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Overview of lectures

1. Conditional independence and Markov properties

2. More on Markov properties

3. Graph decompositions and junction trees

4. Probability propagation and similar algorithms

5. Log-linear and Gaussian graphical models

6. Conjugate prior families for graphical models

7. Hyper Markov laws

8. Structure learning and Bayes factors

9. More on structure learning.
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Conditional Independence

For random variables X, Y , Z, and W it holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y,W ) |Z;

If density w.r.t. product measure f(x, y, z) > 0 also

(C5) if X ⊥⊥Y |Z and X ⊥⊥Z |Y then X ⊥⊥ (Y, Z).
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Graphoid axioms

Ternary relation ⊥σ among subsets of a finite set V is
graphoid if for all disjoint subsets A, B, C, and D of V :

(S1) if A⊥σ B |C then B⊥σ A |C;

(S2) if A⊥σ B |C and D ⊆ B, then A⊥σ D |C;

(S3) if A⊥σ B |C and D ⊆ B, then A⊥σ B | (C ∪D);

(S4) if A⊥σ B |C and A⊥σ D | (B ∪ C), then
A⊥σ (B ∪D) |C;

(S5) if A⊥σ B | (C ∪D) and A⊥σ C | (B ∪D) then
A⊥σ (B ∪ C) |D.

Semigraphoid if only (S1)–(S4) holds.
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Semigraphoid examples

• Graph separation ⊥G in undirected graph G forms a
graphoid;

• Variation independence of projections for a subset U
of a product space ‡U forms a semigraphoid;

• Uncorrelatedness ⊥2 of residuals after linear
regression (second order conditional independence)
forms a semigraphoid;

• Orthogonal meet ⊥ of closed subspaces of a Hilbert
space yields a semigraphoid;

• Probabilistic conditional independence.
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Probabilistic semigraphoids

V finite set, X = (Xv, v ∈ V ) random variables.

For A ⊆ V , let XA = (Xv, v ∈ A).

Let Xv denote state space of Xv.

Similarly xA = (xv, v ∈ A) ∈ XA = ×v∈AXv.

Abbreviate: A⊥⊥B |S ⇐⇒ XA⊥⊥XB |XS .

Then basic properties of conditional independence imply:

The relation ⊥⊥ on subsets of V is a semigraphoid.

If f(x) > 0 for all x, ⊥⊥ is also a graphoid.

Not all (semi)graphoids are probabilistically representable.
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Markov properties for semigraphoids

G = (V,E) simple undirected graph; ⊥σ (semi)graphoid
relation. Say ⊥σ satisfies

(P) the pairwise Markov property if

α 6∼ β =⇒ α⊥σ β |V \ {α, β};

(L) the local Markov property if

∀α ∈ V : α⊥σ V \ cl(α) | bd(α);

(G) the global Markov property if

A⊥G B |S =⇒ A⊥σ B |S.
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Structural relations among Markov properties

For any semigraphoid it holds that

(G) =⇒ (L) =⇒ (P)

If ⊥σ satisfies graphoid axioms it further holds that

(P) =⇒ (G)

so that in the graphoid case

(G) ⇐⇒ (L) ⇐⇒ (P).

The latter holds in particular for ⊥⊥ , when f(x) > 0.
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Factorisation and Markov properties

The distribution of X factorizes w.r.t. G or satisfies (F) if

f(x) =
∏
a∈A

ψa(x) =
∏
c∈C

ψ̃c(x)

A are complete subsets and C are the cliques of G.

It then holds that
(F) =⇒ (G)

and further:

If f(x) > 0 for all x: (P) =⇒ (F).

Thus in the case of positive density (but typically only
then), all the properties coincide:

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P).
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Pairwise Markov but not local Markov

X Y Z

s ss
Let X = Y = Z with P{X = 1} = P{X = 0} = 1/2.

This satisfies (P) but not (L).

(P): X ⊥⊥Y |Z and X ⊥⊥Z |Y .

(L): bd(X) = ∅ so (L) would imply X ⊥⊥ (Y, Z) which is
false.

(L) ⇐⇒ (P) if and only if Ǧ has no induced subgraph
ǦA = (A, ĚA) with |A| = 3 and |ĚA| ∈ {2, 3} (Matúš
1992).

