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Sparse graphical models with few parameters can describe complex
phenomena.

Introduce symmetry to obtain further parsimony so models can be
well estimated when number of variables |V | higher than number
of observed units n, n << |V |.
Also, sometimes there are natural and inherent symmetries in
problems under study, e.g. when these involve twins, measurements
on right and left sides, dimensions of a starfish, etc.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry



Introduction
Examples

Graphical Gaussian models
Special graph types

Adding mean structures
Stability of mean spaces

References

Gaussian graphical models with symmetry

Several possible types of restriction:

I RCON restricts concentration matrix;

I RCOR restricts partial correlations;

I RCOV restricts covariances

I RCOP has restrictions generated by permutation symmetry.
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Mathematics marks
Anxiety and anger
Frets’ heads
Some classical examples

Empirical concentration matrix (inverse covariance) of examination
marks of 88 students in 5 mathematical subjects.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 5.24 −2.44 −2.74 0.01 −0.14

Vectors −2.44 10.43 −4.71 −0.79 −0.17

Algebra −2.74 −4.71 26.95 −7.05 −4.70

Analysis 0.01 −0.79 −7.05 9.88 −2.02

Statistics −0.14 −0.17 −4.70 −2.02 6.45

.
Data reported in Mardia et al. (1979)
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Mathematics marks
Anxiety and anger
Frets’ heads
Some classical examples

RCON model

Data support model with symmetry restrictions as in figure:

Mechanics
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Algebra
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Elements of concentration matrix corresponding to same colours
are identical.
Black or white neutral and corresponding parameters vary freely.
RCON model since restrictions apply to concentration matrix
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Mathematics marks
Anxiety and anger
Frets’ heads
Some classical examples

Cox and Wermuth (1993) report data on personality characteristics
on 684 students:
Table below shows empirical concentrations (×100) (on and above
diagonal), partial correlations (below diagonal), and standard
deviations for personality characteristics of 684 students.

SX SN TX TN

SX (State anxiety) 0.58 −0.30 −0.23 0.02

SN (State anger) 0.45 0.79 −0.02 −0.15

TX (Trait anxiety) 0.47 0.03 0.41 −0.11

TN (Trait anger) −0.04 0.33 0.32 0.27

Standard deviations 6.10 6.70 5.68 6.57

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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RCOR model

Data strongly support conditional independence model displayed
below with partial correlations strikingly similar in pairs:

e

e e

eTX

SX

TN

SN

Scales for individual variables may not be compatible. Partial
correlations invariant under changes of scale, and more meaningful.
Such symmetry models are denoted RCOR models.
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Some classical examples

RCOP model

Data from Frets (1921). Length and breadth of the heads of 25
pairs of first and second sons. Data support the model

s
s s

sB1

L1

B2

L2

Assume distribution unchanged if sons are switched. RCOP model
as determined by permutation of labels.

Both RCON, RCOV, and RCOR because all aspects of the joint
distribution are unaltered when labels are switched.
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Mathematics marks
Anxiety and anger
Frets’ heads
Some classical examples

I Models with symmetry in covariance are classical and admit
unified theory (Wilks, 1946; Votaw, 1948; Olkin and Press,
1969; Andersson, 1975; Andersson et al., 1983);

I Stationary autoregressions (circular) (Anderson, 1942; Leipnik,
1947);

I Spatial Markov models (Whittle, 1954; Besag, 1974; Besag
and Moran, 1975);
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Mathematics marks
Anxiety and anger
Frets’ heads
Some classical examples

General combinations with conditional independence are more
recent:

(Hylleberg et al., 1993; Andersson and Madsen, 1998; Madsen,
2000; Drton and Richardson, 2008; Højsgaard and Lauritzen, 2008;
Gehrmann, 2011b; Gottard et al., 2011; Gehrmann, 2011a;
Gehrmann and Lauritzen, 2012).

Although literarure is steadily growing.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Consider
Y = (Yα)α∈V ∼ N|V |(0,Σ)

and let let K = Σ−1 be the concentration matrix.
The partial correlation between Yα and Yβ given all other variables
is

ραβ |V \{α,β} = −kαβ/
√
kααkββ . (1)

Thus
kαβ = 0 ⇐⇒ Yα⊥⊥Yβ |YV \{α,β}.

A graphical Gaussian model is represented by G = (V ,E ) with Y
as above and K ∈ S+(G), the set of (symmetric) positive definite
matrices with

α 6∼ β ⇒ kαβ = 0.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Undirected graph G = (V ,E ).

Colouring vertices of G with different colours induces partitioning
of V into vertex colour classes.

Colouring edges E partitions E into disjoint edge colour classes

V = V1 ∪ · · · ∪ VT , E = E1 ∪ · · · ∪ ES .

