Graph Decompositions and Junction Trees

Lecture 3 Saint Flour Summerschool, July 6, 2006 Steffen L. Lauritzen, University of Oxford

Overview of lectures

- 1. Conditional independence and Markov properties
- 2. More on Markov properties
- 3. Graph decompositions and junction trees
- 4. Probability propagation and similar algorithms
- 5. Log-linear and Gaussian graphical models
- 6. Conjugate prior families for graphical models
- 7. Hyper Markov laws
- 8. Structure learning and Bayes factors
- 9. More on structure learning.

Some motivation

- *Perfect DAGs* are simple, because their directions can be ignored as they are Markov equivalent to their skeleton;
- Undirected graphs which can occur as *skeletons* of *perfect DAGs* are therefore particularly simple;
- An n-cycle with n ≥ 4 cannot be oriented to form a perfect DAG:

• The important simplifying idea is that of *graph decomposition* and *decomposability*.

Graph decomposition

Consider an *undirected* graph $\mathcal{G} = (V, E)$. A partitioning of V into a triple (A, B, S) of subsets of V forms a *decomposition* of \mathcal{G} if

 $A \perp_{\mathcal{G}} B \mid S$ and S is complete.

The decomposition is *proper* if $A \neq \emptyset$ and $B \neq \emptyset$.

The *components* of \mathcal{G} are the induced subgraphs $\mathcal{G}_{A\cup S}$ and $\mathcal{G}_{B\cup S}$.

A graph is *prime* if no proper decomposition exists.

The graph to the left is prime

Decomposition with $A = \{1, 3\}, B = \{4, 6, 7\}$ and $S = \{2, 5\}$

Decomposition of Markov properties

Suppose P satisfies (F) w.r.t. ${\mathcal G}$ and (A,B,S) is a decomposition. Then

(i) P_{A∪S} and P_{B∪S} satisfy (F) w.r.t. G_{A∪S} and G_{B∪S} respectively;

(ii)

 $f(x)f_S(x_S) = f_{A\cup S}(x_{A\cup S})f_{B\cup S}(x_{B\cup S}).$

The first part of the statement is true when (F) is replaced by (G).

The second is also true for (G) if the relevant densities exist.

Markov combination

Let Q and R be distributions on $\mathcal{X}_{A\cup S}$ and $\mathcal{X}_{B\cup S}$ resp. and assume Q and R are *consistent*, i.e. $Q_S = R_S$.

Then there is a unique distribution P = Q * R so that

(i)
$$P_{A\cup S} = Q$$
 and $P_{B\cup S} = R_i$
(ii) $A \perp P B \mid S$.

Q * R is the *Markov combination* of Q and R. If Q and R have densities q and r, so has P and

 $p(x)q_S(x_S) = p(x)r_S(x_S) = q(x_{A\cup S})r(x_{B\cup S}).$

The Markov combination *maximizes entropy* among measures satisfying (i).

Decomposability

Any graph can be recursively decomposed into its maximal prime subgraphs:

A graph is *decomposable* (or rather fully decomposable) if it is complete or admits a proper decomposition into *decomposable* subgraphs.

Definition is recursive. Alternatively this means that *all* maximal prime subgraphs are cliques.

Factorization of Markov distributions

Recursive decomposition of a decomposable graph into cliques yields the formula:

$$f(x)\prod_{S\in\mathcal{S}}f_S(x_S)^{\nu(S)}=\prod_{C\in\mathcal{C}}f_C(x_C).$$

Here S is the set of *minimal complete separators* occurring in the decomposition process and $\nu(S)$ the number of times such a separator appears in this process.

