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SUMMARY

The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns
which satisfy the further property that the probability of any m x n submatrix is a function of the
row- and column sums of that matrix. We show that any such distribution is a (unique) mixture of
random Rasch distributions. The non-degenerate elements of these distributions were introduced by
Rasch (1960). We investigate the relationship between these random Rasch distributions and a problem
in visual perception, the characters of a certain Abelian semigroup, and the problem of existence of
measures with given marginals.
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1. INTRODUCTION

This article is concerned with the dichotomous Rasch model for item analysis (Rasch 1960).
The model was devel oped to describe outcomes of psychological testing experiments. Anitem
(question, problem) labeled 7 is presented to a person labeled j and a binary response X;; is
recorded. The Rasch model asserts that responses are independent, and that there are param-
eters o; (‘easinesses’) characteristic for the items and parameters 3; (‘abilities’) characteristic
for the persons so that
a8y = %P

P(XU_HO&“B])_l-i-aiﬁj' (1)

The model and its variants has been the subject of intensive study and interest in the
psychometric literature. But the Rasch model is aso of fundamental interest in many other
contexts and in itself. For example, X;; could indicate whether or not a batter 7 is getting a hit
when matched with a pitcher j (Gutmann et al. 1991), X;; could indicate presence or absence
of agiven species: of bird onisland j (Wilson 1987), or X;; could denote the success or failure
of mating when afemale salamander i is paired with male salamander ; (McCullagh and Nelder
1989, page 439 ff.). Anoverview of literaturerelated to the Rasch model can befound in Fischer
and Molenaar (1995).

The Rasch model can in some sense be seen as the fundamental model of randomness
for (0,1)-matrices and much effort has also been devoted to derivations of the Rasch model as
the unique model satisfying certain fundamental principles. Rasch favoured deriving it from
his principle of specific objectivity (Rasch 1967, 1977), but, for example, he also derived it
from sufficiency arguments, using the basic assumption that the probability of any binary m x n
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matrix should only depend on the row- and column sums of thismatrix (Rasch 1971), aproperty
clearly satisfied by the Rasch model, since

_ _ azﬁ . H: IO‘TZHJ 16]
Fap 1(Xij = 2ij)izt,comij=tn} = H H 1+ élzﬂj | szl(l + i f;)’ @)

wherer; = . x;; and ¢; = >, x;;. Other derivations (Andersen 1973) assume sufficiency
of the column sums c¢; when item parameters «; are arbitrary but known and show that this
leads to the Rasch model. The derivations usually have an implicit or explicit assumption of
independence and regularity (0 < P(X;; = 1) < 1); see Fischer (1995) for a survey. We
note that the proof and theorem supplied by Rasch (1971) isinaccurate as it stands, but can be
modified to become correct.

In the present paper we attempt to i dentify Rasch model s as extreme point model s (L auritzen
1988). More precisely, we replace the assumption of independence with the exchangeability of
rows and columns and show (Theorem 2) that (randomized) Rasch models are extreme pointsin
the ssmplex of row-column exchangeabl e binary matrices with distributions only depending on
row- and column sums. Thisyields an extension of de Finetti’s theorem for binary sequences
which supplements the results of Aldous (1981), see also Dawid (1982).

The article is composed as follows. In Section 2 we recapitulate some basic concepts and
results on exchangeability and convex sets of measures. Section 3 reviews and extends the
main results about random binary matrices, and Section 4 places the resultsin a slightly wider
perspective.

2. PRELIMINARIES
2.1. Exchangeable Sequences and Summarization

We begin by rephrasing some classical results. A sequence X1,...,X,,... issadto be
exchangeableif for al n

P{(Xi=m)i=1,.n} = P{(X 1..n} foralme S(n),

i.e. if its distribution is invariant under finite permutations. Clearly, if X,...,X,,... are
independent and identically distributed, they are exchangeable, but not conversely.

A statistic ¢(x) is summarizing for a discrete probability distribution P (Freedman 1962)
if P(X = x) = p(z) = h(t(x)) for some function h. Note that if ¢(z) is summarizing for
P e P, itissufficient for P and for al P € P, p(z |t) isuniformon {z : t(z) = t}.

For binary variables, X1,...,X,,... is exchangeable if and only if for al n the sum
to(x) =), x; issummarizing for p(x1, ..., xy):

P(Xl =T1,..., Xn = xn) = hn(Zi xl)

because the group of permutations S(n) acts transitively on binary n-vectors with fixed sum,
i.e. if x and y are two such vectors, there is a permutation which sends x into y, and thus ¢,, is
amaximal invariant.

In general, astatistic ¢ issummarizing for P if and only if P isinvariant under the group of
transformations that leaves ¢ unchanged. Thus the term partial exchangeability has often been
used for this more general concept.

deFinetti (1931) showsthat all exchangeabl e sequencesare mixturesof Bernoulli sequences:



Exchangeable Rasch Models 3

Theorem 1 (de Finetti) A binary sequence X1, ..., X, ... isexchangeableif and only if
there exists a distribution function ¥ on [0, 1] such that for all n

1
Mxh”wxw::/‘WM@U:—@”%M@dFW)
0

It further holdsthat F' isthe distribution function of the limiting frequency:
1
Y=1m—-)» X;, PY<y=F 3
Jim n; (Y <y)=F(y) (3)

and the Bernoulli distribution is obtained by conditioning with Y = 6:

P(Xl:il}'l,...,Xn:gjn’YZH):etn(l_e)n,tn‘

de Finetti’s Theorem, with its generalisations (Hewitt and Savage 1955) and variants (Di-
aconis 1977; Diaconis and Freedman 1980), has received much attention in the literature on
probability and mathematical statistics (Kingman 1978; Aldous 1985).