V = {V1, . . . ,VT} is a vertex colouring,

E = {E1, . . . ,ES} is an edge colouring,

G = (V, E) is a coloured graph.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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RCON model

1. Diagonal elements K corresponding to vertices in the same
vertex colour class must be identical.

2. Off–diagonal entries of K corresponding to edges in the same
edge colour class must be identical.

Diagonal of K thus specified by T dimensional vector η and
off-diagonal elements by an S dimensional vector δ so K = K (η, δ).
The set of positive definite matrices which satisfy these restrictions
is denoted S+(V, E).

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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u

u u

uY4

Y1

Y3

Y2

Corresponding RCON model will have concentration matrix

K =


k11 k12 0 k14

k21 k22 k23 0

0 k32 k33 k34

k41 0 k43 k44

 =


η1 δ1 0 δ2

δ1 η2 δ1 0

0 δ1 η1 δ2

δ2 0 δ2 η2

 .
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Likelihood function

Consider a sample Y 1 = y1, . . . ,Y n = yn of n observations of Y
and let W denote the matrix of sums of squares and products

W =
n∑
ν=1

Y ν(Y ν)>.

The log-likelihood function based on the sample is

log L =
n

2
log det(K )− 1

2
tr(KW ) (2)

Note that the restrictions defined are linear in the concentration
matrix K so RCON model is linear exponential model.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Likelihood equations

For each vertex colour class u ∈ V let T u be the |V | × |V |
diagonal matrix with entries T u

αα = 1 if α ∈ u and 0 otherwise.

Similarly, for each edge colour class u ∈ E let T u have entries
T u
αβ = 1 if {α, β} ∈ u and 0 otherwise, i.e. the adjacency matrix of

u, e.g.

T blue =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 ;T red =


0 1 0 0

1 0 1 0

0 1 0 0

0 0 0 0

 .

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Likelihood function then becomes

log L(K ) =
n

2
log(detK )−

∑
u∈V∪E

θu tr{T uW }/2.

MLE is obtained by equating canonical sufficient statistics to their
expectation, i.e.

tr(T uW ) = n tr(T uΣ), u ∈ V ∪ E , (3)

provided such a solution exists.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Fitted concentrations (×1000) for the examination marks in five
mathematical subjects assuming the RCON model displayed.

Mechanics Vectors Algebra Analysis Statistics

Mechanics 6.30 −3.38 −3.38 0 0

Vectors −3.38 10.29 −3.38 0 0

Algebra −3.38 −3.38 24.21 −6.65 −3.38

Analysis 0 0 −6.65 10.29 −3.38

Statistics 0 0 −3.38 −3.38 6.30

The model displayed earlier yields an excellent fit with a likelihood
ratio of −2 log LR = 7.2 on 7 degrees of freedom, when compared
to the butterfly model without symmetry restrictions

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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RCOR models

1. Diagonal elements of K corresponding to vertices in same
vertex colour class must be identical.

2. partial correlations along edges in the same edge colour class
must be identical.

The set of positive definite matrices which satisfy the restrictions
of an RCOR(V, E) model is denoted R+(V, E).

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Define A as diagonal matrix with

aα =
√
kαα = ηu, α ∈ u ∈ V

We can uniquely represent K ∈ R+(V, E) as

K = ACA = A(η)C (δ)A(η),

where C has all diagonal entries equal to one and off-diagonal
entries are negative partial correlations

cαβ = −ραβ |V \{α,β} = kαβ/
√
kααkββ = kαβ/(aαaβ).

Vertex colour classes restrict A, whereas edge colour classes
restrict C .

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Likelihood equations

Although restrictions linear in each of A and C , they are in general
not linear in K .

RCOR models are curved exponential families.

Letting λu = log ηu the likelihood function becomes

log L =
f

2
log det{C (δ)}+ f

∑
u∈V

λu tr(T u)− 1

2
tr{C (δ)A(λ)WA(λ)}

log L concave in λ for fixed δ and vice versa, but not in general
jointly.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Differentiation yields the likelihood equations

tr(KuAWA) = f tr(KuC−1), u ∈ E ; tr(KuACAW ) = f tr(Ku), u ∈ V.

MLE is not necessarily unique.

If the MLE is unique, an alternating algorithm converges to the
MLE, alternating between maximizing in λ for fixed δ and
conversely.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry



Introduction
Examples

Graphical Gaussian models
Special graph types

Adding mean structures
Stability of mean spaces

References

Preliminaries and Notation
Graph colouring
Symmetry restrictions on concentrations
Symmetry restrictions on partial correlations
Permutation symmetry

Anxiety and anger

Fitted concentrations (×100) (on and above diagonal) and partial
correlations (below diagonal) for RCOR model:

SX SN TX TN

SX (State anxiety) 0.59 −0.31 −0.22 0

SN (State anger) 0.46 0.78 0 -0.15

TX (Trait anxiety) 0.46 0 0.40 -0.10

TN (Trait anger) 0 0.31 0.31 0.28

Fitting the RCOR model yields likelihood ratio −2 log LR = 0.22
on 2 d.o.f. comparing with the model without symmetry.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Let G be permutation matrix for elements of V . If Y ∼ N|V |(0,Σ)

then GY ∼ N|V |(0,GΣG>).