Combinatorial consequences

Note that if we let $\mathcal{X}_v = \{0, 1\}$ and f be uniform, this yields

$$2^{-|V|} \prod_{S \in \mathcal{S}} 2^{-|S|\nu(S)} = \prod_{C \in \mathcal{C}} 2^{-|C|}$$

and hence we must have

$$\sum_{C \in \mathcal{C}} |C| - \sum_{S \in \mathcal{S}} |S|\nu(S) = |V|.$$

It also holds that

$$\sum_{S \in \mathcal{S}} \nu(S) = |V| - 1.$$

Properties associated with decomposability

A numbering $V = \{1, ..., |V|\}$ of the vertices of an undirected graph is *perfect* if the induced oriented graph is a perfect DAG or, equivalently, if

 $\forall j = 2, \dots, |V| : \mathrm{bd}(j) \cap \{1, \dots, j-1\}$ is complete in \mathcal{G} .

An undirected graph \mathcal{G} is *chordal* if it has no chordless n-cycles with $n \geq 4$.

These graphs are also known as *rigid circuit* graphs or *triangulated* graphs.

A set S is an (α, β) -separator if $\alpha \perp_{\mathcal{G}} \beta \mid S$,

Characterizing chordal graphs

The following are equivalent for any undirected graph \mathcal{G} .

- (i) \mathcal{G} is chordal;
- (ii) \mathcal{G} is decomposable;
- (iii) All maximal prime subgraphs of G are cliques;
- (iv) *G* admits a perfect numbering;
- (v) Every minimal (α, β) -separator are complete.

Trees are chordal graphs and thus decomposable.

Identifying chordal graphs

Here is a (greedy) algorithm for checking chordality:

- 1. Look for a vertex v^* with $bd(v^*)$ complete. If no such vertex exists, the graph is not chordal.
- 2. Form the subgraph $\mathcal{G}_{V \setminus v^*}$ and let $v^* = |V|$;
- 3. Repeat the process under 1;
- 4. If the algorithm continues until only one vertex is left, the graph is chordal and the numbering is perfect.

The complexity of this algorithm is $O(|V|^2)$.

This graph is *not* chordal, as there is no candidate for number 4.

This graph is chordal!

This simple algorithm has complexity O(|V| + |E|):

- 1. Choose $v_0 \in V$ arbitrary and let $v_0 = 1$;
- 2. When vertices $\{1, 2, ..., j\}$ have been identified, choose v = j + 1 among $V \setminus \{1, 2, ..., j\}$ with highest cardinality of its numbered neighbours;
- 3. If $bd(j + 1) \cap \{1, 2, ..., j\}$ is not complete, \mathcal{G} is not chordal;
- 4. Repeat from 2;
- 5. If the algorithm continues until only one vertex is left, the graph is chordal and the numbering is perfect.

The graph is not chordal! because 7 does not have a complete boundary.

MCS numbering for the chordal graph. Algorithm runs essentially as before.

Finding the cliques of a chordal graph

From an MCS numbering $V = \{1, ..., |V|\}$, let $S_{\lambda} = bd(\lambda) \cap \{1, ..., \lambda - 1\}$

and $\pi_{\lambda} = |S_{\lambda}|$. Call λ a *ladder vertex* if $\lambda = |V|$ or if $\pi_{\lambda+1} < \pi_{\lambda} + 1$ and let Λ be the set of ladder vertices.

 π_{λ} : 0,1,2,2,2,1,1. The cliques are $C_{\lambda} = \{\lambda\} \cup S_{\lambda}, \lambda \in \Lambda$.

Junction tree

Let \mathcal{A} be a collection of finite subsets of a set V. A *junction tree* \mathcal{T} of sets in \mathcal{A} is an undirected tree with \mathcal{A} as a vertex set, satisfying the *junction tree property:*

If $A, B \in \mathcal{A}$ and C is on the unique path in \mathcal{T} between A and B it holds that $A \cap B \subset C$.

If the sets in A are pairwise incomparable, they can be arranged in a junction tree if and only if A = C where C are the cliques of a chordal graph.

The junction tree can be constructed directly from the MCS ordering $C_{\lambda}, \lambda \in \Lambda$.

A chordal graph

This graph is chordal, but it might not be that easy to see...Maximum Cardinality Search is handy!

Junction tree

Cliques of graph arranged into a tree with $C_1 \cap C_2 \subseteq D$ for all cliques D on path between C_1 and C_2 .