2.2. Convex Sets, Mixtures and Extreme Points

Theorem 1 gives an integral representation of exchangeable measures. To pursue this perspec-
tive on de Finetti’s Theorem, we need some basic facts about convex sets of measures.

Inthefollowing PP denotesaset of probability measureson aspace X’ whichisthe countable
product of finite sets. Such aset P is convex if

P,PhePadl<a<l=aPi+(1—a)PeP
and Q) isan extreme point of P if
Q:aP1+(1—a)P2WithO<a< 1,P1,P2€P:>Q:P1:P2.

If P is equipped with the weak topology and .4 is a Borel subset of P, P isamixture of
elementsin A if thereis a probability measure 1 on A such that for all Borel subsets B of X

mm:Ammmmy

A fundamental result is Choquet’s Theorem: If P iscompact, the set of extreme points £ of
P isa non-empty Borel subset of P, and any element of P is a mixture of the extreme points:

P(B) = /E E(B)up(dE).

A convex set P isasimplex if the mixing measure pp is uniquely determined by P. de
Finetti’s Theorem can alternatively be formulated as. The exchangeable meaures P form a
compact simplex, with Bernoulli measures as extreme points.

A compact simplex isaBauer simplex if the extreme points £ form aclosed (and therefore
compact) subset of P. The simplex Py, is a Bauer smplex since the extreme points can be
identified with the interval [0, 1].
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3. PARTIALLY EXCHANGEABLE BINARY MATRICES

This section first reviews results about binary matrices with exchangeable rows and columns,
then binary matrices where the row- and column sums are summarizing statistics, and finally
gives new results about matrices with both properties.

3.1. Row-column Exchangeable Matrices

The distribution P is said to be row—column exchangeable (RCE) if for all permutations = €
S(m) and p € S(n) we have
P{(Xij = @ij)i=1,...mj=1,..n} = P {(Xij = Zr(3)p(j))i=1,....mij=1.n } -

We denote the corresponding group of transformationsby Grc(m, n) and asbefore Gro =
Um.nGrc(m,n) denotes the similar group acting on infinite matrices.

The set Prcr of RCE distributionswas e.g. studied by Aldous (1981), Diaconis and Freed-
man (1981), Hoover (1982) and Lynch (1984), and the main results have been collected and
extended in Aldous (1985).

There seems to be no simple expression for a statistic which ismaximal invariant under the
action of Gr(m, n) and thusthereis no simple description of the sufficient (and summarizing)
statistic.

Two o-fields are particularly important for the study of Prcr and Prcs. These are the
tail-field 7 and shell-field S where

T = ﬂ U{Xijvmin(iaj) > n}, S = m J{Xij,max(i,j) > n}
n=1 n=1

We exploit the following which is Proposition 14.8 of Aldous (1985):

Proposition 1. If X hasdistribution P € Pgrcg then the following are equivalent:
(i) P isextremein Prcg;
(ii) 7 is P-trivial;
(iii) X is P-dissociated.

Here a o-field A is said to be P-trivial if P(A) € {0,1} forall A € Aand X is P-
dissociated if for all Ay, Ay, B1, Bowith A1 N Ay = B1 N By = 0,

{Xij}ieAl,jeBl and {Xi.j}i€A27jeB2 are independent w.r.t. P.

Diaconis and Freedman (1981) introduce the notion of a ¢-matrix. This is constructed
from a measurable function ¢ : [0,1]> — [0, 1] and independent sequences U = (Ui)i=1,...
and V = (V});=1,... of independent random variables, uniformly distributed on the unit interval
0, 1], by letting X;; be conditionally independent given U and V' and
where F = o(U;, Vi,i = 1,...) is the effect field of the ¢-matrix. Clearly ¢-matrices are
necessarily dissociated. Following Lynch (1984), a ¢-matrix X is said to be canonical if
X 1L S| F,i.e if F capturesthe whole effect of S on X. Proposition 1 in combination with
Corollary 2.4 of Lynch (1984) now yields:

Proposition 2. P is extreme in Pgrcg if and only if P is the distribution of a canonical

¢-matrix.

Although thisproposition givesarelatively simple description of Egcg, itisstill tooimplicit
to be useful for statistical purposes. In particular, it isdifficult to get a handle on the ambiguity
of the function ¢ as many different ¢-functionsyield the same distribution of its ¢-matrix.
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3.2. SUmmarized Matrices

We consider distributions P of doubly infinite matrices X = {X;;}; j—1 2. of binary random
variables. P issaidto berow-column summarized (RCS) if the probability of any m x n (initial)
submatrix, depends only on the row- and column sums, i.e. if for all m and n

P{(Xij = xij)i=1,..mj=1,..n} = P {(Xij = ¥ij)i=1,...mj=1,..n} -

whenever Y7 zi; = 7 yi; forall i and 3770 i = Y7L, v for all j.

Forr = (ry,...,rm)andc = (c1,...,cp), welet M(r, ¢) denotethe set of m x n-matrices
with row- and column sums equal to (r, ¢). We then introduce the group Gg(m, n) of switches.
Thisisthe group of one-to-one transformations of M(r, ¢) generated by simple switches, where
asimple switch changes a specified 2 x 2-submatrix of x € M(r,c) as

1 0 0 1 0 1 1 0
G 9) (3 o)= (v a)-(o 1)
and otherwise leave the entries of x invariant.