Let Γ ⊆ S(V ) be a subgroup of such permutations.

Distribution of Y invariant under the action of Γ if and only if

GΣG> = Σ for all G ∈ Γ. (4)

Since G satisfies G−1 = G>, (4) is equivalent to

GΣ = ΣG for all G ∈ Γ, (5)

i.e. that G commutes with Σ or, equivalently, that it commutes
with K

GK = KG .

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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An RCOP model RCOP(G, Γ) generated by Γ ⊆ Aut(G) is given by
assuming

K ∈ S+(G, Γ) = S+(G) ∩ S+(Γ)

where S+(Γ) is the set of positive definite matrices satisfying

GK = KG for all G ∈ Γ.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry



Introduction
Examples

Graphical Gaussian models
Special graph types

Adding mean structures
Stability of mean spaces

References

Preliminaries and Notation
Graph colouring
Symmetry restrictions on concentrations
Symmetry restrictions on partial correlations
Permutation symmetry

Identifying the graph colouring

An RCOP model can also be represented by a graph colouring:

If V denotes the vertex orbits of Γ, i.e. the equivalence classes of

α ≡Γ β ⇐⇒ β = G (α) for some G ∈ Γ,

and similarly E the edge orbits, i.e. the equivalence classes of

{α, γ} ≡Γ {β, δ} ⇐⇒ {β, δ} = {G (α),G (γ)} for some G ∈ Γ,

then we have

S+(G, Γ) = S+(V, E) = R+(V, E).

Hence an RCOP model can also be represented as an RCON or an
RCOR model with vertex orbits as vertex colour classes and edge
orbits as edge colour classes.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Frets’ heads

Observed concentrations (×100) (on and above diagonal) together
with fitted concentrations for RCOP model.

L1 B1 L2 B2

L1 (Length of head of first son) 3.21 −1.16 −0.78 −1.11

B1 (Breadth of head of first son) −1.71 2.21 −0.50 0.48

L2 (Length of head of second son) −1.42 0 2.67 −1.89

B2 (Breadth of head of second son) 0 −1.83 −1.71 3.37

Fitted concentrations 2.89 2.44 2.89 2.44

The likelihood ratio comparing to model without symmetries is
equal to −2 log LR = 5.18 on 5 degrees of freedom.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Edge regular graphs
Vertex regular graphs

Any RCOP model is automatically also RCON and RCOR whereas
the converse is false.

If G = (V, E) is a coloured graph we say that (V, E) is edge regular
if any pair of edges in the same colour class in E connects the
same vertex colour classes.

It then holds (Højsgaard and Lauritzen, 2008) that

The RCON and RCOR models determined by G = (V, E) yield
identical restrictions, i.e.

S+(V, E) = R+(V, E)

if and only if (V, E) is edge regular.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Edge regular graphs
Vertex regular graphs

A partition M of V is equitable w.r.t. a graph G = (V ,E ) if for
any α, β ∈ n ∈M it holds that

| neE (α) ∩m| = | neE (β) ∩m| for all m ∈M.

In words, any two vertices in the same partition set have the same
number of neighbours in any other partition set. So in particular,
all subgraphs induced by partition sets are regular graphs.

We say that a coloured graph G = (V, E) is vertex regular if V is
an equitable partition of the subgraph G e = (V , e) induced by the
edge colour class e for all e ∈ E .

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Edge regular graphs
Vertex regular graphs

A graph colouring that is both vertex regular and edge regular is
regular (Siemons, 1983).

The graph of an RCOP model is always regular

Not all regular colourings correspond to permutation symmetry.
Gehrmann (2011a) uses nauty to calculate automorphism group of
coloured graph and check that it acts transively on colour classes.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Behrens–Fisher problem
Kruskal’s theorem

We shall be interested in also adding means so that Y ∼ N (µ,Σ)
with µ ∈ Ω, where Ω is a linear subspace of RV .

