pairwise incomparable) subsets of V.
A density f factorizes w.r.t. A

f@) = 1] val@).

acA

The set of distributions P4 which factorize w.r.t. A is the
hierarchical log—linear model generated by the A.

A is the generating class of the log-linear model.



Dependence graph
The dependence graph G(P) for a family of distributions P
is the smallest graph G so that
allp BV \{a,ps} forall P € P.

The dependence graph of a log-linear model P 4 is then
determined by

a~f < JacA:a,pE€a.
Sets in A are complete in G(.A) and therefore distributions
in P4 factorize according to G(A).

They are also global, local, and pairwise Markov w.r.t.

G(A).



Conformal log-linear model

The set C(G) of cliques of G is a generating class for the
log—linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A=C(G(A)), Ais
conformal.

Conformal log-linear models can be completely described in
terms of conditional independence.

For more general log-linear models factor graphs are needed
to yield a faithful representation of the factorization. MIM
(software by David Edwards www.hypergraph.dk), uses
the term interaction graph.



Likelihood equations

For any generating class A it holds that the maximum
likelihood estimate p of p is the unique element of P 4
which satisfies the system of equations

np(xq) = n(xz,),Va € Az, € X,. (1)
The system of equations (1) expresses the fitting of the
marginals in A.

In general, the equations cannot be solved explicitly, but
iterative methods are needed.



Iterative Proportional Scaling

For a € A define the scaling operation on p:
n(z,)
np(za)’

The operation T, fits the a-marginal. Now, make any
ordering of the generators A = {a1,...,ax}. Define S by

Sp =14, - Ty, Ta,p-

(Tap)(z) — p(z) zeX. (2)

Let po(w) — 1/|X], pn = Spo_1,n=1,....

It then holds that lim,, ., p, = p where p is the unique
maximum likelihood estimate of p € P 4.

It is easy to show that p(x) > 0 for all x € X if and only if
pE Pa.



IPS by probability propagation

A chordal cover of A is a chordal graph G so that for all
a € A, a are complete subsets of G.

1.

Find chordal cover G of A and arrange cliques C of G
in a junction tree;

_ Hcgc wC(I) .

. Represent p implicitly as p(z) = Mecevs@’
E

Replace (2) with
n(zq)
np(ra)’

where a C C and p(z,) is calculated by probability
propagation.

o € Xc,

Ye(ze) — Yol(ze)



Closed form maximum likelihood

A is decomposable if A = C where C are the cliques of a
chordal graph.

The IPS-algorithm converges after at a finite number of
cycles (at most two) if and only if A is decomposable.

The MLE for p under the log-linear model A = C(G) is

) = —heee (o)

= n HSGS n(xs)y(s) 9

where v(.5) is the usual multiplicity of a separator.

In fact, with a suitably chosen ordering (e.g. MCS) of the
cliques, the IPS-algorithm converges in a single cycle.



Gaussian likelihood function

The likelihood function based on a sample of size n is
L(K) o (det K)"/2e= tr(EW)/2,

where W is the Wishart matrix of sums of squares and
products, W ~ Wy (n, X) with 7! = K € §T(G), where
S1(G) are the positive definite matrices with

ot B = kag=0.

The MLE of K is the unique element of S* (G) satisfying

N e = Wee for all cliques ¢ € C(G).



Iterative Proportional Scaling

For K € ST(G) and ¢ € C, define the operation of
‘adjusting the c-marginal’ as follows. Let a = V' \ ¢ and

_ n(wcc)71 A Kca(Kaa)ilKac Kca
TK = ( K, K)o ©

Next we choose any ordering (ci, . .., ck) of the cliques in
G. Choose further Ky = I and define for » =0, 1, ...

Koy =Ty, - Te, ) K,

It then holds that IQ'A: lim, .. K., provided the maximum
likelihood estimate K of K exists.



Chordal graphs

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in at most two
cycles, as in the discrete case.

The maximum likelihood estimates exists if and only if
n > |C| for all C € C. Then

K = n{z [we)™]" = S w(s) [<ws>‘1}v} .
cecC SeS

the symbol [A]Y denotes for A = {a., }yed, uce the matrix
obtained from A by filling up with zero entries to obtain
full dimension.



Existence of the MLE

The general problem of existence of the MLE is non-trivial:
If n < sup,¢ 4 |a| the MLE does not exist.

If n > supece |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.

For n between these values the general situation is unclear.

For the k-cycle it holds (Buhl 1993) that for n = 2,

2
(k=1
whereas for n = 1 the MLE does not exist and for n > 3

the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.