Theorem 3.1 of Ryser (1957) says that if = and y are matricesin M(r, ¢), there exists a
switch g € Gg(m, n) suchthat z = gy. In other words:

Lemma 1. Thegroup Gs(m,n) of switches acts transitively on M (r, ).

It thus follows that (r, ¢) is a maximal invariant under the action of Gg(m,n). If we let
Gs = Up.nGs(m, n) denote the similar group acting on infinite matrices we thus have:

Corollary 1. Adistribution P on the set of doubly infinite binary matrices is row—column
summarized if and only if it is Gg-invariant.

Lemma 1 and its corollary was also exploited by Besag and Clifford (1989) to construct a
Markov chain Monte Carlo algorithm for simulating from the uniform distribution on M(r, ¢),
see also Holst (1995), Rao et al. (1996) and Ponocny (2001).

We let Prcg denote the set of RCS-distributions. Lauritzen (1988) showed that Prcg isa
convex simplex and found partially the extreme points Ercg Of this simplex, in particular that
Ercs # Pr, Where Py is the set of Rasch distributions given by (2). More precisely it was
shown (Propositions 9.2 and 9.3, page 250) that F,, g € Ercs if

- ;i B

1=1
and Paﬁ Q Ercs unless

> Q; - Bi

e — 2 = . 5
;<1+ai>2 ;(1"‘@)2 = ®)

Roughly speaking, the conditions are preventing that the « and 3 sequences vary too
rapidly with 7. It is therefore natural to expect smpler results when extra symmetry, such as
exchangeability, is assumed. The condition (4) implies (5), but it is not known whether any of
these two conditions are both necessary and sufficient for P, 5 to be in Ercs. Note that Prcg
is not a Bauer smplex. To seethis, define P ; by

_p_J27 ifi<n
o = pi { 1 otherwise.

Then P} 5 € Ercs for all n asit satisfies (4), but asn tendsto infinity it convergesto a measure
which violates (5), hence Ercs is hot closed.
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3.3. Summarized and Exchangeable Matrices

This section deals with the set of distributions Prcrs = Prcre N Pres Which are both RCE
and RCS. We let Grog(m,n) denote the group of transformations generated by row-column
permutations Grc(m, n) and switches Gg(m,n) and Gros the corresponding group of trans-
formations on infinite matrices.

Lemma2. Thepair of empirical measuresinduced by the row- and column sumst,,,,,(x) =
(D01 0r 2201 dc;) isamaximal invariant for the action of Greg(m, n).

Proof. Clearly, t,,, isinvariant so we just have to show that Gros(m, n) acts trangitively
on the set of matrices with a given value of t,,,. So assume t,,,(z) = tyn(y) = t. We
first permute the rows and columns of =z and y to form g;z and g2 with increasing row-
and column sums using g1, 92 € Gre(m,n). But then g;x and goy have identical row- and
column sums and Lemma 1 yields the existence of g € Gg(m, n) so that ggix = goy. Then
9" =95 '991 € Gros(m,n) has g*z = y as desired. ]

The set Preps isaproper subset of Preg. Thisis because the group Ggeo(m, n) does not
act trangitively on sets of matrices x with afixed valuet,,,, (z) = t. For example, if welet

00 1 00 1
z=(10 0}, y=(0 0 1],
01 1 1 1 0

then det z = 1 and det y = 0. Since the absolute value of the determinant is invariant under
permutation of rows and columns, thereis no element g € Gr(3,3) so that © = gy. Indeed,
for a ¢-matrix with ¢(u,v) = uv, we have p(x) = 665/2985984 but p(y) = 1/4096, so this
distributionisin Prcg \ Pres-

Genera results (Lauritzen 1988) imply that Prcrs iSasimplex. To identify the extreme
points Ercrs Of Prers We need the following lemma:

Lemma3. If P € Prcgs and E € 7 with P(E) > 0, then P(- | E) € Prcrs-

Proof. Let £ € 7 with P(FE) > 0. By Lemma 2 we must just show that P(-| E) is
Gros-invariant. So let g € Gres. When E € T itis clearly invariant both under switches,
row- and column permutationsso g £ = E. Let D be an arbitrary measurable subset of infinite
binary matrices. We thus have

P(gXeDAX € E) P(gXe(DngE
P(gX € D|X €E) = (g ) _ PlgX € (DNgk))

P(X € E) P(X € E)
_P(XeDNE)
=~ T PXcE) =P(XeD|XeFE)

and thus P(- | E) € Prags. L]
Further, we have

Lemmad4. Erces = Prees N ERCE-
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Proof. Theinclusion Ercrs 2 Prers N Erce 1S 0bvious. To show the reverse inclusion,
we assume that P € Prcrs € Ercr and show that P & Ercrs. Since P & Ercg, 7 is not
P-trivial. Thusthereexists E' € 7 with0 < P(FE) < 1. We may now write

P()=P(|X e E)P(E)+ P(-| X € E)(1 - P(E)).

By Lemma 3 this expresses P as a non-trivial convex combination of two elements of Prcrs
implying that P & ErcEis. ]

Next we must realize that Prcg is stable under shell-conditioning:

Lemmab. If P € Prcs then P(-|S) € Pgres.

