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SUMMARY

The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns
which satisfy the further property that the probability of any m × n submatrix is a function of the
row- and column sums of that matrix. We show that any such distribution is a (unique) mixture of
random Rasch distributions. The non-degenerate elements of these distributions were introduced by
Rasch (1960). We investigate the relationship between these random Rasch distributions and a problem
in visual perception, the characters of a certain Abelian semigroup, and the problem of existence of
measures with given marginals.
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1. INTRODUCTION

This article is concerned with the dichotomous Rasch model for item analysis (Rasch 1960).
The model was developed to describe outcomes of psychological testing experiments. An item
(question, problem) labeled i is presented to a person labeled j and a binary response Xij is
recorded. The Rasch model asserts that responses are independent, and that there are param-
eters αi (‘easinesses’) characteristic for the items and parameters βj (‘abilities’) characteristic
for the persons so that

P (Xij = 1 |αi, βj) =
αiβj

1 + αiβj
. (1)

The model and its variants has been the subject of intensive study and interest in the
psychometric literature. But the Rasch model is also of fundamental interest in many other
contexts and in itself. For example, Xij could indicate whether or not a batter i is getting a hit
when matched with a pitcher j (Gutmann et al. 1991), Xij could indicate presence or absence
of a given species i of bird on island j (Wilson 1987), orXij could denote the success or failure
of mating when a female salamander i is paired with male salamander j (McCullagh and Nelder
1989, page 439 ff.). An overview of literature related to the Rasch model can be found in Fischer
and Molenaar (1995).

The Rasch model can in some sense be seen as the fundamental model of randomness
for (0,1)-matrices and much effort has also been devoted to derivations of the Rasch model as
the unique model satisfying certain fundamental principles. Rasch favoured deriving it from
his principle of specific objectivity (Rasch 1967, 1977), but, for example, he also derived it
from sufficiency arguments, using the basic assumption that the probability of any binarym×n
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matrix should only depend on the row- and column sums of this matrix (Rasch 1971), a property
clearly satisfied by the Rasch model, since

Pαβ {(Xij = xij)i=1,...,m;j=1,...,n} =
m∏
i=1

n∏
j=1

(αiβj)
xij

1 + αiβj
=

∏m
i=1 α

ri
i

∏n
j=1 β

cj
j∏m

i=1
∏n
j=1(1 + αiβj)

, (2)

where ri =
∑
j xij and cj =

∑
i xij . Other derivations (Andersen 1973) assume sufficiency

of the column sums cj when item parameters αi are arbitrary but known and show that this
leads to the Rasch model. The derivations usually have an implicit or explicit assumption of
independence and regularity (0 < P (Xij = 1) < 1); see Fischer (1995) for a survey. We
note that the proof and theorem supplied by Rasch (1971) is inaccurate as it stands, but can be
modified to become correct.

In the present paper we attempt to identify Rasch models as extreme point models (Lauritzen
1988). More precisely, we replace the assumption of independence with the exchangeability of
rows and columns and show (Theorem 2) that (randomized) Rasch models are extreme points in
the simplex of row-column exchangeable binary matrices with distributions only depending on
row- and column sums. This yields an extension of de Finetti’s theorem for binary sequences
which supplements the results of Aldous (1981), see also Dawid (1982).

The article is composed as follows. In Section 2 we recapitulate some basic concepts and
results on exchangeability and convex sets of measures. Section 3 reviews and extends the
main results about random binary matrices, and Section 4 places the results in a slightly wider
perspective.

2. PRELIMINARIES

2.1. Exchangeable Sequences and Summarization

We begin by rephrasing some classical results. A sequence X1, . . . , Xn, . . . is said to be
exchangeable if for all n

P {(Xi = xi)i=1,...,n} = P
{
(Xi = xπ(i))i=1,...,n

}
for all π ∈ S(n),

i.e. if its distribution is invariant under finite permutations. Clearly, if X1, . . . , Xn, . . . are
independent and identically distributed, they are exchangeable, but not conversely.

A statistic t(x) is summarizing for a discrete probability distribution P (Freedman 1962)
if P (X = x) = p(x) = h(t(x)) for some function h. Note that if t(x) is summarizing for
P ∈ P , it is sufficient for P and for all P ∈ P , p(x | t) is uniform on {x : t(x) = t}.

For binary variables, X1, . . . , Xn, . . . is exchangeable if and only if for all n the sum
tn(x) =

∑
i xi is summarizing for p(x1, . . . , xn):

P (X1 = x1, . . . , Xn = xn) = hn(
∑
i xi)

because the group of permutations S(n) acts transitively on binary n-vectors with fixed sum,
i.e. if x and y are two such vectors, there is a permutation which sends x into y, and thus tn is
a maximal invariant.

In general, a statistic t is summarizing for P if and only if P is invariant under the group of
transformations that leaves t unchanged. Thus the term partial exchangeability has often been
used for this more general concept.

de Finetti (1931) shows that all exchangeable sequences are mixtures of Bernoulli sequences:
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Theorem 1 (de Finetti) A binary sequence X1, . . . , Xn, . . . is exchangeable if and only if
there exists a distribution function F on [0, 1] such that for all n

p(x1, . . . , xn) =
∫ 1

0
θtn(x)(1− θ)n−tn(x) dF (θ).

It further holds that F is the distribution function of the limiting frequency:

Y = lim
n→∞

1
n

∑
i

Xi, P (Y ≤ y) = F (y) (3)

and the Bernoulli distribution is obtained by conditioning with Y = θ:

P (X1 = x1, . . . , Xn = xn |Y = θ) = θtn(1− θ)n−tn.

de Finetti’s Theorem, with its generalisations (Hewitt and Savage 1955) and variants (Di-
aconis 1977; Diaconis and Freedman 1980), has received much attention in the literature on
probability and mathematical statistics (Kingman 1978; Aldous 1985).