Based on observations Y 1, . . . ,Y n the likelihood function is

L(µ,K ) ∝ detKn/2 exp−
∑

1≤i≤n(y i−µ)TK(y i−µ)/2 . (6)

If µ is unrestricted so that µ ∈ Ω = RV , L is maximised over µ for
fixed K by µ̂ = µ∗ = ȳ and inference about K can be based on

L(µ̂,K ; y) ∝ detKn/2 exp{− tr(KW )/2}, (7)

where W =
∑n

i=1(y i − µ∗)(y i − µ∗)T is the matrix of sums of
squares and products of the residuals.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Behrens–Fisher problem
Kruskal’s theorem

In general the situation is more complex. Consider the graph

Y1 Y2

representing two independent Gaussian variables with unknown
variances σ2

1 and σ2
2. The Behrens–Fisher problem (Scheffé, 1944)

occurs when estimating µ = (µ1, µ2) under the restriction µ1 = µ2.

The least squares estimator (LSE) µ∗ = (ȳ1, ȳ2) is then not the
MLE, the likelihood function (6) under the hypothesis µ1 = µ2

may have multiple modes (Drton, 2008), and there there is no
similar test for the hypothesis.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Behrens–Fisher problem
Kruskal’s theorem

Kruskal (1968) found the following necessary and sufficient
condition for the LSE µ∗ and MLE µ̂ to agree for a fixed Σ:

Theorem (Kruskal)

Let Y ∼ N (µ,Σ) with unknown mean µ ∈ Ω and known Σ. Then
the estimators µ∗ and µ̂ coincide if and only if Ω is invariant under
K = Σ−1, i.e. if and only if

KΩ ⊆ Ω. (8)

As KΩ ⊆ Ω if and only if ΣΩ ⊆ Ω this can equivalently be
expressed in terms of Σ.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Behrens–Fisher problem
Kruskal’s theorem

Consequently, if K ∈ Θ is unknown and KΩ ⊆ Ω for all K ∈ Θ we
also have µ∗ = µ̂ and inference on K can be based on the profile
likelihood function (7)

L(µ̂,K ) ∝ detKn/2 exp{− tr(KW )/2}.

The Behrens–Fisher problem is then resolved if we also restrict the
variances σ2

1 = σ2
2 = σ2 since(

σ2 0

0 σ2

)(
α

α

)
=

(
σ2α

σ2α

)
=

(
β

β

)
,

so the mean space is stable under Σ.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Behrens–Fisher problem
Kruskal’s theorem

The additional symmetry in the concentration matrix induced by
the restriction σ2

1 = σ2
2 is represented by a coloured graph

Y1 Y2

where nodes of same colour have identical elements in their
concentration matrix.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Mean partitions
Examples

Gehrmann and Lauritzen (2012) now show that for a given colored
graph G = (V, E) we have:

Lemma
The following are equivalent

KΩ ⊆ Ω for all K ∈ S+(V, E);

KΩ ⊆ Ω for all K ∈ R+(V, E);

T uΩ ⊆ Ω for all u ∈ V ∪ E .

Thus, by Kruskal’s theorem, we can check stability of mean spaces
in both RCON and RCON models by checking stability under the
action of the model generators T u, u ∈ V ∪ E .

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry



Introduction
Examples

Graphical Gaussian models
Special graph types

Adding mean structures
Stability of mean spaces

References

Mean partitions
Examples

We shall be particularly interested in mean spaces generated by a
partition M = {m} of the vertex set V , so that

Ω = Ω(M) = {µ : µα = µβ whenever α, β ∈ m.}.

It is straightforward to show (Gehrmann and Lauritzen, 2012) that

The space Ω(M) is stable under T v , v ∈ V if and only if the
partition M is finer than V.

The Behrens–Fisher problem represents a case where this condition
is violated unless variances are assumed identical.

The space Ω(M) is stable under T e , e ∈ V if and only if the
coloured graph (M, E) is vertex regular.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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Note in particular that for an RCOP model generated by
permutation symmetry, we have G = (V, E) is regular and hence a
mean partition M is stable if and only if it is finer than the vertex
orbit partition V.
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Frets’ heads revisited

u

u u

uB1

L1

B2

L2

For the mean partition to be finer than the concentration partition
we can either have different mean lengths, or different mean
breadths, or both, or none of these.

For the mean partition to be vertex regular we need to have either
both means identical or all means different. Thus there are two
benign possibilities.
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Anxiety and anger revisited

e

e e

eTX

SX

TN

SN

Here there are no benign mean hypotheses as the individual
concentrations are all different.
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I Basic theory described in Højsgaard and Lauritzen (2008) and
Gehrmann (2011b);

I Clarify conditions for existence of MLE

I Extension to discrete symmetry models should be developed
based on graphical log-linear models, extending classic models
of symmetry, marginal homogeneity and quasi-symmetry.
Some significant progress made by Gottard et al. (2011);

I Application to gene expression data? Efficient and principled
methods for model selection and structure estimation needed.

Steffen Lauritzen, University of Oxford Graphical Models with Symmetry
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