Proof. Using Corollary 1 this follows as in the proof of Lemma 3 because G g leaves sets
in S invariant. []

Note that P(-|S) istypicaly not RCE. Next we define ¢ to be of Rasch typeif it satisfies
the functional equation:

¢ (u, v)o(u, v7)p(u”, v)p(u", v%) = d(u, v)P(u, v*)P(u", v)p(u”, v7), (6)

where we have let ¢ = 1 — ¢. If P isthe distribution of a ¢-matrix with ¢ of Rasch type,
P(-| F)isGg invariant. Thistherefore also holdsfor its unconditional distribution P, implying
that P € Prcrs. Infact, below we show that such ¢-matrices exactly correspond to the extreme
points Erces Of PreEs-

Theorem 2. If P € Pgrcrs, itisin Egcgs if and only if P isthe distribution of a ¢-matrix
of Rasch type.

Proof. If X isa¢-matrix, itsdistribution P isextremein Prcg and a forteriori extremein
Prcrs C Prer. Thuswe only need to show the converse.

Assume P is an extreme point of Prcgrs. From Lemma4 and Proposition 2 we get that P
isthe distribution of some canonica ¢-matrix X. Lemmab implies

P({Xi*jj =0 Xpp = 1}‘8) :P({Xz‘*]j =1 Xpp :0} ‘ 8)'
Since X iscanonica, P(X € A|S) = P(X € A|F) and thus
{1 - (b(Uia V])hb(Ulv V]*)¢(UZ*7 V]){l - ¢(Ui*7 V}*)}?
i.e. itisa¢-matrix of Rasch type. ]

If 0 < ¢ < 1 the solutions of (6) all have the special form

a(u)b(v)

= T+ a(w)b(v) 0

¢(u,v)

where a and b map the unit inverval into the positive half-line. Thisisseen by letting p = ¢/¢
and fixing (u*, v*) whereby (6) can be manipulated to

p(u, v*)p(u*, v)
p(u*,v*)

p(u,v) =
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so that we may let a(u) = p(u,v*)/p(u*,v*) and b(v) = p(u*,v) to satisfy (7). Indeed we
may without loss of generality assume that a and b are determined from distribution functions
A and B on the positive halflineasa = A~'andb = B! sothat A and B are the distributions
of o = a(U;) and B; = b(V;) respectively.

A regular random Rasch distribution is now defined to be the distribution of a ¢-matrix
with ¢ of the form (7) and the set of such distributionsis denoted by Pgrrg.

Note that there is ambiguity between a and b in the sense that one can be transformed
by multiplication with a positive constant and the other with division without changing the ¢-
matrix. But modulo this, the pairs (A, B) arein aone-to-one correspondence with the elements
of Prr-

It followsthat the extreme points of Prcgrs Which are non-degenerate, in the sense that they
correspond to truly non-deterministic matrices, are regular random Rasch distributions. More
precisely, if we say that P isregular when

O<P(X¢j=1|8)<1f0|’a”i,j,

we have:

Corollary 2. P isaregular extreme point of Prcrg if and only if P € Pgg.
There are many non-regular extreme points of Prcrs, essentially correponding to all non-
regular solutions of the functional equation (6). An example of such asolutionis

1 ifu<
o(u,v) = X{u<v} = {0 otﬁer_WiUSG-

Thisis an example of a ¢-matrix of Rasch type whichis‘deterministic’ in the sense that it
is S-measurable. In the context of intelligence tests, the interpretation of this model is that a
person with ability v solves aproblem of difficulty « with certainty if v > « but never if u > v.
Variants of the model appear for h and k£ being monotone functions from the unit interval to
itself and then

¢* (s V) = X{h(u)<k(v)}- (8)
It seems plausible that these are the only ¢-matrices of Rasch type which are essentially S-
measurable. Proposition 3.6 of Aldous (1981) impliesthat thisistrueif and only if all solutions
to the functional equation (6) with ¢ € {0, 1} had the form (8).
There are many more ¢-matrices of Rasch type. Consider for example

1+ a(u)b(v)
X{u<v} otherwise

o) = { o) g 1/3 < u,v < 2/3

which can be seen as dividing difficulties and abilities into three classes of equal size: low,
medium, high, so that an ordinary Rasch model prevails when persons of medium ability solve
guestions of medium difficulty whereas other combinations yield a deterministic outcome.

There are similar models with more than three groups. For example, one can keep cutting
out middle thirds of the unit interval as above to get

(ab(©) e
1+<a()b2b§“) if 1/9 < u,v<2/9

b(u,v) = W |f1/3<u,v<2/3’
T+ a(u)b() |f7/9.<u,v<8/9
L X{u<ov} otherwise
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and so on. Sincethesimplex Prcgs isaBauer simplex (Ressel 2002, personal communication),
the set of its extreme pointsis closed. Thus the sequence of distributions of ¢-matrices defined
by this procedure will converge to what could be termed a Cantor—Rasch distribution with an
infinite number of groups. Although these non-regular Rasch models are unusual, they are by
Nno means counterintuitive.

4. OTHER PERSPECTIVES
4.1. The Julesz Conjecture

Diaconis and Freedman (1981) discuss a conjecture of Julesz (1975, 1980) in visual perception
saying that two ‘random patterns' (i.e. binary matrices) with the same first- and second-order
statistics (joint distributions of singletons and pairs) cannot be visually distinguished. Indeed
they give several examples of ¢-matrices with the same first- and second-order statistics as a
purely random ‘coin tossing’ matrix which are visually very different from such a matrix.

Herewe show that such counterexamples cannot be of Rasch type. Thisimpliesthat certain
types of deviationsfrom the Rasch model may indeed be visually detected from inspecting large
matrices.

Say abinary matrix is purely randomif X;; areall independent and P(X;; = 1) = 1/2for
ali,j.

