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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and related algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.
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Log–linear models

A denotes a set of (pairwise incomparable) subsets of V .

A density f (or function) factorizes w.r.t. A if there exist
functions ψa(x) which depend on xa only and

f(x) =
∏
a∈A

ψa(x).

The set of distributions PA which factorize w.r.t. A is the
hierarchical log–linear model generated by A.

A is the generating class of the log–linear model.

No specific need to demand sets in A to be incomparable.
Only to avoid redundancy.
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Traditional notation

Traditionally used for contingency tables, where e.g. mijk

denotes the mean of the counts Nijk in the cell (i, j, k)
which has then been expanded as e.g.

logmijk = αi + βj + γk (1)

or
logmijk = αij + βjk (2)

or
logmijk = αij + βjk + γik, (3)

or (with redundancy)

logmijk = γ + δi + φj + ηk + αij + βjk + γik, (4)

etc.
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Connecting to tradition

This largely a matter of different notation.

Assume data X1 = x1, . . . , Xn = xn and V = {I, J,K}.

Write i = 1, . . . , |I| for the possible values of XI etc. and

Nijk = |{ν : xν = (i, j, k)}|,

etc. Then mijk = nf(x) and if f(x) > 0 and factorizes
w.r.t. A = {{I, J}, {J,K}}

log f(x) = logψIJ(xI , xJ) + logψJK(xJ , xK).

Thus if we let

αij = log n+ logψIJ(xI , xJ), βjk = logψJK(xJ , xK)
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we have
logmijk = αij + βjk.

The only difference is the assumption of positivity which is
not necessary when using the multiplicative definition.

It is typically an advantage to relax the restriction of
positivity although it also creates technical difficulties.

The logarithm of the factors φa = logψa are known as
interaction terms of order |a| − 1 or |a|-factor interactions.

Interaction terms of 0th order are called main effects.

We also refer to the factors themselves using the same
terms.
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Dependence graph

Any joint probability distribution P of X = (Xv, v ∈ V )
has a dependence graph G = G(P ) = (V,E(P )).

This is defined by letting α 6∼ β in G(P ) exactly when

α⊥⊥P β |V \ {α, β}.

X will then satisfy the pairwise Markov w.r.t. G(P ) and
G(P ) is smallest with this property, i.e. P is pairwise
Markov w.r.t. G iff

G(P ) ⊆ G.
The dependence graph G(P) for a family P is the smallest
graph G so that all P ∈ P are pairwise Markov w.r.t. G:

α⊥⊥P β |V \ {α, β} for all P ∈ P.
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Dependence graph of log–linear model

For any generating class A we construct the dependence
graph G(A) = G(PA) of the log–linear model PA.

This is determined by the relation

α ∼ β ⇐⇒ ∃a ∈ A : α, β ∈ a.

Sets in A are clearly complete in G(A) and therefore
distributions in PA factorize according to G(A).

They are thus also global, local, and pairwise Markov w.r.t.
G(A).
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Independence

The log–linear model specified by (1) is known as the main
effects model.

It has generating class consisting of singletons only
A = {{I}, {J}, {K}}. It has dependence graph

J

I K

t
t t

Thus it corresponds to complete independence.
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Conditional independence

The log–linear model specified by (2) has no interaction
between I and K.

It has generating class A = {{I, J}, {J,K}} and
dependence graph
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Thus it corresponds to the conditional independence
I ⊥⊥K | J .
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No interaction of second order

The log–linear model specified by (3) has no second-order
interaction. It has generating class
A = {{I, J}, {J,K}, {I,K}} and its dependence graph
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is the complete graph. Thus it has no conditional
independence interpretation.
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Conformal log-linear models

As a generating class defines a dependence graph G(A),
the reverse is also true.

The set C(G) of cliques of G is a generating class for the
log–linear model of distributions which factorize w.r.t. G.

If the dependence graph completely summarizes the
restrictions imposed by A, i.e. if A = C(G(A)), A is
conformal .

The generating classes for the models given by (1) and (2)
are conformal, whereas this is not the case for (3).
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Factor graphs
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The factor graph of A is the bipartite graph with vertices
V ∪ A and edges define by

α ∼ a ⇐⇒ α ∈ a.