2.2. Convex Sets, Mixtures and Extreme Points

Theorem 1 gives an integral representation of exchangeable measures. To pursue this perspec-
tive on de Finetti’s Theorem, we need some basic facts about convex sets of measures.

In the followingP denotes a set of probability measures on a spaceX which is the countable
product of finite sets. Such a set P is convex if

P1, P2 ∈ P and 0 < α < 1 =⇒ αP1 + (1− α)P2 ∈ P

and Q is an extreme point of P if

Q = αP1 + (1− α)P2 with 0 < α < 1, P1, P2 ∈ P =⇒ Q = P1 = P2.

If P is equipped with the weak topology and A is a Borel subset of P , P is a mixture of
elements in A if there is a probability measure µ on A such that for all Borel subsets B of X

P (B) =
∫
A
A(B)µ(dA).

A fundamental result is Choquet’s Theorem: If P is compact, the set of extreme points E of
P is a non-empty Borel subset of P , and any element of P is a mixture of the extreme points:

P (B) =
∫
E
E(B)µP (dE).

A convex set P is a simplex if the mixing measure µP is uniquely determined by P . de
Finetti’s Theorem can alternatively be formulated as: The exchangeable meaures PE form a
compact simplex, with Bernoulli measures as extreme points.

A compact simplex is a Bauer simplex if the extreme points E form a closed (and therefore
compact) subset of P . The simplex PE is a Bauer simplex since the extreme points can be
identified with the interval [0, 1].
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3. PARTIALLY EXCHANGEABLE BINARY MATRICES
This section first reviews results about binary matrices with exchangeable rows and columns,
then binary matrices where the row- and column sums are summarizing statistics, and finally
gives new results about matrices with both properties.

3.1. Row-column Exchangeable Matrices
The distribution P is said to be row–column exchangeable (RCE) if for all permutations π ∈
S(m) and ρ ∈ S(n) we have

P {(Xij = xij)i=1,...,m;j=1,...,n} = P
{
(Xij = xπ(i)ρ(j))i=1,...,m;j=1,...,n

}
.

We denote the corresponding group of transformations by GRC(m,n) and as before GRC =
∪m,nGRC(m,n) denotes the similar group acting on infinite matrices.

The set PRCE of RCE distributions was e.g. studied by Aldous (1981), Diaconis and Freed-
man (1981), Hoover (1982) and Lynch (1984), and the main results have been collected and
extended in Aldous (1985).

There seems to be no simple expression for a statistic which is maximal invariant under the
action of GRC(m,n) and thus there is no simple description of the sufficient (and summarizing)
statistic.

Two σ-fields are particularly important for the study of PRCE and PRCS. These are the
tail-field T and shell-field S where

T =
∞⋂
n=1

σ{Xij,min(i, j) ≥ n}, S =
∞⋂
n=1

σ{Xij,max(i, j) ≥ n}.

We exploit the following which is Proposition 14.8 of Aldous (1985):

Proposition 1. If X has distribution P ∈ PRCE then the following are equivalent:
(i) P is extreme in PRCE;
(ii) T is P -trivial;
(iii) X is P -dissociated.

Here a σ-field A is said to be P -trivial if P (A) ∈ {0, 1} for all A ∈ A and X is P -
dissociated if for all A1, A2, B1, B2 with A1 ∩A2 = B1 ∩B2 = ∅,

{Xij}i∈A1,j∈B1 and {Xij}i∈A2,j∈B2 are independent w.r.t. P .

Diaconis and Freedman (1981) introduce the notion of a φ-matrix. This is constructed
from a measurable function φ : [0, 1]2 → [0, 1] and independent sequences U = (Ui)i=1,...
and V = (Vi)i=1,... of independent random variables, uniformly distributed on the unit interval
[0, 1], by letting Xij be conditionally independent given U and V and

P (Xij = 1 | F) = φ(ui, vj),
where F = σ(Ui, Vi, i = 1, . . .) is the effect field of the φ-matrix. Clearly φ-matrices are
necessarily dissociated. Following Lynch (1984), a φ-matrix X is said to be canonical if
X ⊥⊥ S |F , i.e. if F captures the whole effect of S on X . Proposition 1 in combination with
Corollary 2.4 of Lynch (1984) now yields:

Proposition 2. P is extreme in PRCE if and only if P is the distribution of a canonical
φ-matrix.

Although this proposition gives a relatively simple description of ERCE, it is still too implicit
to be useful for statistical purposes. In particular, it is difficult to get a handle on the ambiguity
of the function φ as many different φ-functions yield the same distribution of its φ-matrix.



Exchangeable Rasch Models 5

3.2. Summarized Matrices
We consider distributions P of doubly infinite matrices X = {Xij}i,j=1,2,... of binary random
variables. P is said to be row-column summarized (RCS) if the probability of anym×n (initial)
submatrix, depends only on the row- and column sums, i.e. if for all m and n

P {(Xij = xij)i=1,...,m;j=1,...,n} = P ({(Xij = yij)i=1,...,m;j=1,...,n} .
whenever

∑n
j=1 xij =

∑n
j=1 yij for all i and

∑m
i=1 xij =

∑m
i=1 yij for all j.

For r = (r1, . . . , rm) and c = (c1, . . . , cn), we letM(r, c) denote the set ofm×n-matrices
with row- and column sums equal to (r, c). We then introduce the group GS(m,n) of switches.
This is the group of one-to-one transformations ofM(r, c) generated by simple switches, where
a simple switch changes a specified 2× 2-submatrix of x ∈M(r, c) as(

1 0
0 1

)
→

(
0 1
1 0

)
and

(
0 1
1 0

)
→

(
1 0
0 1

)
,

and otherwise leave the entries of x invariant.
Theorem 3.1 of Ryser (1957) says that if x and y are matrices in M(r, c), there exists a

switch g ∈ GS(m,n) such that x = gy. In other words:

Lemma 1. The group GS(m,n) of switches acts transitively onM(r, c).

