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Abstract

We show how probabilistic expert systems can be used to structure and solve complex cases of forensic identification involving
DNA traces that might be mixtures of several DNA profiles. In particular, this approach can readily handle cases where the number
of contributors to the mixture cannot be regarded as known in advance. The flexible modularity of the networks used also allows us
to handle still more complex cases, for example where the finding of a mixed DNA trace is compounded by such features as missing

individuals or the possibility of unobserved alleles.
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1. Introduction

Dawid et al. (2002) have described the construction
and use of probabilistic expert systems (PES), or
Bayesian networks (Cowell et al., 1999), to analyse
complex problems of forensic identification inference.
After reformulating the problem as a PES, existing fast
general software such as HUGIN' can be used to perform
the numerical computations. In this way it was possible,
for example, to treat cases of missing data on one or
more of the relevant individuals in paternity testing;
genetic mutation; and identification within a large
pedigree.

Here we examine another complex identification
problem of practical importance that can be handled
using a PES: the interpretation of DNA profiles when
the trace evidence could contain a mixture of genetic
material from more than one person. For example, in
the O. J. Simpson case (Weir, 1995) one of the traces
clearly contained DNA from more than one contribu-
tor. Mixed-trace evidence has been studied by, among
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others, Evett et al. (1991), Weir et al. (1997), Evett and
Weir (1998, Chapter 7) and Stockmarr (1998).

An introduction to the analysis of DNA mixtures
using a PES can be found in Mortera (2003). Here we
develop that approach in more detail, and in particular
extend the analysis to cases where we do not make
the restrictive assumption that the number of contribu-
tors to the mixed trace is known. We show how a PES
can be built to compute the likelihoods or posterior
probabilities for the various hypotheses and questions of
interest, including the number of contributors to
the mixed trace. Our approach proceeds largely by
example, for a variety of cases of differing degrees of
complexity.

1.1. Background

An individual’s DNA profile comprises measurements
on several markers, each yielding a genotype consisting
of an unordered pair of alleles, one inherited from the
father and the other from the mother, although it is not
possible to distinguish which is which. Throughout this
paper, we assume both Hardy—Weinberg and linkage
equilibrium, i.e. independence of an individual’s alleles
both within and across markers. When justifiable, these
assumptions greatly simplify the inference task: in
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particular, each DNA marker in the profile may be
handled separately, the overall likelihood for any
hypothesis of interest being simply the product of its
individual single-marker likelihoods. Here we shall
further restrict attention to the case that all unrelated
individuals considered, whether identified or not, can
be regarded as having DNA profiles drawn indepen-
dently from a common randomly mating population
whose allele frequencies are known (see Curran et al.
(1999) for an analysis of mixtures allowing for
dependencies among alleles). However, the PES ap-
proach can readily be extended to handle cases
where these individuals might be from different popula-
tions, and even, with some increase in computational
complexity, to cases where the allele frequencies are
acknowledged to be uncertain, but relevant data are
available.

The interpretation of DNA profiles from biological
samples is particularly challenging when those samples
might contain material from more than one individual.
This is common in rape cases, where a sample might
contain biological material from the victim, the perpe-
trator or multiple perpetrators, and/or one or more
consensual partners. A mixed DNA trace can also arise
as a consequence of a scuffle or brawl, for example,
when a sample from the crime scene might contain
biological material from the victim and one or more
assailants. Whenever an observed crime scene trace has
more than two alleles at some marker, it clearly indicates
that the trace must be a mixture of DNA profiles from
two or more individuals, since a single individual can
have at most two distinct alleles on any marker. The
complexity of mixed-trace evidence is due in part to the
large number of combinations of genotypes that must be
considered.

1.2. This work

In Section 2, after introducing our basic notation,
we illustrate the use of a Bayesian network to solve a
simple problem involving a mixture of two DNA
samples. We then show how to extend the network to
handle cases with more contributors to the mixture.
In Section 3 we describe how to use a PES to structure
and solve the problem of estimating both the number
and the identities of the contributors to the mixture.
Section 4 introduces various complications that are
difficult to handle by other means, but which can be
addressed by simple extensions or modifications of
our approach, taking advantage of the modular
representation of a PES network. Particular examples
include missing individuals, the possibility of silent
alleles, and combinations of the two. Finally, in Section
5 we indicate some generalizations and extensions that
should be amenable to similar treatment by PES
methods.