Using this graph even non-conformal log–linear models
admit a simple visual representation.
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Separation in factor graphs

If F = F (A) is the factor graph for A and G = G(A) the
corresponding dependence graph, it is not difficult to see
that for A, B, S being subsets of V

A⊥G B |S ⇐⇒ A⊥F B |S

and hence conditional independence properties can be read
directly off the factor graph also.

In that sense, the factor graph is more informative than the
dependence graph.
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Data in list form

Consider a sample X1 = x1, . . . , Xn = xn from a
distribution with probability mass function p. We refer to
such data as being in list form, e.g. as

case Admitted Sex
1 Yes Male
2 Yes Female
3 No Male
4 Yes Male
...

...
...
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Contingency Table

Data often presented in the form of a contingency table or
cross-classification, obtained from the list by sorting
according to category:

Sex
Admitted Male Female
Yes 1198 557
No 1493 1278

The numerical entries are cell counts

n(x) = |{ν : xν = x}|

and the total number of observations is n =
∑

x∈X n(x).
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Likelihood function

Assume now p ∈ PA but otherwise unknown. The
likelihood function can be expressed as

L(p) =
n∏

ν=1

p(xν) =
∏
x∈X

p(x)n(x).

In contingency table form the data follow a multinomial
distribution

P{N(x) = n(x), x ∈ X} =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x)

but this only affects the likelihood function by a constant
factor.

17



Properties of the likelihood function

The likelihood function

L(p) =
∏
x∈X

p(x)n(x),

is continuous as a function of the (|X |-dimensional vector)
unknown probability distribution p.

Since the closure PA is compact (bounded and closed), L
attains its maximum on PA (not necessarily on PA itself).

Indeed, it is also true that L has a unique maximum over
PA, essentially because the likelihood function is
log-concave.

18



Uniqueness of the MLE

For simplicity, we only establish uniqueness within PA. The
proof is indirect.

Assume p1, p2 ∈ PA with p1 6= p2 and

L(p1) = L(p2) = sup
p∈PA

L(p). (5)

Define
p12(x) = c

√
p1(x)p2(x),

where c−1 = {
∑

x

√
p1(x)p2(x)} is a normalizing constant.
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Then p12 ∈ PA because

p12(x) = c
√
p1(x)p2(x)

= c
∏
a∈A

√
ψ1

a(x)ψ2
a(x) =

∏
a∈A

ψ12
a (x),

where e.g. ψ12
a = c1/|A|

√
ψ1

a(x)ψ2
a(x).

The Cauchy–Schwarz inequality yields

c−1 =
∑

x

√
p1(x)p2(x) <

√∑
x

p1(x)
√∑

x

p2(x) = 1.
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Hence

L(p12) =
∏
x

p12(x)n(x)

=
∏
x

{
c{

√
p1(x)p2(x)

}n(x)

= cn
∏
x

√
p1(x)

n(x) ∏
x

√
p2(x)

n(x)

= cn
√
L(p1)L(p2)

>
√
L(p1)L(p2) = L(p1) = L(p2),

which contradicts (5). Hence we conclude p1 = p2.

The extension to PA is almost identical. It just needs a
limit argument to establish p1, p2 ∈ PA =⇒ p12 ∈ PA.
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Likelihood equations

The maximum likelihood estimate p̂ of p is the unique
element of PA which satisfies the system of equations

np̂(xa) = n(xa),∀a ∈ A, xa ∈ Xa. (6)

Here g(xa) =
∑

y:ya=xa
g(y) is the a-marginal of the

function g.

The system of equations (6) expresses the fitting of the
marginals in A.

This is also an instance of the familiar result that in an
exponential family (log-linear ∼ exponential), the MLE is
found by equating the sufficient statistics (marginal counts)
to their expectation.
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Proportional scaling

To show that the equations (6) indeed have a solution, we
simply describe a convergent algorithm which solves it.
This cycles (repeatedly) through all the a-marginals in A
and fit them one by one.

For a ∈ A define the following scaling operation on p:

(Tap)(x)← p(x)
n(xa)
np(xa)

, x ∈ X

where 0/0 = 0 and b/0 is undefined if b 6= 0.
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Fitting the marginals

The operation Ta fits the a-marginal if p(xa) > 0 when
n(xa) > 0:

n(Tap)(xa) = n
∑

y:ya=xa

p(y)
n(ya)
np(ya)

= n
n(xa)
np(xa)

∑
y:ya=xa

p(y)

= n
n(xa)
np(xa)

p(xa) = n(xa).
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Iterative Proportional Scaling

Make an ordering of the generators A = {a1, . . . , ak}.
Define S by a full cycle of scalings

Sp = Tak
· · ·Ta2Ta1 .