Theorem 3. Let X be a ¢-matrix of Rasch type with the same first- and second-order

statistics as a purely random matrix. Then it isa purely random matrix.

Proof. Theorem (3.8) of Diaconis and Freedman says that a ¢-matrix has the same first-
and second-order statistics as a purely random matrix if

/¢(u, v)du =1/2 ae. (u) and /gb(u, v)dv =1/2ae. (v), (9)

so thisis what we assume. We will show that if ¢ is of Rasch type, it isa.e. constant and thus
equal to 1/2.

Since ¢ isof Rasch typeit satisfies (6). If we expand and reduce the termsin this equation
we find that it is equivalent to

¢(u, v)p(u”, v") + (u, v)d(u, v*)P(u”, v) + G(u, v*)P(u", v)P(u”, v%) =
G(u, v")P(u”, v) + ¢(u, v)P(u, v7)P(u", v%) + ¢(u, v)P(u”, v)p(u", v%)

Integrating this equation with respect to « and using (9) yields that for aimost al v and
amost al v*

d(u*,v") /2 + I(v,v")d(u",v) + d(u*,v)Pp(u*,v*) /2 =
P(u,v)/2 + I(v,v")p(u, v") + d(u”, v)p(u”, v")/2,

where I(v,v*) = [ ¢(u,v)¢(u,v*) du. Reducing and rearranging terms leads to
{o(u”,v") = o(u”, v) {1 (v,0") —1/2} = 0. (10)

Nextlet A = {v | I(v, ) = 1/2}, thenfor amost al v ¢ A we have ¢(u,v) = ¢(u,v*) and
hencealso I(v,v*) = ( ,0*) foramost al v ¢ A, whereby

/I(v,'u*) dv= [ I(v,v")dv +/ I(v,v")dv = X(A)/2 + I(v*,v"){1 = A(A)},
A A€
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where \ is Lebesgue measure. Using now that

I(v*,v*) = /¢(u,v*)2 du > {/¢(u,v*)du}2 =1/4
and

/I(v,v*)dv - //gb(u, ) (u, v*) du dv = //d)(u,v)d)(u,v*)dvdu: 1/4,

we find
1/4>AMA)2+{1—-XA)}/4=1/4+ \A)/4

whereby A\(A) = 0. Hence ¢(u, -) is constant amost everywhere. By symmetry, ¢(-, v) isalso
constant so ¢ must be constant and equal to 1/2. ]

Note that we have not proved the somewhat stronger statement saying that two ¢-matrices
of Rasch typewhich haveidentical first- and second order statistics, haveidentical distributions,
and indeed this does not hold in general.

4.2. Analytic Properties of Prcgs

In several papers, Ressel (1985,1988,1994) has studied convex sets of measures with symme-
try properties from an analytic point of view. For example, he has considered simplices of
probability distributions which are summarized by additive statistics with values in Abelian
semigroups. The case of Prcrs is such an example, where the semigroup S is the subsemi-
group of pairs of measures on the non-negative integers generated by the summarizing statistics
tn(x) = 001 6Ti,Z§L:1 5cj) for m,n = 1,2,.... Thisfamily of statistics can be shown
(Ressel 2002, personal communication) to be * strongly almost additive’ and thus* strongly pos-
itivity forcing’ (Ressel 1994), which implies that Prcgs is a Bauer smplex and the extreme
points Egcgs are determined by normalized characterso € S so that for abinary m x n matrix
x it holds
Po(T) = 0 (tmn(2)),

where o(t @ s) = o(t)o(s) for dl s,t € S. Theorem 2 thus identifies the characters of this
semigroup in terms of solutionsto thefunctional equation (6), albeit in arather implicit fashion.

To describe the charactersin more detail, we may represent the elements of the semigroup
S by vectors (r, ¢) with elements ordered so that ; < -+ < r,, ande¢; < --- < ¢,. Then
(r,c) € Sif and only if the set of matrices M (r, ¢) with row sums r and column sums c is
non-empty. Gale (1957) and Ryser (1963) have shown that M(r,c¢) # 0 if and only if r < ¢*,
where ¢* is the conjugate sequence of ¢

c; =Kl =i}

and < denotes majorization: a < b < Zle a; < 26:1 bjfordl k=1,...,m.
The value of the character p, where ¢ satisfies (65 isthen given as

psric)= [ - (i, v7) {1 — p(uz,v5) ' dusdv;,
[ /T etees : :

where x is an arbitrary element of M(r,¢). The description is still somewhat implicit since
many choices of ¢ lead to the same character p.
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4.3. Marginal Problems

A problem related to the Rasch model was investigated by Gutmann et al. (1991). Simula
tion models for baseball were considered in which a random batter of batting average Y was
confronted with a random pitcher of pitching average Z. If welet W = (Y, Z) denote the
probability of a hit, we must have

EW|Z)=2; EW|Y)=Y; 0<W<1. (11)

Dawid et al. (1995) discuss the related problem of coherent combination of experts’ opin-
ions. HereY and Z are experts' opinons in the form of their subjective probabilities for some
event A. Then W = (Y, Z) is a coherent combination of the experts' opinionsif and only if
(11) holds.