Dual graph: α∼̌β if and only if α 6∼ β
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Local Markov but not global Markov

U W X Y Z

s s ss s
Let U and Z be independent with

P (U = 1) = P (Z = 1) = P (U = 0) = P (Z = 0) = 1/2,

W = U , Y = Z, and X = WY .

This satisfies (L) but not (G).

(L): Variables depend deterministically on their neighbours.

(G): False that W ⊥⊥Y |X, for example when X = 0.

(G) ⇐⇒ (L) if and only if the dual graph Ǧ does not have
the 4-cycle as an induced subgraph (Matúš 1992).
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Global but not factorizing
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Uniform on these 8 configurations is (G) w.r.t. the 4-cycle.
Conditioning on opposite corners renders one corner
deterministic. Yet, (F) is not satisfied (Moussouris 1974).

12



To see the latter, assume the density factorizes. Then e.g.

0 6= 1/8 = f(0, 0, 0, 0) = ψ12(0, 0)ψ23(0, 0)ψ34(0, 0)ψ41(0, 0)

so these factors are all positive.

Continuing for all possible 8 configurations yields that all
factors ψa(x) are strictly positive, since all four possible
configurations are possible for every clique.

But this contradicts the fact that only 8 out of 16 possible
configurations have positive probability.

In fact, (F) ⇐⇒ (G) if and only if G is chordal , i.e. does
not have an n-cycle with n ≥ 4 as an induced subgraph.

To be shown later.
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Instability under limits

Consider a sequence Pn, n = 1, 2, . . . of probability
measures on X and assume that A⊥⊥Pn B |C.

If Pn → P (weakly, say) it does not hold in general that
A⊥⊥P B |C.

A simple counterexample is as follows: Consider
X = (X1, X2, X3) ∼ N3(0,Σn) with

Σn =

 1 1√
n

1
2

1√
n

2
n

1√
n

1
2

1√
n

1

 →

 1 0 1
2

0 0 0
1
2 0 1


so in the limit it is not true that 1⊥⊥P 3 | 2. The
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concentration matrix Kn is

Kn = Σ−1
n =

 2 −
√
n 0

−
√
n 3n

2 −
√
n

0 −
√
n 2


so for all n it holds that 1⊥⊥Pn

3 | 2.

The critical feature seems to be that Kn does not
converge, hence the densities do not converge.

What is a reasonable general additional condition for
ensuring closure under limits?

The answer seems to be convergence in total variation (A.
Klenke, St Flour 2006).
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Stability under limits

If X is discrete and finite and Pn → P pointwise,
conditional independence is preserved:

This follows from the fact that

X ⊥⊥Pn
Y |Z ⇐⇒ fn(x, y, z)fn(z) = fn(x, z)fn(y, z)

and this relation is clearly stable under pointwise limits.

Hence (G), (L) and (P) are closed under pointwise limits in
the discrete case.
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Instability under limits

Even in the discrete case, (F) is not in general closed under
pointwise limits.

Consider four binary variables X1, X2, X3, X4 with joint
distribution

fn(x1, x2, x3, x4) =
nx1x2+x2x3+x3x4−x1x4−x2−x3+1

8 + 8n
.

This factorizes w.r.t. the graph

s ss s
1 4

2 3
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and fn(x) = n/(8 + 8n) for each of the configurations
below

(0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)
(0, 0, 0, 1) (0, 0, 1, 1) (0, 1, 1, 1) (1, 1, 1, 1),

whereas fn(x) = 1/(8 + 8n) for the remaining 8
configurations.

When n→∞, the density converges to f(x) = 1/8 for
each of the configurations above and f(x) = 0 otherwise,
i.e. the Moussouris example, which is globally Markov but
does not factorize.
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Markov faithfulness

A distribution P is said to be Markov faithful to a graph G
if it holds that

A⊥G B |S ⇐⇒ A⊥⊥P B |S.

It can be shown by a dimensional argument that if |Xv| ≥ 2
for all v ∈ V , then there is a distribution P which is
Markov faithful to G.

In fact, in the discrete and finite case, the set of Markov
distributions which are not faithful to a given graph is a
Lebesgue null-set in the set of Markov distributions.