It thus follows that (r, c) is a maximal invariant under the action of GS(m,n). If we let
GS = ∪m,nGS(m,n) denote the similar group acting on infinite matrices we thus have:

Corollary 1. A distribution P on the set of doubly infinite binary matrices is row–column
summarized if and only if it is GS-invariant.

Lemma 1 and its corollary was also exploited by Besag and Clifford (1989) to construct a
Markov chain Monte Carlo algorithm for simulating from the uniform distribution onM(r, c),
see also Holst (1995), Rao et al. (1996) and Ponocny (2001).

We let PRCS denote the set of RCS-distributions. Lauritzen (1988) showed that PRCS is a
convex simplex and found partially the extreme points ERCS of this simplex, in particular that
ERCS �= PR, where PR is the set of Rasch distributions given by (2). More precisely it was
shown (Propositions 9.2 and 9.3, page 250) that Pα,β ∈ ERCS if

∞∑
i=1

αiβi
(1 + αi)(1 + βi)(1 + αiβi)

=∞ (4)

and Pα,β �∈ ERCS unless
∞∑
i=1

αi
(1 + αi)2

=
∞∑
i=1

βi
(1 + βi)2

=∞. (5)

Roughly speaking, the conditions are preventing that the α and β sequences vary too
rapidly with i. It is therefore natural to expect simpler results when extra symmetry, such as
exchangeability, is assumed. The condition (4) implies (5), but it is not known whether any of
these two conditions are both necessary and sufficient for Pα,β to be in ERCS. Note that PRCS
is not a Bauer simplex. To see this, define Pnα,β by

αi = βi =
{

2−i if i < n
1 otherwise.

Then Pnα,β ∈ ERCS for all n as it satisfies (4), but as n tends to infinity it converges to a measure
which violates (5), hence ERCS is not closed.
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3.3. Summarized and Exchangeable Matrices

This section deals with the set of distributions PRCES = PRCE ∩ PRCS which are both RCE
and RCS. We let GRCS(m,n) denote the group of transformations generated by row-column
permutations GRC(m,n) and switches GS(m,n) and GRCS the corresponding group of trans-
formations on infinite matrices.

Lemma 2. The pair of empirical measures induced by the row- and column sums tmn(x) =
(
∑m
i=1 δri,

∑n
j=1 δcj ) is a maximal invariant for the action of GRCS(m,n).

Proof. Clearly, tmn is invariant so we just have to show that GRCS(m,n) acts transitively
on the set of matrices with a given value of tmn. So assume tmn(x) = tmn(y) = t. We
first permute the rows and columns of x and y to form g1x and g2x with increasing row-
and column sums using g1, g2 ∈ GRC(m,n). But then g1x and g2y have identical row- and
column sums and Lemma 1 yields the existence of g ∈ GS(m,n) so that gg1x = g2y. Then
g∗ = g−1

2 gg1 ∈ GRCS(m,n) has g∗x = y as desired.

The set PRCES is a proper subset of PRCE. This is because the group GRC(m,n) does not
act transitively on sets of matrices x with a fixed value tmn(x) = t. For example, if we let

x =

(
0 0 1
1 0 0
0 1 1

)
, y =

(
0 0 1
0 0 1
1 1 0

)
,

then detx = 1 and det y = 0. Since the absolute value of the determinant is invariant under
permutation of rows and columns, there is no element g ∈ GRC(3, 3) so that x = gy. Indeed,
for a φ-matrix with φ(u, v) = uv, we have p(x) = 665/2985984 but p(y) = 1/4096, so this
distribution is in PRCE \ PRCS.

General results (Lauritzen 1988) imply that PRCES is a simplex. To identify the extreme
points ERCES of PRCES we need the following lemma:

Lemma 3. If P ∈ PRCES and E ∈ T with P (E) > 0, then P (· |E) ∈ PRCES.

Proof. Let E ∈ T with P (E) > 0. By Lemma 2 we must just show that P (· |E) is
GRCS-invariant. So let g ∈ GRCS . When E ∈ T it is clearly invariant both under switches,
row- and column permutations so gE = E. LetD be an arbitrary measurable subset of infinite
binary matrices. We thus have

P (gX ∈ D |X ∈ E) =
P (gX ∈ D ∧X ∈ E)

P (X ∈ E)
=
P (gX ∈ (D ∩ gE))

P (X ∈ E)

=
P (X ∈ D ∩ E)
P (X ∈ E)

= P (X ∈ D |X ∈ E)

and thus P (· |E) ∈ PRCES.

Further, we have

Lemma 4. ERCES = PRCES ∩ ERCE.
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Proof. The inclusion ERCES ⊇ PRCES ∩ ERCE is obvious. To show the reverse inclusion,
we assume that P ∈ PRCES ⊆ ERCE and show that P �∈ ERCES. Since P �∈ ERCE, T is not
P -trivial. Thus there exists E ∈ T with 0 < P (E) < 1. We may now write

P (·) = P (· |X ∈ E)P (E) + P (· |X �∈ E)(1− P (E)).

By Lemma 3 this expresses P as a non-trivial convex combination of two elements of PRCES
implying that P �∈ ERCES.

Next we must realize that PRCS is stable under shell-conditioning:

Lemma 5. If P ∈ PRCS then P (· | S) ∈ PRCS.

Proof. Using Corollary 1 this follows as in the proof of Lemma 3 because GS leaves sets
in S invariant.