If £ and G arethe distribution functions of Y and Z such afunction ) existsif and only if
it holdsfor al s, t € [0, 1] that

1 1 1
/ x F(dx) +/T yG(dy) g/o x F(dx) +{1— F(s)}{1 - G(t)}. (12)

This was shown as Theorem 4 of Gutmann et al. (1991), using classical results of Kellerer
(1961) and Strassen (1965). Gutmann et al. (1991) also show that if this condition is met, v
can be chosen to be increasing in each of its arguments, and ) can also be chosen to be the
indicator of a set, although not always both simultaneously, see Proposition 4 below. Note that
for 0 < ¢ <1, (11) may aso be written as

1 1
[ v ran —yae ®. [ ienci-cae@. 03
Clearly, if F and GG are such apair and we let

$(u,v) = Y(F~(u), G (v)),

we obtain a ¢p-matrix of batting outcomes.

Theresultsof Gutmann et al. (1991) can be seen asacontinuous anal ogue of the Gale-Ryser
theorem. To make this more precise, we define the conjugate £ of a distribution function F
on the unit interval by

F*x)=1-F'1-uz),

where F~! isthe |eft-continuous inverse of F':

F~l(x) = sup{y | F(y) <},

Asin the discrete case we say that G majorizes F' and write F' < G if
/ F(z)dx < / G(z)dz forall s € [0,1].
0 0

Proposition 3. Let ' and G be two distribution functions on [0, 1]. Then there exists a
function ¢ satisfying (13) if and only if F* < G™*.
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Proof. We simply show that (12) holds if and only if F < G*. Partial integration in (12)
yields

/OS F(z)dr < sF(s) +tG(t) — F(s) — G(t) + F(s)G(t) + /1 G(z)dz.  (14)
A small picture makesit clear that

| 1-G(t)
/ G(z)dx = / G*(z)dx + (1 = t)G(1).
0 0

Letting v = 1 — G(¢) and inserting the above into (14) yields that (11) holds for al s, ¢ if and
only if it holdsfor al s, u that

/ﬁF@ﬁmg(&—wF@)+/mGW@dm (15)
0 0

If we assume (15), we may let v = s and deduce that F* < G*. Conversdly, if we assume
F < G*, wehave

(s —u)F(s) + / G*(z)dx > (s —u)F(s) + / F(z)dx (16)
0 0
> / F(x)dx
0
because differentiation w.r.t. u shows that the right-hand side of (16) isat minimum for v = s.
Thus we have shown (15), as heeded. ]

The proposition on p. 1793 of Gutmann et al. (1991) can now be rephrased as

Proposition 4. If F' and G are continuous, there exists ¢» € {0, 1} which isincreasing in
each of its arguments and satisfies (13) if and only if F' = G*.

The analogy with the Gale-Ryser theorem becomes clearer if we let

Fonl@) = 30, a([002]), Gounl) = - 26,1 (0,8]) a7)
1 1

whereby some manipul ation shows that
r3c <= Fn, XG;,.

If we consider arandom Rasch ¢-matrix, given by distributions (A, B) of row- and column
sums, we get for the infinite row- and column averages

n

_ _ 1 ;3 0 qf ¥
Xioo = E(Xjno | S) = lim ~ = B(dg) = B(a),
( |S> nl—{rolon; 1+Oéiﬂj /0 1+ ;3 (dﬁ) (a )

where B iswhat we choose to call the Rasch transform defined as

B@p:ém U B(dy).

142y
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Similarly we get Xo; = A(8;). Thusif we let F(z) denote the distribution function of
the row average X, we have

F(z) = P(Xjo < @) = P(B(ay) < 2) = A(B}(2)) (18)

and similarly G (x) = B(A~!(z)) where G isthe distribution function of X;.

Clearly, we may consider the pair ¢}, = (Eyn, Gmn) in (17) of empirical distributions of
the row- and column averages as the summarizing statistic for Prcgg. 1n analogy with (3) of
de Finetti’s theorem, we then have that for any P € Prcgs this pair convergesto apair (F, G)
of distributions satisfying /' < G* and the mixing measure p.p on Egcis is the distribution of
this pair; we refrain from giving the details of the argument.

An obvious question to ask next is whether to any given subconjugate pair (F,G) of
distributions, i.e. pair of distributions satisfying F' < G*, one can find a¢-matrix of Rasch type,
so that Egcpg can be identified with the set of subconjugate pairs.

So consider apair (F, G). From (18) it follows that these are the distributions of row- and
column averages of aregular random Rasch model if and only if there exist distributions A and
B on (0, 00) so that

F(B(z)) = A(z) and G(A(y)) = B(y) foral z and y. (19)

In the case where (F, G) are empirical distributions of the form (17), (19) is easily seen to be
equivalent to the equation system

_:_Z i3 &:iz @if3) (20)
1+azﬁj m 1+ aif;’

wherethen A and B arethe empirical distributions of {c; } and {3;}. Thisfact ismost directly
seen when row sums and column sums are al different and ordered to be increasing, since then

Fon(B()) = Fon(ri/n) = i/n = A(o)
and similarly with 3;.
The equation system (20) is exactly the maximum likelihood equations for estimation of

the parameters in the Rasch model and these are known to have a solution (Fischer 1981) if and
only if r < s* where < denotes strict majorization

k k
a<b<:)2a,-<ijforallk:1,...,m

i=1 j=1

and the solution is unique up to multiplication of «; with a positive constant ¢ and division of
B; with the same constant. Thus, if we say that (F, G) are strictly subconjugate if F' < G*,
where < means strict majorization:

F<G<:>/ da:</G ydrzforal0<s<1

it seems natural to conjecture:
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Conjecture. Let (F,G) be a pair of distribution functions on [0, 1]. Then there exists a
¢-matrix of Rasch type with distributions of asymptotic marginal row- and column averages
given by F' and GG if and only if ¥ < G*. Moreover, the distribution of the ¢-matrix is
injectively parametrized by (F, G) and the corresponding ¢-matrix isregular if and only if
F < G*.