P{MLE exists | X =1} =1—



Special Wishart distributions

The formula

1= n{z (o))" - X us) [(Wsﬂ}v}_l

cecC SeS

specifies > as a random matrix.

The distribution of this random Wishart-type matrix is
partly reflecting Markov properties of the graph G.

This is also true for the distribution of 3 for a non-chordal
graph G but not to the same degree.

Before we delve further into this, we shall need some more
terminology.



Laws and distributions

Families of distributions may not always be simply
parameterized, or we may want to describe the families
without specific reference to a parametrization.

Generally we think of
P = {Pg, 0 e @}

and sometimes identify © with P which is justified when
the parametrization
0 — Pg

is one-to-one and onto.
In a Gaussian graphical model # = K € ST(G) is uniquely

identifying any regular Gaussian distribution satisfying the
Markov properties w.r.t. G.



The case when P = P4 is more complex, and a specific
parametrization needs to be chosen to make a simple and
one-to-one correspondence.

In any case, any probability measure on P (or on ©)
represents a random element of P, i.e. a random
distribution. The sampling distribution of the MLE p is an
example of such a measure.

To keep heads straight we refer to a probability measure on
‘P as a law, whereas a distribution is a probability measure
on X.

Thus we shall e.g. speak of the Wishart law as we think of
it specifying a distribution of f(-|X).



Hyper Markov Laws

We identify 6 € © and Py € P,soe.g. 04 for ACV
denotes the distribution of X4 under P and 04| p the
family of conditional distributions of X 4 given Xp, etc.

For a law £ on © we write
AJ_LgB ‘ S <= GAUSJJ-E egus |95.
A law L on O is hyper Markov w.r.t. G if

(i) All § € © are globally Markov w.r.t. G;
(i) AlLz B|S whenever S is complete and A Lg B|S.

Note the conditional independence is only required to hold
for graph decompositions.



Hyper Markov property
p) 4

If 6 follows a hyper Markov law for this graph, it holds for
example that
01235 1L 024567 | 025

We shall later show that this is indeed true for 6 = p or &
in the graphical model with this graph, i.e.

31235 AL Sogs67 | Las-



Consequences of the hyper Markov property
Clearly, if A Ll » B|S, we have for example also (using
property (C2) of conditional independence)

0allo 05|05

since 04 and 6p are functions of 8445 and Opys
respectively.

But the converse is false! 64 1L, 0p |05 does not imply
Oaus 1L, 0pus | fg, since O us is not a function of
(64,0s). In contrast, X 4up is indeed a (one-to-one)
function of (X4, Xp).

However it generally holds that
AJ_LLB|S — 9A‘5ﬂ£93‘5|95.



Simple example

Consider the conditional independence model with graph

* ———o——0

1 J K

Here the MLE based on data X(™ = (X! ... X")is

Nij+ Ny
nNyjt

DPijk =
and

e = Nt 5 Nk _ Nij+
1j+ m o +J n +i+ P




Clearly, it holds that p is Markov on G and

{Nijo} LN} [{X V)
But since e.g.

_ (m)yy _ n+j+! nij
P({Nij+ = ni5}t| {Xj }= ];[ <W ]_:[Z%ﬂf) )
we have
{Nij4 } L {XVH N4}
and hence
{Nij+} LN} [ { N4+

which yields the hyper Markov property.



Chordal graphs

If G is chordal and 6 is hyper Markov on G, it holds that
AJ_gB|S = AJ_L[;B|S

i.e. it is not necessary to specify that S is a complete
separator to obtain the relevant conditional independence.

This follows essentially because for a chordal graph it holds
that

AlgB|S = 35" CS:ALlgB|S* with S* complete.

If G is not chordal, we can form G by completing all prime
components of G.



Ihen if 6 is hyper Markov on G, it is also hyper Markov on
g, and thus

But the similar result would be false for an arbitrary chordal
cover of G.



Directed hyper Markov property

We have similar notions and results in the directed case.

Say L = L(0) is directed hyper Markov w.r.t. a DAG D if 0
is directed Markov on D for all § € © and

avUpa(v) A, end(v) | apa(v)v
or equivalently 6, | pa(v) 1Lz Ond(v) | Opa(v), Or equivalently
for a well-ordering

e'uUpa(v) Ur epr('u) | 6pa(v)~

In general there is no similar statement corresponding to
the global property and d-separation.

However, if D is perfect, L is directed hyper Markov w.r.t.
D if and only if L is hyper Markov w.r.t. G = o(D) = D™.
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