Note that P (· | S) is typically not RCE. Next we define φ to be of Rasch type if it satisfies
the functional equation:

φ(u, v)φ̄(u, v∗)φ̄(u∗, v)φ(u∗, v∗) = φ̄(u, v)φ(u, v∗)φ(u∗, v)φ̄(u∗, v∗), (6)

where we have let φ̄ = 1 − φ. If P is the distribution of a φ-matrix with φ of Rasch type,
P (· | F) is GS invariant. This therefore also holds for its unconditional distribution P , implying
thatP ∈ PRCES. In fact, below we show that such φ-matrices exactly correspond to the extreme
points ERCES of PRCES.

Theorem 2. If P ∈ PRCES, it is in ERCES if and only if P is the distribution of a φ-matrix
of Rasch type.

Proof. IfX is a φ-matrix, its distribution P is extreme in PRCE and a forteriori extreme in
PRCES ⊂ PRCE. Thus we only need to show the converse.

Assume P is an extreme point of PRCES. From Lemma 4 and Proposition 2 we get that P
is the distribution of some canonical φ-matrix X . Lemma 5 implies

P

({
Xij = 1 Xij∗ = 0
Xi∗j = 0 Xi∗j∗ = 1

} ∣∣∣∣ S
)

= P

({
Xij = 0 Xij∗ = 1
Xi∗j = 1 Xi∗j∗ = 0

} ∣∣∣∣ S
)
.

Since X is canonical, P (X ∈ A | S) = P (X ∈ A | F) and thus

φ(Ui, Vj){1− φ(Ui, Vj∗)}{1− φ(Ui∗, Vj)}φ(Ui∗, Vj∗) =
{1− φ(Ui, Vj)}φ(Ui, Vj∗)φ(Ui∗, Vj){1− φ(Ui∗, Vj∗)},

i.e. it is a φ-matrix of Rasch type.

If 0 < φ < 1 the solutions of (6) all have the special form

φ(u, v) =
a(u)b(v)

1 + a(u)b(v)
(7)

where a and b map the unit inverval into the positive half-line. This is seen by letting ρ = φ/φ̄
and fixing (u∗, v∗) whereby (6) can be manipulated to

ρ(u, v) =
ρ(u, v∗)ρ(u∗, v)
ρ(u∗, v∗)
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so that we may let a(u) = ρ(u, v∗)/ρ(u∗, v∗) and b(v) = ρ(u∗, v) to satisfy (7). Indeed we
may without loss of generality assume that a and b are determined from distribution functions
A andB on the positive halfline as a = A−1 and b = B−1 so that A andB are the distributions
of αi = a(Ui) and βj = b(Vj) respectively.

A regular random Rasch distribution is now defined to be the distribution of a φ-matrix
with φ of the form (7) and the set of such distributions is denoted by PRR.

Note that there is ambiguity between a and b in the sense that one can be transformed
by multiplication with a positive constant and the other with division without changing the φ-
matrix. But modulo this, the pairs (A,B) are in a one-to-one correspondence with the elements
of PRR.

It follows that the extreme points ofPRCES which are non-degenerate, in the sense that they
correspond to truly non-deterministic matrices, are regular random Rasch distributions. More
precisely, if we say that P is regular when

0 < P (Xij = 1 | S) < 1 for all i, j,

we have:

Corollary 2. P is a regular extreme point of PRCES if and only if P ∈ PRR.

There are many non-regular extreme points of PRCES, essentially correponding to all non-
regular solutions of the functional equation (6). An example of such a solution is

φ(u, v) = χ{u≤v} =
{

1 if u ≤ v
0 otherwise.

This is an example of a φ-matrix of Rasch type which is ‘deterministic’ in the sense that it
is S-measurable. In the context of intelligence tests, the interpretation of this model is that a
person with ability v solves a problem of difficulty u with certainty if v ≥ u but never if u > v.
Variants of the model appear for h and k being monotone functions from the unit interval to
itself and then

φ∗(u, v) = χ{h(u)≤k(v)}. (8)
It seems plausible that these are the only φ-matrices of Rasch type which are essentially S-
measurable. Proposition 3.6 of Aldous (1981) implies that this is true if and only if all solutions
to the functional equation (6) with φ ∈ {0, 1} had the form (8).

There are many more φ-matrices of Rasch type. Consider for example

φ(u, v) =




a(u)b(v)
1 + a(u)b(v)

if 1/3 < u, v < 2/3

χ{u≤v} otherwise

which can be seen as dividing difficulties and abilities into three classes of equal size: low,
medium, high, so that an ordinary Rasch model prevails when persons of medium ability solve
questions of medium difficulty whereas other combinations yield a deterministic outcome.

There are similar models with more than three groups. For example, one can keep cutting
out middle thirds of the unit interval as above to get

φ(u, v) =




a(u)b(v)
1 + a(u)b(v)

if 1/9 < u, v < 2/9

a(u)b(v)
1 + a(u)b(v)

if 1/3 < u, v < 2/3

a(u)b(v)
1 + a(u)b(v)

if 7/9 < u, v < 8/9

χ{u≤v} otherwise

,
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and so on. Since the simplexPRCES is a Bauer simplex (Ressel 2002, personal communication),
the set of its extreme points is closed. Thus the sequence of distributions of φ-matrices defined
by this procedure will converge to what could be termed a Cantor–Rasch distribution with an
infinite number of groups. Although these non-regular Rasch models are unusual, they are by
no means counterintuitive.

4. OTHER PERSPECTIVES

4.1. The Julesz Conjecture

Diaconis and Freedman (1981) discuss a conjecture of Julesz (1975, 1980) in visual perception
saying that two ‘random patterns’ (i.e. binary matrices) with the same first- and second-order
statistics (joint distributions of singletons and pairs) cannot be visually distinguished. Indeed
they give several examples of φ-matrices with the same first- and second-order statistics as a
purely random ‘coin tossing’ matrix which are visually very different from such a matrix.

Here we show that such counterexamples cannot be of Rasch type. This implies that certain
types of deviations from the Rasch model may indeed be visually detected from inspecting large
matrices.