Define the iteration

p0(x)← 1/|X |, pn = Spn−1, n = 1, . . . .

It then holds that
lim

n→∞
pn = p̂

where p̂ is the unique maximum likelihood estimate of
p ∈ PA, i.e. the solution of the equation system (6).
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Iterative Proportional Fitting

Known as the IPS-algorithm or IPF -algorithm, or as a
variety of other names. Implemented e.g. (inefficiently) in
R in loglin with front end loglm in MASS.

Key elements in proof:

1. If p ∈ PA, so is Tap;

2. Ta is continuous at any point p of PA with p(xa) 6= 0
whenever n(xa) = 0;

3. L(Tap) ≥ L(p) so likelihood always increases;

4. p̂ is the unique fixpoint for T (and S);

5. PA is compact.
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A simple example

Admitted
Sex Yes No S-marginal
Male 1198 1493 2691
Female 557 1278 1835
A-marginal 1755 2771 4526

Admissions data from Berkeley. Consider A⊥⊥S,
corresponding to A = {{A}, {S}}.

We should fit A-marginal and S-marginal iteratively.
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Initial values

Admitted
Sex Yes No S-marginal
Male 1131.5 1131.5 2691
Female 1131.5 1131.5 1835
A-marginal 1755 2771 4526

Entries all equal to 4526/4. Gives initial values of np0.
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Fitting S-marginal

Admitted
Sex Yes No S-marginal
Male 1345.5 1345.5 2691
Female 917.5 917.5 1835
A-marginal 1755 2771 4526

For example

1345.5 = 1131.5
2691

1131.5 + 1131.5

and so on.
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Fitting A-marginal

Admitted
Sex Yes No S-marginal
Male 1043.46 1647.54 2691
Female 711.54 1123.46 1835
A-marginal 1755 2771 4526

For example

711.54 = 917.5
1755

917.5 + 1345.5

and so on.

Algorithm has converged, as both marginals now fit!
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Normalised to probabilities

Admitted
Sex Yes No S-marginal
Male 0.231 0.364 0.595
Female 0.157 0.248 0.405
A-marginal 0.388 0.612 1

Dividing everything by 4526 yields p̂.

It is overkill to use the IPS algorithm as there is an explicit
formula in this case.
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IPS by probability propagation

The IPS-algorithm performs the scaling operations Ta:

p(x)← p(x)
n(xa)
np(xa)

, x ∈ X . (7)

This moves through all possible values of x ∈ X , which in
general can be huge, hence impossible.

Jiroušek and Přeučil (1995) realized that the algorithm
could be implemented using probability propagation:

A chordal graph G with cliques C so that for all a ∈ A, a
are complete subsets of G is a chordal cover of A.

1. Find chordal cover G of A ;

32



2. Arrange cliques C of G in a junction tree;

3. Represent p implicitly as

p(x) =
∏

C∈C ψC(x)∏
S∈S ψS(x)

;

4. Replace the step (7) with

ψC(xC)← ψC(xC)
n(xa)
np(xa)

, xC ∈ XC ,

where a ⊆ C and p(xa) is calculated by probability
propagation.

Since the scaling only involves XC , this is possible just if
maxC∈C |XC | is of a reasonable size.
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Closed form maximum likelihood

In some cases the IPS algorithm converges after a finite
number of cycles.

An explicit formula is then available for the MLE of p ∈ PA.

A generating class A is called decomposable if A = C (i.e.
A is conformal) and C are the cliques of a chordal graph G.

The IPS-algorithm converges after a finite number of cycles
(at most two) if and only if A is decomposable.

A = {{1, 2}, {2, 3}, {1, 3}} is the smallest non-conformal
generating class, demanding proper iteration.
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Explicit formula for MLE

Let S be the set of minimal separators of the chordal graph
G. The MLE for p under the log-linear model with
generating class A = C(G) is

p̂(x) =
∏

C∈C n(xC)
n

∏
S∈S n(xS)ν(S)

where ν(S) is the number of times S appears as an
intersection a ∩ b of neighbours in a junction tree T with A
as vertex set.

