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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and similar algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.
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Some motivation

• Perfect DAGs are simple, because their directions can
be ignored as they are Markov equivalent to their
skeleton;

• Undirected graphs which can occur as skeletons of
perfect DAGs are therefore particularly simple;

• An n-cycle with n ≥ 4 cannot be oriented to form a
perfect DAG:

s ss s
• The important simplifying idea is that of graph

decomposition and decomposability .
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Graph decomposition

Consider an undirected graph G = (V,E). A partitioning of
V into a triple (A,B, S) of subsets of V forms a
decomposition of G if

A⊥G B |S and S is complete.

The decomposition is proper if A 6= ∅ and B 6= ∅.

The components of G are the induced subgraphs GA∪S and
GB∪S .

A graph is prime if no proper decomposition exists.
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Examples
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The graph to the left is prime

Decomposition with A = {1, 3}, B = {4, 6, 7} and S = {2, 5}
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Decomposition of Markov properties

Suppose P satisfies (F) w.r.t. G and (A,B, S) is a
decomposition. Then

(i) PA∪S and PB∪S satisfy (F) w.r.t. GA∪S and GB∪S

respectively;

(ii)
f(x)fS(xS) = fA∪S(xA∪S)fB∪S(xB∪S).

The first part of the statement is true when (F) is replaced
by (G).

The second is also true for (G) if the relevant densities exist.
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Markov combination

Let Q and R be distributions on XA∪S and XB∪S resp. and
assume Q and R are consistent, i.e. QS = RS .

Then there is a unique distribution P = Q ∗R so that

(i) PA∪S = Q and PB∪S = R;

(ii) A⊥⊥P B |S.

Q ∗R is the Markov combination of Q and R. If Q and R
have densities q and r, so has P and

p(x)qS(xS) = p(x)rS(xS) = q(xA∪S)r(xB∪S).

The Markov combination maximizes entropy among
measures satisfying (i).
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Decomposability

Any graph can be recursively decomposed into its maximal
prime subgraphs:
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A graph is decomposable (or rather fully decomposable) if
it is complete or admits a proper decomposition into
decomposable subgraphs.

Definition is recursive. Alternatively this means that all
maximal prime subgraphs are cliques.
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Factorization of Markov distributions

Recursive decomposition of a decomposable graph into
cliques yields the formula:

f(x)
∏
S∈S

fS(xS)ν(S) =
∏
C∈C

fC(xC).

Here S is the set of minimal complete separators occurring
in the decomposition process and ν(S) the number of times
such a separator appears in this process.
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Combinatorial consequences

Note that if we let Xv = {0, 1} and f be uniform, this yields

2−|V |
∏
S∈S

2−|S|ν(S) =
∏
C∈C

2−|C|

and hence we must have∑
C∈C

|C| −
∑
S∈S

|S|ν(S) = |V |.

It also holds that ∑
S∈S

ν(S) = |V | − 1.
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Properties associated with decomposability

A numbering V = {1, . . . , |V |} of the vertices of an
undirected graph is perfect if the induced oriented graph is
a perfect DAG or, equivalently, if

∀j = 2, . . . , |V | : bd(j) ∩ {1, . . . , j − 1} is complete in G.

An undirected graph G is chordal if it has no chordless
n-cycles with n ≥ 4.

These graphs are also known as rigid circuit graphs or
triangulated graphs.

A set S is an (α, β)-separator if α⊥G β |S,
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Characterizing chordal graphs

The following are equivalent for any undirected graph G.

(i) G is chordal;

(ii) G is decomposable;

(iii) All maximal prime subgraphs of G are cliques;

(iv) G admits a perfect numbering;

(v) Every minimal (α, β)-separator are complete.

Trees are chordal graphs and thus decomposable.
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Identifying chordal graphs

Here is a (greedy) algorithm for checking chordality:

1. Look for a vertex v∗ with bd(v∗) complete. If no
such vertex exists, the graph is not chordal.

2. Form the subgraph GV \v∗ and let v∗ = |V |;

3. Repeat the process under 1;

4. If the algorithm continues until only one vertex is left,
the graph is chordal and the numbering is perfect.

The complexity of this algorithm is O(|V |2).
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm

7

u u
u u u

u u
�

��

@
@@

�
��

@
@@

@
@@

@
@@

�
��

�
��

Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm

7

6

5

u u
u u u

u u
�

��

@
@@

�
��

@
@@

@
@@

@
@@

�
��

�
��

Is this graph chordal?
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Greedy algorithm
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This graph is not chordal, as there is no candidate for
number 4.
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Is this graph chordal?
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Greedy algorithm
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Greedy algorithm
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Greedy algorithm
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This graph is chordal!
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Maximum cardinality search

This simple algorithm has complexity O(|V |+ |E|):

1. Choose v0 ∈ V arbitrary and let v0 = 1;

2. When vertices {1, 2, . . . , j} have been identified,
choose v = j + 1 among V \ {1, 2, . . . , j} with
highest cardinality of its numbered neighbours;

3. If bd(j + 1) ∩ {1, 2, . . . , j} is not complete, G is not
chordal;

4. Repeat from 2;

5. If the algorithm continues until only one vertex is left,
the graph is chordal and the numbering is perfect.
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Maximum Cardinality Search
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Is this graph chordal?
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Maximum Cardinality Search
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Is this graph chordal?
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Maximum Cardinality Search
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Maximum Cardinality Search
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Is this graph chordal?
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Maximum Cardinality Search
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Maximum Cardinality Search

* 5

* 3 4

2 1

u u
u u u

u u
�

��

@
@@

�
��

@
@@

@
@@

@
@@

�
��

�
��

Is this graph chordal?
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Maximum Cardinality Search
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Is this graph chordal?
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Maximum Cardinality Search
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The graph is not chordal! because 7 does not have a
complete boundary.
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Maximum Cardinality Search
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MCS numbering for the chordal graph. Algorithm runs
essentially as before.

36



Finding the cliques of a chordal graph

From an MCS numbering V = {1, . . . , |V |}, let

Sλ = bd(λ) ∩ {1, . . . , λ− 1}

and πλ = |Sλ|. Call λ a ladder vertex if λ = |V | or if
πλ+1 < πλ + 1 and let Λ be the set of ladder vertices.
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πλ: 0,1,2,2,2,1,1. The cliques are Cλ = {λ} ∪ Sλ, λ ∈ Λ.
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Junction tree

Let A be a collection of finite subsets of a set V . A
junction tree T of sets in A is an undirected tree with A as
a vertex set, satisfying the junction tree property:

If A,B ∈ A and C is on the unique path in T between A
and B it holds that A ∩B ⊂ C.

If the sets in A are pairwise incomparable, they can be
arranged in a junction tree if and only if A = C where C are
the cliques of a chordal graph.

The junction tree can be constructed directly from the
MCS ordering Cλ, λ ∈ Λ.
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A chordal graph
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This graph is chordal, but it might not be that easy to
see. . .Maximum Cardinality Search is handy!
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Junction tree
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Cliques of graph arranged into a tree with C1 ∩ C2 ⊆ D for
all cliques D on path between C1 and C2.
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