Say a binary matrix is purely random ifXij are all independent and P (Xij = 1) = 1/2 for
all i, j.

Theorem 3. Let X be a φ-matrix of Rasch type with the same first- and second-order
statistics as a purely random matrix. Then it is a purely random matrix.

Proof. Theorem (3.8) of Diaconis and Freedman says that a φ-matrix has the same first-
and second-order statistics as a purely random matrix if∫

φ(u, v) du = 1/2 a.e. (u) and
∫
φ(u, v) dv = 1/2 a.e. (v), (9)

so this is what we assume. We will show that if φ is of Rasch type, it is a.e. constant and thus
equal to 1/2.

Since φ is of Rasch type it satisfies (6). If we expand and reduce the terms in this equation
we find that it is equivalent to

φ(u, v)φ(u∗, v∗) + φ(u, v)φ(u, v∗)φ(u∗, v) + φ(u, v∗)φ(u∗, v)φ(u∗, v∗) =
φ(u, v∗)φ(u∗, v) + φ(u, v)φ(u, v∗)φ(u∗, v∗) + φ(u, v)φ(u∗, v)φ(u∗, v∗)

Integrating this equation with respect to u and using (9) yields that for almost all v and
almost all v∗

φ(u∗, v∗)/2 + I(v, v∗)φ(u∗, v) + φ(u∗, v)φ(u∗, v∗)/2 =
φ(u∗, v)/2 + I(v, v∗)φ(u∗, v∗) + φ(u∗, v)φ(u∗, v∗)/2,

where I(v, v∗) =
∫
φ(u, v)φ(u, v∗) du. Reducing and rearranging terms leads to

{φ(u∗, v∗)− φ(u∗, v)}{I(v, v∗)− 1/2} = 0. (10)

Next let A = {v | I(v, v∗) = 1/2}, then for almost all v �∈ A we have φ(u, v) = φ(u, v∗) and
hence also I(v, v∗) = I(v∗, v∗) for almost all v �∈ A, whereby∫

I(v, v∗) dv =
∫
A
I(v, v∗) dv +

∫
Ac
I(v, v∗) dv = λ(A)/2 + I(v∗, v∗){1− λ(A)},
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where λ is Lebesgue measure. Using now that

I(v∗, v∗) =
∫
φ(u, v∗)2 du ≥

{∫
φ(u, v∗) du

}2

= 1/4

and ∫
I(v, v∗) dv =

∫ ∫
φ(u, v)φ(u, v∗) du dv =

∫ ∫
φ(u, v)φ(u, v∗) dv du = 1/4,

we find
1/4 ≥ λ(A)/2 + {1− λ(A)}/4 = 1/4 + λ(A)/4

whereby λ(A) = 0. Hence φ(u, ·) is constant almost everywhere. By symmetry, φ(·, v) is also
constant so φ must be constant and equal to 1/2.

Note that we have not proved the somewhat stronger statement saying that two φ-matrices
of Rasch type which have identical first- and second order statistics, have identical distributions,
and indeed this does not hold in general.

4.2. Analytic Properties of PRCES

In several papers, Ressel (1985,1988,1994) has studied convex sets of measures with symme-
try properties from an analytic point of view. For example, he has considered simplices of
probability distributions which are summarized by additive statistics with values in Abelian
semigroups. The case of PRCES is such an example, where the semigroup S is the subsemi-
group of pairs of measures on the non-negative integers generated by the summarizing statistics
tmn(x) = (

∑m
i=1 δri,

∑n
j=1 δcj ) for m,n = 1, 2, . . .. This family of statistics can be shown

(Ressel 2002, personal communication) to be ‘strongly almost additive’ and thus ‘strongly pos-
itivity forcing’ (Ressel 1994), which implies that PRCES is a Bauer simplex and the extreme
points ERCES are determined by normalized characters σ ∈ Ŝ so that for a binarym×nmatrix
x it holds

pσ(x) = σ(tmn(x)),

where σ(t ⊕ s) = σ(t)σ(s) for all s, t ∈ S. Theorem 2 thus identifies the characters of this
semigroup in terms of solutions to the functional equation (6), albeit in a rather implicit fashion.

To describe the characters in more detail, we may represent the elements of the semigroup
S by vectors (r, c) with elements ordered so that r1 ≤ · · · ≤ rm and c1 ≤ · · · ≤ cn. Then
(r, c) ∈ S if and only if the set of matrices M(r, c) with row sums r and column sums c is
non-empty. Gale (1957) and Ryser (1963) have shown that M(r, c) �= ∅ if and only if r # c∗,
where c∗ is the conjugate sequence of c

c∗j = |{l | cl ≥ j}|

and # denotes majorization: a # b⇔ ∑k
i=1 ai ≤

∑k
j=1 bj for all k = 1, . . . ,m.

The value of the character ρφ where φ satisfies (6) is then given as

ρφ(r, c) =
∫
· · ·

∫ ∏
i

∏
j

φ(ui, vj)
xij{1− φ(ui, vj)}1−xij duidvj,

where x is an arbitrary element of M(r, c). The description is still somewhat implicit since
many choices of φ lead to the same character ρφ.
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4.3. Marginal Problems

A problem related to the Rasch model was investigated by Gutmann et al. (1991). Simula-
tion models for baseball were considered in which a random batter of batting average Y was
confronted with a random pitcher of pitching average Z. If we let W = ψ(Y,Z) denote the
probability of a hit, we must have

E(W |Z) = Z; E(W |Y ) = Y ; 0 ≤W ≤ 1. (11)

Dawid et al. (1995) discuss the related problem of coherent combination of experts’ opin-
ions. Here Y and Z are experts’ opinons in the form of their subjective probabilities for some
event A. Then W = ψ(Y,Z) is a coherent combination of the experts’ opinions if and only if
(11) holds.