However, at present it is not clear to the author how to prove this, athough part of the
conjecture should follow from asuitable limiting argument, using the result about existence and
uniqueness of the maximum likelihood estimates. Note that the case F' = G* of Proposition 4
indeed corresponds to the non-regular Rasch-matrix determined by (8).
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DISCUSSION

MICHAEL GOLDSTEIN (University of Durham, England)

This paper contains results which are both deep and elegant. Are they important? | am
reminded of the following quote from the introduction to the collection “ Studies in subjective
probability” (1964), in which Kyburg and Smokler write

In some ways, the most important concept of the subjectivistic theory is that of exchangeable events.
Until this notion was introduced by de Finetti in 1931, the subjectivistic theory of probability remained
pretty much of a philosophical curiosity. None of those for whom probability theory was a means of
livelihood or knowledge paid much attention to it.

Why isexchangeability soimportant? It will behel pful to haveastory to hang thisdiscussion
on, so let’s suppose that anew television program is created, called First Kiss. In this program,
agroup of men and women compete as follows. Each man and each woman kiss exactly once.
Each kiss is determined to be either “good” or “bad”. This determination is made by a strictly
obj ective method which, dueto spacelimitations, | will not be ableto describe here. Each player
is scored by the number of good kisses that they achieve, and the winners go on to compete in
further stages of the competition.
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Suppose that we want to carry out a statistical analysis of a round of the game. We have
atable with rows corresponding to men, columns to women. The (i, j)' entry, X;;, is1for a
good kiss, and zero for abad kiss. While there are many ways that we might choose to analyse
such atable, asimple and fairly standard approach would be to apply alinear |og-odds model,
representing the process generating the table as

P(X; = 1)

wherer;, c; arerow and column constants representing the ability of each contestant. We might
then fit (1) to the table of data using our favourite Bayes or likelihood approach, and then carry
out some form of diagnostic check for model fit. However, this sidesteps the fundamental
question as to why we should entertain amodel such as (1), in thefirst place.

One of de Finetti’s fundamental contributions was to show how beliefs about underlying
and unobservable parameters could be inferred strictly from beliefs expressed over observable
guantities. In our problem, the results of this paper assure us of the following. Suppose that
we can view our individual matrix as a sub-matrix of a (hypothetical) infinite matrix (i) with
exchangeable rows and exchangeable columns, and (ii) for which row sums and column sums
for any sub-matrix are sufficient statistics for that sub-matrix. Then the Rasch representation
theorem tells us that our beliefs over our matrix must be exactly asif we believed (i) that each
row hasatruevaluer; and each column hasatruevaluec;, satisfying (1) for al 4, j; (ii) wedon’t
know what valuesr; and c; are, but we believe that the sequencery, o, ... isiid with probability
distribution P, and the sequence ¢y, co, ... isiid with probability distribution P¢; (iii) we don’'t
know what Py, P are, but we have a prior distribution Pr over possible choices of Py, Pc.
Therefore, we see that the Bayesian analysis over (1) is indeed a necessary consequence of
certain beliefs over the observables. Further the diagnostic analysis of the model that we might
carry out is precisaly that which critically scrutinises the generalised constraints on our beliefs
which we require in order to apply the Rasch representation.

Thisis an important and useful result, partly in giving meaning to our analysis and partly
in directing us to the diagnostic testing which is appropriate to use of the model. However,
thereisafurther consideration which | believe that we must apply before we can claim that this
paper offers genuine insights for the subjectivistic theory. The representation theorem argues
that our beliefs must be asif there were true underlying probability distributions generating true
underlying parameter values. But what is it about our beliefs over the kisses which compels
us to believe in these underlying parameter distributions? The central result of this paper is
a deep one, whose proof winds its way through various other deep results from a variety of
sources. Therefore, it is difficult to see whether the representation is based on natura, finite
considerations, or whether at some point in the development a step has been introduced which
only makes sense within an infinite collection and which has no meaningful finite counterpart.

| shall now suggest that theresult isindeed aconsequenceof natural and finiteconsiderations.
Firgt, let us recall how de Finetti’s representation theorem works for coin tosses. If we judge
that coin tosses are exchangeable, then we may consider the outcomes of a large, but finite,
collection of tosses. We may imaginefilling abucket with tokens, where theit" token is marked
heads or tails depending on the result of thei*? toss. Suppose that the proportion of headsin the
bucket is p. Asthe tosses are exchangeable, our beliefs, given p, about the outcome of tossing
the coin £ timesis exactly as though we were to make £ independent selections of tokens from
the bucket without replacement. If the number of tokens in the bucket is large compared to &,
then we may view the selections as amost independent, each with probability p for heads. Of
course, we do not know what the value of p will be, and therefore we have a prior distribution
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over this value. Thus, our beliefs will be exactly as described by de Finetti’s representation
theorem, up to the approximation arising from the finite nature of the bucket. Thus, thereisa
final book-keeping step of allowing the size of the bucket to tend to infinity, and showing that
the limit is smoothly and consistently achieved, but this argument is sufficient to show that the
representation is really concerned with our beliefs over large finite collections of tosses.

For the Rasch representation, the argument ismore complicated, but similar finitearguments
show why the representation holds. To simplify the discussion, suppose that we consider that
there are three levels of ability for the men, namely Superb (.5), Acceptable (A) and Terrible
(T), and similarly for the women. We do not know a priori how many people fall into each
category, nor do we know the quantitative differences between the groups and nor do we know
which category each individual should fall into.