For a Markov faithful P , the graphoids ⊥G and ⊥⊥P are
isomorphic.
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Directed acyclic graphs

A directed acyclic graph D over a finite set V is a simple
graph with all edges directed and no directed cycles.

Absence of directed cycles means that, following arrows in
the graph, it is impossible to return to any point.

Graphical models based on DAGs have proved fundamental
and useful in a wealth of interesting applications, including
expert systems, genetics, complex biomedical statistics,
causal analysis, and machine learning.
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Example of a directed graphical model
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Local directed Markov property

A semigraphoid relation ⊥σ satisfies the local Markov
property (L) w.r.t. a directed acyclic graph D if

∀α ∈ V : α⊥σ {nd(α) \ pa(α)} | pa(α).

Here nd(α) are the non-descendants of α.

A well-known example is a Markov chain:

X1 X2 X3 X4 X5

s s ss s- - - - - s
Xn

with Xi+1⊥⊥ (X1, . . . , Xi−1) |Xi for i = 3, . . . , n.
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Local directed Markov property
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For example, the local Markov property says

4⊥σ {1, 3, 5, 6} | 2,

5⊥σ {1, 4} | {2, 3}

3⊥σ {2, 4} | 1.
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Ordered Markov property

Suppose the vertices V of a DAG D are well-ordered in the
sense that they are linearly ordered in a way which is
compatible with D, i.e. so that

α ∈ pa(β) =⇒ α < β.

We then say semigraphoid relation ⊥σ satisfies the ordered
Markov property (O) w.r.t. a well-ordered DAG D if

∀α ∈ V : α⊥σ {pr(α) \ pa(α)} | pa(α).

Here pr(α) are the predecessors of α, i.e. those which are
before α in the well-ordering..
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Ordered Markov property
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The numbering corresponds to a well-ordering. The ordered
Markov property says for example

4⊥σ {1, 3} | 2,

5⊥σ {1, 4} | {2, 3}

3⊥σ {2} | 1.
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Separation in DAGs

A trail τ from vertex α to vertex β in a DAG D is blocked
by S if it contains a vertex γ ∈ τ such that

• either γ ∈ S and edges of τ do not meet
head-to-head at γ, or

• γ and all its descendants are not in S, and edges of τ
meet head-to-head at γ.

A trail that is not blocked is active. Two subsets A and B
of vertices are d-separated by S if all trails from A to B are
blocked by S. We write A⊥D B |S.
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Separation by example
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For S = {5}, the trail (4, 2, 5, 3, 6) is active, whereas the
trails (4, 2, 5, 6) and (4, 7, 6) are blocked.

For S = {3, 5}, they are all blocked.
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Returning to example
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Hence 4⊥D 6 | 3, 5, but it is not true that 4⊥D 6 | 5 nor
that 4⊥D 6.
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Equivalence of Markov properties

A semigraphoid relation ⊥σ satisfies the global Markov
property (G) w.r.t. D if

A⊥D B |S =⇒ A⊥σ B |S.

It holds for any DAG D and any semigraphoid relation ⊥σ

that all directed Markov properties are equivalent:

(G) ⇐⇒ (L) ⇐⇒ (O).

There is also a pairwise property (P), but it is less natural
than in the undirected case and it is weaker than the others.
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Factorisation with respect to a DAG

A probability distribution P over X = XV factorizes over a
DAG D if its density f w.r.t. some product measure µ has
the form

(F) : f(x) =
∏
v∈V

kv(xv |xpa(v))

where kv ≥ 0 and
∫
Xv
kv(xv |xpa(v))µv(dxv) = 1.

(F) is equivalent to (F∗), where

(F∗) : f(x) =
∏
v∈V

f(xv |xpa(v)),

i.e. it follows from (F) that kv in fact are conditional
densities. Proof by induction!
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Example of DAG factorization
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The above graph corresponds to the factorization

f(x) = f(x1)f(x2 |x1)f(x3 |x1)f(x4 |x2)
× f(x5 |x2, x3)f(x6 |x3, x5)f(x7 |x4, x5, x6).
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Markov properties and factorization

Assume that the probability distribution P has a density
w.r.t. some product measure on X .

It is then always true that (F) holds if and only if ⊥⊥P

satisfies (G),

so all directed Markov properties are equivalent to the
factorization property!