If F and G are the distribution functions of Y and Z such a function ψ exists if and only if
it holds for all s, t ∈ [0, 1] that

∫ 1

s
x F (dx) +

∫ 1

t
y G(dy) ≤

∫ 1

0
xF (dx) + {1− F (s)}{1−G(t)}. (12)

This was shown as Theorem 4 of Gutmann et al. (1991), using classical results of Kellerer
(1961) and Strassen (1965). Gutmann et al. (1991) also show that if this condition is met, ψ
can be chosen to be increasing in each of its arguments, and ψ can also be chosen to be the
indicator of a set, although not always both simultaneously, see Proposition 4 below. Note that
for 0 ≤ ψ ≤ 1, (11) may also be written as

∫ 1

0
ψ(x, y)F (dx) = y a.e. (F),

∫ 1

0
ψ(x, y)G(dy) = x a.e. (G). (13)

Clearly, if F and G are such a pair and we let

φ(u, v) = ψ(F−1(u), G−1(v)),

we obtain a φ-matrix of batting outcomes.
The results of Gutmann et al. (1991) can be seen as a continuous analogue of the Gale–Ryser

theorem. To make this more precise, we define the conjugate F ∗ of a distribution function F
on the unit interval by

F ∗(x) = 1− F−1(1− x),
where F−1 is the left-continuous inverse of F :

F−1(x) = sup{y | F (y) ≤ x}.

As in the discrete case we say that G majorizes F and write F # G if∫ s

0
F (x) dx ≤

∫ s

0
G(x) dx for all s ∈ [0, 1].

Proposition 3. Let F and G be two distribution functions on [0, 1]. Then there exists a
function ψ satisfying (13) if and only if F # G∗.
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Proof. We simply show that (12) holds if and only if F # G∗. Partial integration in (12)
yields ∫ s

0
F (x) dx ≤ sF (s) + tG(t)− F (s)−G(t) + F (s)G(t) +

∫ 1

t
G(x) dx. (14)

A small picture makes it clear that∫ 1

t
G(x) dx =

∫ 1−G(t)

0
G∗(x)dx+ (1− t)G(t).

Letting u = 1−G(t) and inserting the above into (14) yields that (11) holds for all s, t if and
only if it holds for all s, u that∫ s

0
F (x) dx ≤ (s− u)F (s) +

∫ u

0
G∗(x) dx. (15)

If we assume (15), we may let u = s and deduce that F # G∗. Conversely, if we assume
F # G∗, we have

(s− u)F (s) +
∫ u

0
G∗(x) dx ≥ (s− u)F (s) +

∫ u

0
F (x) dx (16)

≥
∫ s

0
F (x) dx

because differentiation w.r.t. u shows that the right-hand side of (16) is at minimum for u = s.
Thus we have shown (15), as needed.

The proposition on p. 1793 of Gutmann et al. (1991) can now be rephrased as

Proposition 4. If F and G are continuous, there exists ψ ∈ {0, 1} which is increasing in
each of its arguments and satisfies (13) if and only if F = G∗.

The analogy with the Gale–Ryser theorem becomes clearer if we let

Fmn(x) =
1
m

m∑
1

δri/n([0, x]), Gmn(y) =
1
n

n∑
1

δcj/m([0, y]) (17)

whereby some manipulation shows that

r # c∗ ⇐⇒ Fmn # G∗mn.

If we consider a random Rasch φ-matrix, given by distributions (A,B) of row- and column
sums, we get for the infinite row- and column averages

X̄i∞ = E(X̄i∞ |S) = lim
n→∞

1
n

n∑
j=1

αiβj
1 + αiβj

=
∫ ∞

0

αiβ

1 + αiβ
B(dβ) = B̌(αi),

where B̌ is what we choose to call the Rasch transform defined as

B̌(x) =
∫ ∞

0

xy

1 + xy
B(dy).
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Similarly we get X̄∞j = Ǎ(βj). Thus if we let F (x) denote the distribution function of
the row average X̄i∞, we have

F (x) = P (X̄i∞ ≤ x) = P (B̌(αi) ≤ x) = A(B̌−1(x)) (18)

and similarly G(x) = B(Ǎ−1(x)) where G is the distribution function of X̄∞j .
Clearly, we may consider the pair t∗mn = (Fmn,Gmn) in (17) of empirical distributions of

the row- and column averages as the summarizing statistic for PRCES. In analogy with (3) of
de Finetti’s theorem, we then have that for any P ∈ PRCES this pair converges to a pair (F,G)
of distributions satisfying F # G∗ and the mixing measure µP on ERCES is the distribution of
this pair; we refrain from giving the details of the argument.

An obvious question to ask next is whether to any given subconjugate pair (F,G) of
distributions, i.e. pair of distributions satisfying F # G∗, one can find a φ-matrix of Rasch type,
so that ERCES can be identified with the set of subconjugate pairs.

So consider a pair (F,G). From (18) it follows that these are the distributions of row- and
column averages of a regular random Rasch model if and only if there exist distributions A and
B on (0,∞) so that

F (B̌(x)) = A(x) and G(Ǎ(y)) = B(y) for all x and y. (19)

In the case where (F,G) are empirical distributions of the form (17), (19) is easily seen to be
equivalent to the equation system

ri
n

=
1
n

∑
j

αiβj
1 + αiβj

and
cj
m

=
1
m

∑
i

αiβj
1 + αiβj

, (20)

where then A andB are the empirical distributions of {αi} and {βj}. This fact is most directly
seen when row sums and column sums are all different and ordered to be increasing, since then