However, now suppose that we envisage alarge, but finite, array of outcomes of the game.
The row sums allow usto classify the men into their appropriate groups to an arbitrary level of
accuracy, asthearray sizeincreases. Similarly, the column sumsallow usto classify thewomen.
Therefore, we may consider that we have nine buckets filled with kisses. In each bucket, some
kisses are good and some are bad. Let p,,,, be the proportion of good kisses among group maw,
where each ability of the men, m, and of the women, w, isone of S, A, T'. Our probability that
an individual pair i, 7 of people have a good kiss, conditional on the row and column sums for
the layout, comes from using the i* row sum and the ;j** column sum to allocate the pair to the
appropriate groups m; and w; and then, from the row and column exchangeability, viewing the
probability that the couple have a good kiss as Pmjw; independently of all other kisses.

Given the nine values p,,.,, we now fit the Rasch model

a;f3;
P X/,'x =1)= -

77:7j:S7A7T (2>

Asit stands, the model is non-identifiable, so we nominate an individual to be the standard
against which al others are judged. Suppose that we assign 3, the score for superb women,
to be one. Thisthen fixes the scores for al menasp,,s = (m/[1 + aw]),m = S, A, T. This
now fixes each of the remaining scores for women, for example looking at the groups with
m = S giveSps,, = (asBuw/[1+ asbu]), w = A, T. (Thisargument breaks down if any of the
pmw Values are zero, which is why a separate argument is required in the general statement of
the theorem for the non-regular case.) We have now fixed all of the values «;, 3; and we must
check that (2) is indeed satisfied over all subgroups. This follows as all the information that
we have used is based on conditioning on row and column sums. Such conditioning preserves
row-column summarisability (as, conditional on the row and column sums, al configurations
with these row and column sums have the same probability, so that any two sub-matrices with
the same row and column sums must have the same conditional probability as each can be
embedded in exactly the same number of configurations for the full matrix with the given row
and column sums). Therefore, consider, for example, our assessment for P(X7p = 1). Thisis
uniquely determined, as by row-column summarisability, we must assign the same probability
to each of the events [X7r = 1, Xps = 0, Xgr = 0, Xgs = 1] and [X7p = 0, X7g =
1, Xsr = 1, Xg5 = 0]. Equivaently, we must assign

ag 1 1 1 asfBr ar
1+a51—|—0z5ﬁT1—|—o¢TpTT_ l4+agl+agfbrl+ar

(1—prr)

fromwhich prr = (arfr/[1 + arpPr]) asrequired. We therefore see that the exchangesbility
construction for Rasch matrices corresponds in this case to a mixture of our uncertainties as to
the relative proportions of each of the groups and our beliefs over the magnitudes of the effects
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within each group, as expressed by our beliefs over the nine probability values p,,,,, constrained
by the Rasch relations (2). The book-keeping that is required to produce the general result is
far more detailed than for the classic de Finetti representation, as we not only have to let the
size of each bucket tend to infinity but we also need to let the number of bucketstend to infinity,
reversing the argument that | gave where we started by knowing the number of groups and
instead defining the groups through observed similarity of row or column sums.

The technical difficulties in such an explicit construction are considerable. However, the
above argument is, | hope, sufficient to suggest that the reason that the Rasch representation, so
expertly presented in this paper, doesindeed offer powerful, practical insightsinto the treatment
of binary layouts is that it is a genuinely subjectivistic result which is based on intuitive and
finite considerations.

REPLY TO THE DISCUSSION

First I would like to thank Michael Goldstein for his positive reaction to this paper. Although
mating of salamandersis a potential application of the Rasch model, | admit that the First Kiss
program is much more fascinating! The description of the nature and genesis of the Rasch
model given by Michael Goldstein is both very illuminating, accurate, and on the point.

Indeed it was appropriate to mention that the non-degenerate Rasch model is nothing but
an additive model for the log-odds, a model which is more familiar to statisticians today than it
was in 1960, when Rasch introduced it.

It would be very valuable to have a derivation of the random Rasch model from finite
considerations, as suggested by the discussant. Diaconis and Freedman (1980) give finite
versions of de Finetti’sclassical theorem, with an explicit bound on thedistancein total variation
between the distribution of thefirst & of asequence of exchangeable variableswith agivenfinite
length n, and the closest mixture of Bernouilli distributions. The bound, 4%/, originates from
approximating the hypergeometric distribution with the binomial. Generalizations of this type
of argument has e.g. been made by Diaconis, Eaton and Lauritzen (1992), and the corresponding
infinite versions of de Finetti type theorems then usually follow by asimple limit argument.

The problem hereisthat the bookkeeping associated with deriving such bounds and control -
ling their asymptotic behaviour in the case of binary matricesis particularly difficult. Whereas
there are efficient and well-known asymptotic results for the number ( ) of binary sequences
of length n with sum z, it seems to be extremely hard to control N(r,¢) = |[M(r,c)|,
number of binary matrices with row-sumsequal tor = (71, . .., r,) and column-sums equal to
¢ = (e1,...,cp). Thecombinatorial literature hasonly sporadic results; seefor example O’ Nell
(1969), Békéssy, Békéssy and Komlos (1972), Bender (1974), Mineev and Pavlov (1976), and
McKay (1984, 1985). Thestructure of the degenerate RCE matrices of Rasch typealsoindicates
that the situation is quite complex.
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