(F) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (O).
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Moralization

The moral graph Dm of a DAG D is obtained by adding
undirected edges between unmarried parents and
subsequently dropping directions, as in the example below:
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Undirected factorizations

If P factorizes w.r.t. D, it factorizes w.r.t. the moralised
graph Dm.

This is seen directly from the factorization:

f(x) =
∏
v∈V

f(xv |xpa(v)) =
∏
v∈V

ψ{v}∪pa(v)(x),

since {v} ∪ pa(v) are all complete in Dm.

Hence if P satisfies any of the directed Markov properties
w.r.t. D, it satisfies all Markov properties for Dm.
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Perfect DAGs

A DAG D is perfect if all parents are married.

For a perfect DAG D:

P satisfies (F) w.r.t D if and and only if it satisfies (F)
w.r.t. its skeleton σ(D).

The skeleton is the undirected graph obtained from D by
ignoring directions.

For a perfect DAG D we always have σ(D) = Dm.

A rooted tree with arrows pointing away from the root is a
perfect DAG.

In particular, any Markov chain is also a Markov field.
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Alternative equivalent separation

To resolve query involving three sets A, B, S:

1. Reduce to subgraph induced by ancestral set
DAn(A∪B∪S) of A ∪B ∪ S;

2. Moralize to form (DAn(A∪B∪S))m ;

3. Say that S m-separates A from B and write
A⊥mB | S if and only if S separates A from B in
this undirected graph.

It then holds that A⊥mB | S if and only if A⊥D B | S.

Proof in Lauritzen (1996) needs to allow self-intersecting
paths to be correct.
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Forming ancestral set
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The subgraph induced by all ancestors of nodes involved in
the query 4⊥m 6 | 3, 5?
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Adding links between unmarried parents
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Adding an undirected edge between 2 and 3 with common
child 5 in the subgraph induced by all ancestors of nodes
involved in the query 4⊥m 6 | 3, 5?
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Dropping directions
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Since {3, 5} separates 4 from 6 in this graph, we can
conclude that 4⊥m 6 | 3, 5
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Properties of d-separation

It holds for any DAG D that ⊥D satisfies graphoid axioms.

Clearly, this is then also true for ⊥m .

To show this is true, it is sometimes easy to use ⊥m ,
sometimes ⊥D .

For example, (S2) is trivial for ⊥D , whereas (S5) is trivial
for ⊥m .

So, equivalence of ⊥D and ⊥m is useful.
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Ancestral marginals

Consider a DAG D and an ancestral subset A ⊆ V , i.e. one
where

α ∈ A =⇒ pa(α) ∈ A.

If P factorizes w.r.t. D, it factorizes w.r.t. DA.

Proof by induction, using that if A is ancestral and A 6= V ,
there is a terminal vertex α0 with α0 6∈ A

It thus follows, that if P factorizes w.r.t. D:

A⊥mB |S =⇒ A⊥⊥B |S.

Because then P factorizes w.r.t. Dm
An(A∪B∪S) and hence

satisfies (G) for this graph.
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Faithfulness

As in the undirected case, a distribution P is said to be
Markov faithful for a DAG D if it holds that

A⊥D B |S ⇐⇒ A⊥⊥P B |S.

It can be also here be shown that if |Xv| ≥ 2 for all v ∈ V ,
then there is a distribution P which is Markov faithful for
D, and the set of directed Markov distributions which are
not faithful is a Lebesgue null-set in the set of directed
Markov distributions.

For a Markov faithful P , the graphoids ⊥D and ⊥⊥P are
isomorphic.

Hence d-separation is indeed the strongest possible.
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Markov equivalence

Two DAGS D and D′ are Markov equivalent if the
separation relations ⊥D and ⊥D′ are identical.

D and D′ are equivalent if and only if:

1. D and D′ have same skeleton (ignoring directions)

2. D and D′ have same unmarried parents

so

r - rr@@R? r ≡ r - r rr
?@
@I r - r -

r
@
@R? r 6≡ r - r - rr

6@
@R
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Markov equivalence of directed and
undirected graphs

A DAG D is Markov equivalent to an undirected G if the
separation relations ⊥D and ⊥G are identical.

This happens if and only if D is perfect and G = σ(D). So,
these are all equivalent

q q q q q q- - q q q� - q q q� �

but not equivalent to

q q q-�
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