Fmn(B̌(αi)) = Fmn(ri/n) = i/n = A(αi)

and similarly with βj .
The equation system (20) is exactly the maximum likelihood equations for estimation of

the parameters in the Rasch model and these are known to have a solution (Fischer 1981) if and
only if r ≺ s∗ where ≺ denotes strict majorization

a ≺ b⇔
k∑
i=1

ai <
k∑
j=1

bj for all k = 1, . . . ,m,

and the solution is unique up to multiplication of αi with a positive constant c and division of
βj with the same constant. Thus, if we say that (F,G) are strictly subconjugate if F ≺ G∗,
where ≺ means strict majorization:

F ≺ G⇐⇒
∫ s

0
F (x) dx <

∫ s

0
G(x) dx for all 0 < s < 1

it seems natural to conjecture:
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Conjecture. Let (F,G) be a pair of distribution functions on [0, 1]. Then there exists a
φ-matrix of Rasch type with distributions of asymptotic marginal row- and column averages
given by F and G if and only if F # G∗. Moreover, the distribution of the φ-matrix is
injectively parametrized by (F,G) and the corresponding φ-matrix is regular if and only if
F ≺ G∗.
However, at present it is not clear to the author how to prove this, although part of the

conjecture should follow from a suitable limiting argument, using the result about existence and
uniqueness of the maximum likelihood estimates. Note that the case F = G∗ of Proposition 4
indeed corresponds to the non-regular Rasch-matrix determined by (8).
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DISCUSSION

MICHAEL GOLDSTEIN (University of Durham, England)

This paper contains results which are both deep and elegant. Are they important? I am
reminded of the following quote from the introduction to the collection “Studies in subjective
probability” (1964), in which Kyburg and Smokler write

In some ways, the most important concept of the subjectivistic theory is that of exchangeable events.
Until this notion was introduced by de Finetti in 1931, the subjectivistic theory of probability remained
pretty much of a philosophical curiosity. None of those for whom probability theory was a means of
livelihood or knowledge paid much attention to it.

Why is exchangeability so important? It will be helpful to have a story to hang this discussion
on, so let’s suppose that a new television program is created, called First Kiss. In this program,
a group of men and women compete as follows. Each man and each woman kiss exactly once.
Each kiss is determined to be either “good” or “bad”. This determination is made by a strictly
objective method which, due to space limitations, I will not be able to describe here. Each player
is scored by the number of good kisses that they achieve, and the winners go on to compete in
further stages of the competition.
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Suppose that we want to carry out a statistical analysis of a round of the game. We have
a table with rows corresponding to men, columns to women. The (i, j)th entry, Xij , is 1 for a
good kiss, and zero for a bad kiss. While there are many ways that we might choose to analyse
such a table, a simple and fairly standard approach would be to apply a linear log-odds model,
representing the process generating the table as

Lij = log
P(Xij = 1)
P(Xij = 0)

= ri + cj (1)

where ri, cj are row and column constants representing the ability of each contestant. We might
then fit (1) to the table of data using our favourite Bayes or likelihood approach, and then carry
out some form of diagnostic check for model fit. However, this sidesteps the fundamental
question as to why we should entertain a model such as (1), in the first place.

One of de Finetti’s fundamental contributions was to show how beliefs about underlying
and unobservable parameters could be inferred strictly from beliefs expressed over observable
quantities. In our problem, the results of this paper assure us of the following. Suppose that
we can view our individual matrix as a sub-matrix of a (hypothetical) infinite matrix (i) with
exchangeable rows and exchangeable columns, and (ii) for which row sums and column sums
for any sub-matrix are sufficient statistics for that sub-matrix. Then the Rasch representation
theorem tells us that our beliefs over our matrix must be exactly as if we believed (i) that each
row has a true value ri and each column has a true value cj , satisfying (1) for all i, j; (ii) we don’t
know what values ri and cj are, but we believe that the sequence r1, r2, ... is iid with probability
distribution PR, and the sequence c1, c2, ... is iid with probability distribution PC; (iii) we don’t
know what PR,PC are, but we have a prior distribution PRC over possible choices of PR,PC.
Therefore, we see that the Bayesian analysis over (1) is indeed a necessary consequence of
certain beliefs over the observables. Further the diagnostic analysis of the model that we might
carry out is precisely that which critically scrutinises the generalised constraints on our beliefs
which we require in order to apply the Rasch representation.

This is an important and useful result, partly in giving meaning to our analysis and partly
in directing us to the diagnostic testing which is appropriate to use of the model. However,
there is a further consideration which I believe that we must apply before we can claim that this
paper offers genuine insights for the subjectivistic theory. The representation theorem argues
that our beliefs must be as if there were true underlying probability distributions generating true
underlying parameter values. But what is it about our beliefs over the kisses which compels
us to believe in these underlying parameter distributions? The central result of this paper is
a deep one, whose proof winds its way through various other deep results from a variety of
sources. Therefore, it is difficult to see whether the representation is based on natural, finite
considerations, or whether at some point in the development a step has been introduced which
only makes sense within an infinite collection and which has no meaningful finite counterpart.

I shall now suggest that the result is indeed a consequence of natural and finite considerations.
First, let us recall how de Finetti’s representation theorem works for coin tosses. If we judge
that coin tosses are exchangeable, then we may consider the outcomes of a large, but finite,
collection of tosses. We may imagine filling a bucket with tokens, where the ith token is marked
heads or tails depending on the result of the ith toss. Suppose that the proportion of heads in the
bucket is p. As the tosses are exchangeable, our beliefs, given p, about the outcome of tossing
the coin k times is exactly as though we were to make k independent selections of tokens from
the bucket without replacement. If the number of tokens in the bucket is large compared to k,
then we may view the selections as almost independent, each with probability p for heads. Of
course, we do not know what the value of p will be, and therefore we have a prior distribution
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over this value. Thus, our beliefs will be exactly as described by de Finetti’s representation
theorem, up to the approximation arising from the finite nature of the bucket. Thus, there is a
final book-keeping step of allowing the size of the bucket to tend to infinity, and showing that
the limit is smoothly and consistently achieved, but this argument is sufficient to show that the
representation is really concerned with our beliefs over large finite collections of tosses.