Contrast this with the factorization of the probability
function itself:

p(x) =
∏

C∈C p(xC)∏
S∈S p(xS)ν(S)

.
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Density of multivariate Gaussian

If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the
distribution has density w.r.t. Lebesgue measure on Rd

f(x | ξ,Σ) = (2π)−d/2(detK)1/2e−(x−ξ)>K(x−ξ)/2, (8)

where K = Σ−1 is the concentration matrix of the
distribution. We then also say that Σ is regular .
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Marginal and conditional distributions

Partition X into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs

with r + s = d.

Partition mean vector, concentration and covariance matrix
accordingly as

ξ =
(
ξ1
ξ2

)
, K =

(
K11 K12

K21 K22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
so that Σ11 is r × r and so on. Then, if X ∼ Nd(ξ,Σ)

X2 ∼ Ns(ξ2,Σ22)

and
X1 |X2 = x2 ∼ Nr(ξ1|2,Σ1|2),
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where

ξ1|2 = ξ1+Σ12Σ−22(x2−ξ2) and Σ1|2 = Σ11−Σ12Σ−22Σ21.

Σ−22 is an arbitrary generalized inverse to Σ22.

In the regular case it also holds that

K−1
11 = Σ11 − Σ12Σ−1

22 Σ21 (9)

and
K−1

11 K12 = −Σ12Σ−1
22 , (10)

so then,

ξ1|2 = ξ1 −K−1
11 K12(x2 − ξ2) and Σ1|2 = K−1

11 .

In particular, if Σ12 = 0, X1 and X2 are independent.

38



Gaussian likelihoods

Consider ξ = 0 and a sample X1 = x1, . . . , Xn = xn

Nd(0,Σ) with Σ regular.

Using (8), we get the likelihood function

L(K) = (2π)−nd/2(detK)n/2e−
∑n

ν=1(x
ν)>Kxν/2

∝ (detK)n/2e− tr{K
∑n

ν=1 xν(xν)>}/2

= (detK)n/2e− tr(KW )/2. (11)

where

W =
n∑

ν=1

xν(xν)>

is the matrix of sums of squares and products.
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Wishart distribution

The Wishart distribution is the sampling distribution of the
matrix of sums of squares and products. More precisely:

A random d× d matrix S has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D=

n∑
i=1

Xν(Xν)>

where Xν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).
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If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.

If W1 and W2 are independent with Wi ∼ Wd(ni,Σ), then

W1 +W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr(n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd,

λ>Wλ ∼ σ2
λχ

2(n),

where σ2
λ = λ>Σλ.
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Wishart density

If W ∼ Wd(n,Σ), where Σ is regular, then

W is regular with probability one if and only if n ≥ d.

When n ≥ d the Wishart distribution has density

fd(w |n,Σ)

= c(d, n)−1(detΣ)−n/2(detw)(n−d−1)/2e− tr(Σ−1w)/2

w.r.t. Lebesgue measure on the set of positive definite
matrices.

The Wishart constant c(d, n) is

c(d, n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n+ 1− i)/2}.
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Conditional independence

Consider X = (X1, . . . , XV ) ∼ N|V |(0,Σ) with Σ regular
and K = Σ−1.

The concentration matrix of the conditional distribution of
(Xα, Xβ) given XV \{α,β} is

K{α,β} =
(
kαα kαβ

kβα kββ

)
.

Hence
α⊥⊥β |V \ {α, β} ⇐⇒ kαβ = 0.

Thus the dependence graph G(K) of a regular Gaussian
distribution is given by

α 6∼ β ⇐⇒ kαβ = 0.
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Graphical models

S(G) denotes the symmetric matrices A with aαβ = 0
unless α ∼ β and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as
multivariate normal with K ∈ S+(G) and otherwise
unknown.

Note that the density then factorizes as

log f(x) = constant− 1
2

∑
α∈V

kααx
2
α −

∑
{α,β}∈E

kαβxαxβ ,

hence no interaction terms involve more than pairs..

This is different from the discrete case and generally makes
things easier.
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Likelihood function

The likelihood function based on a sample of size n is

L(K) ∝ (detK)n/2e− tr(KW )/2,

where W is the Wishart matrix of sums of squares and
products, W ∼ W|V |(n,Σ) with Σ−1 = K ∈ S+(G).

For any matrix A we let A(G) = {a(G)αβ} where

a(G)αβ =
{
aαβ if α = β or α ∼ β
0 otherwise.

Then, as K ∈ S(G)

tr(KW ) = tr{KW (G)}.
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Hence we can identify the family as a (regular and
canonical) exponential family with elements of W (G) as
canonical sufficient statistics and the likelihood equations

E{W (G)} = nΣ(G) = w(G)obs.

Alternatively we can write the equations as

nσ̂vv = wvv, nσ̂αβ = wαβ , v ∈ V, {α, β} ∈ E,

with the model restriction Σ−1 ∈ S+(G).

This ‘fits variances and covariances along nodes and edges
in G’ so we can write the equations as

nΣ̂cc = wcc for all cliques c ∈ C(G),

hence making the equations analogous to the discrete case.
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Iterative Proportional Scaling

For K ∈ S+(G) and c ∈ C, define the operation of
‘adjusting the c-marginal’ as follows. Let a = V \ c and

TcK =
(
n(wcc)−1 +Kca(Kaa)−1Kac Kca

Kac Kaa

)
. (12)

This operation is clearly well defined if wcc is positive
definite.

Exploiting that it holds in general that

(K−1)cc = Σcc =
{
Kcc −Kca(Kaa)−1Kac

}−1
,

we find the covariance Σ̃cc corresponding to the adjusted
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concentration matrix becomes

Σ̃cc = {(TcK)−1}cc

=
{
n(wcc)−1 +Kca(Kaa)−1Kac −Kca(Kaa)−1Kac

}−1

= wcc/n,

hence TcK does indeed adjust the marginals.

From (12) it is seen that the pattern of zeros in K is
preserved under the operation Tc, and it can also be seen to
stay positive definite.

In fact, Tc scales proportionally in the sense that

f{x | (TcK)−1} = f(x |K−1)
f(xc |wcc/n)
f(xc |Σcc)

.

This clearly demonstrates the analogy to the discrete case.
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Next we choose any ordering (c1, . . . , ck) of the cliques in
G. Choose further K0 = I and define for r = 0, 1, . . .

Kr+1 = (Tc1 · · ·Tck
)Kr.

Then we have: Consider a sample from a covariance
selection model with graph G. Then

K̂ = lim
r→∞

Kr,

provided the maximum likelihood estimate K̂ of K exists.

The general problem of existence of the MLE is non-trivial:

If n < supa∈A |a| the MLE does not exist.

If n ≥ supC∈C |C|, where C are the cliques of a chordal
cover of A the MLE exists with probability one.
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For n between these values the general situation is unclear.

For the k-cycle it holds (Buhl 1993) that for n = 2,

P{MLE exists |Σ = I} = 1− 2
k − 1!

,

whereas for n = 1 the MLE does not exist and for n ≥ 3
the MLE exists with probability one, as a k-cycle has a
chordal cover with maximal clique size 3.
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Chordal graphs

If the graph G is chordal, we say that the graphical model is
decomposable.

In this case, the IPS-algorithm converges in a finite number
of steps, as in the discrete case.

We also have the familiar factorization of densities

f(x |Σ) =
∏

C∈C f(xC |ΣC)∏
S∈S f(xS |ΣS)ν(S)

(13)

where ν(S) is the number of times S appear as intersection
between neighbouring cliques of a junction tree for C.
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Relations for trace and determinant

Using the factorization (13) we can match the expressions
for the trace and determinant to obtain

tr(KW ) =
∑
C∈C

tr(KCWC)−
∑
S∈S

ν(S) tr(KSWS)

and further

detΣ = {det(K)}−1 =
∏

C∈C det{(K−1)C}∏
S∈S [det{(K−1)S}]ν(S)

=
∏

C∈C det{ΣC}∏
S∈S{det(ΣS)}ν(S)
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Maximum likelihood estimates

For a |d| × |e| matrix A = {aγµ}γ∈d,µ∈e we let [A]V denote
the matrix obtained from A by filling up with zero entries
to obtain full dimension |V | × |V |, i.e.

(
[A]V

)
γµ

=
{
aγµ if γ ∈ d, µ ∈ e
0 otherwise.

The maximum likelihood estimates exists if and only if
n ≥ C for all C ∈ C. Then the following simple formula
holds for the maximum likelihood estimate of K:

K̂ = n

{∑
C∈C

[
(wC)−1

]V

−
∑
S∈S

ν(S)
[
(wS)−1

]V
}
.
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The determinant of the MLE is

det(K̂) =
∏

S∈S{det(wS)}ν(S)∏
C∈C det(wC)

n|V |.
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