For the Rasch representation, the argument is more complicated, but similar finite arguments
show why the representation holds. To simplify the discussion, suppose that we consider that
there are three levels of ability for the men, namely Superb (S), Acceptable (A) and Terrible
(T ), and similarly for the women. We do not know a priori how many people fall into each
category, nor do we know the quantitative differences between the groups and nor do we know
which category each individual should fall into.

However, now suppose that we envisage a large, but finite, array of outcomes of the game.
The row sums allow us to classify the men into their appropriate groups to an arbitrary level of
accuracy, as the array size increases. Similarly, the column sums allow us to classify the women.
Therefore, we may consider that we have nine buckets filled with kisses. In each bucket, some
kisses are good and some are bad. Let pmw be the proportion of good kisses among groupmw,
where each ability of the men,m, and of the women, w, is one of S,A, T . Our probability that
an individual pair i, j of people have a good kiss, conditional on the row and column sums for
the layout, comes from using the ith row sum and the jth column sum to allocate the pair to the
appropriate groupsmi and wj and then, from the row and column exchangeability, viewing the
probability that the couple have a good kiss as pmiwj independently of all other kisses.

Given the nine values pmw, we now fit the Rasch model

P (Xij = 1) =
αiβj

1 + αiβj
, i, j = S,A, T (2)

As it stands, the model is non-identifiable, so we nominate an individual to be the standard
against which all others are judged. Suppose that we assign βS , the score for superb women,
to be one. This then fixes the scores for all men as pmS = (αm/[1 + αm]),m = S,A, T . This
now fixes each of the remaining scores for women, for example looking at the groups with
m = S gives pSw = (αSβw/[1+αSβw]), w = A, T . (This argument breaks down if any of the
pmw values are zero, which is why a separate argument is required in the general statement of
the theorem for the non-regular case.) We have now fixed all of the values αi, βj and we must
check that (2) is indeed satisfied over all subgroups. This follows as all the information that
we have used is based on conditioning on row and column sums. Such conditioning preserves
row-column summarisability (as, conditional on the row and column sums, all configurations
with these row and column sums have the same probability, so that any two sub-matrices with
the same row and column sums must have the same conditional probability as each can be
embedded in exactly the same number of configurations for the full matrix with the given row
and column sums). Therefore, consider, for example, our assessment for P (XTT = 1). This is
uniquely determined, as by row-column summarisability, we must assign the same probability
to each of the events [XTT = 1, XTS = 0, XST = 0, XSS = 1] and [XTT = 0, XTS =
1, XST = 1, XSS = 0]. Equivalently, we must assign

αS
1 + αS

1
1 + αSβT

1
1 + αT

pTT =
1

1 + αS

αSβT
1 + αSβT

αT
1 + αT

(1− pTT )

from which pTT = (αTβT/[1 +αTβT ]) as required. We therefore see that the exchangeability
construction for Rasch matrices corresponds in this case to a mixture of our uncertainties as to
the relative proportions of each of the groups and our beliefs over the magnitudes of the effects
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within each group, as expressed by our beliefs over the nine probability values pmw constrained
by the Rasch relations (2). The book-keeping that is required to produce the general result is
far more detailed than for the classic de Finetti representation, as we not only have to let the
size of each bucket tend to infinity but we also need to let the number of buckets tend to infinity,
reversing the argument that I gave where we started by knowing the number of groups and
instead defining the groups through observed similarity of row or column sums.

The technical difficulties in such an explicit construction are considerable. However, the
above argument is, I hope, sufficient to suggest that the reason that the Rasch representation, so
expertly presented in this paper, does indeed offer powerful, practical insights into the treatment
of binary layouts is that it is a genuinely subjectivistic result which is based on intuitive and
finite considerations.

REPLY TO THE DISCUSSION

First I would like to thank Michael Goldstein for his positive reaction to this paper. Although
mating of salamanders is a potential application of the Rasch model, I admit that the First Kiss
program is much more fascinating! The description of the nature and genesis of the Rasch
model given by Michael Goldstein is both very illuminating, accurate, and on the point.

Indeed it was appropriate to mention that the non-degenerate Rasch model is nothing but
an additive model for the log-odds, a model which is more familiar to statisticians today than it
was in 1960, when Rasch introduced it.

It would be very valuable to have a derivation of the random Rasch model from finite
considerations, as suggested by the discussant. Diaconis and Freedman (1980) give finite
versions of de Finetti’s classical theorem, with an explicit bound on the distance in total variation
between the distribution of the first k of a sequence of exchangeable variables with a given finite
length n, and the closest mixture of Bernouilli distributions. The bound, 4k/n, originates from
approximating the hypergeometric distribution with the binomial. Generalizations of this type
of argument has e.g. been made by Diaconis, Eaton and Lauritzen (1992), and the corresponding
infinite versions of de Finetti type theorems then usually follow by a simple limit argument.

The problem here is that the bookkeeping associated with deriving such bounds and control-
ling their asymptotic behaviour in the case of binary matrices is particularly difficult. Whereas
there are efficient and well-known asymptotic results for the number

(n
x

)
of binary sequences

of length n with sum x, it seems to be extremely hard to control N(r, c) = |M(r, c)|, the
number of binary matrices with row-sums equal to r = (r1, . . . , rm) and column-sums equal to
c = (c1, . . . , cn). The combinatorial literature has only sporadic results; see for example O’Neil
(1969), Békéssy, Békéssy and Komlós (1972), Bender (1974), Mineev and Pavlov (1976), and
McKay (1984, 1985). The structure of the degenerate RCE matrices of Rasch type also indicates
that the situation is quite complex.
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