2. Mixed trace analysis
2.1. Basic framework

2.1.1. DNA profiles

By a DNA profile we mean a collection (a;: [€ %),
where £ is a known set of loci, or genetic markers, and
each a; is an unordered set of alleles, the (generalized)
genotype of the profile at marker /. We deal with two
types of DNA profiles. An individual profile describes the
genetic makeup of an identified individual. In this case,
a; is the individual’s biological genotype at marker /,
comprising one or two distinct alleles—the homozygous
and heterozygous cases, respectively. A mixed profile is
typically obtained from an unidentified biological stain
or other trace thought to be associated with a crime. For
this case there is no constraint on the number of distinct
alleles making up a generalized genotype, since the trace
might have been formed as an admixture of biological
material from more than one person.

We use y; to denote the DNA profile of a specified
individual i. For any set of individuals m, we denote by
7, the mixed profile with components y;,iem: that is, at
each marker, y,, comprises the unordered set of all the
distinct alleles possessed by all the individuals in m. We
also write 7,, = U;c,,, - Where no confusion can result,
we may also use y; or y,, to refer to the genotype of the
relevant profile at a single marker under consideration.

2.1.2. Evidence

Suppose now that a mixed DNA trace, of uncertain
origin and constitution, has been obtained and profiled
in connection with a certain crime; this crime trace might
contain DNA from more than one contributor. Addi-
tionally, DNA profiles are obtained from certain
identified individuals, e.g. victim and suspect. Interest
centres on which, if any, of these have contributed DNA
to the crime trace. While resolution of this question need
not in itself settle the innocence or guilt of a suspect, it
forms an important step in the “hierarchy of proposi-
tions” (Cook et al., 1998) leading up to the ultimate
issues.

Let M denote the unknown set of individuals who
contributed DNA to the crime trace. Then the crime
trace DNA evidence is y,, = {, where { is the profile
observed for the trace.

A set o of identified individuals is also examined, and
for each individual ieo we observe his or her DNA
profile: y; = &;. Equivalently, denoting by 3, = (y;: i€ )
the collection of all known individuals’ profiles, we
observe y, =¢&,. In a courtroom context there will
usually be a specific individual s, the suspect on trial,
with sea. The set o of known profiled individuals might
also include the victim v, one or more other possible
suspects, and one or more consensual partners, etc., in
addition possibly to individuals in a police intelligence
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or research database. These last will be of particular
relevance in the case, not treated here, that we do not
suppose allele frequencies known, but need to estimate
these from data.

2.1.3. Likelihood

For any specific hypothesis H as to the makeup M of
the crime trace, we can calculate the implied joint
probability of observing all the DNA evidence ({, &,) in
the case: this is the /ikelihood of that hypothesis, on the
basis of the evidence. To compare competing hypotheses
we examine their relative likelihoods; in the case of just
two hypotheses this reduces to the likelihood ratio for
the comparison. Under the reasonable assumption that
the probability of the DNA measurements on identified
individuals, &,, is the same under any hypothesis H
about M, the likelihood of H can be calculated as the
conditional probability, under H, of obtaining the crime
trace evidence, y,, ={, given y,=¢, (Dawid and
Mortera, 1996, 1998).

As a simple case, suppose that v, sea, that £,V &, = |
and that we are interested in comparing hypotheses
Hi: M = {v,s} and Hy: M = {v, U}, where U repre-
sents an unknown individual. Then, given all the
evidence, the likelihood ratio LR is given by

pr(yy = (&, Hi) 1
LR = = 1
Pty =08 B - 5y o =05y M

where, in the sum, y ranges over the set of DNA profiles
such that £, Uy = {. When we can further suppose that
all individuals are drawn independently from a com-
mon population with known profile frequencies, and
o = {v,s}, formula (1) becomes

1
Zy py7

where p, denotes the population frequency of profile y.
To illustrate, suppose that, for a single DNA marker,
we have a three-allele crime trace { = {4, B, C}, and
individual profiles &, = {B, C}, and £; = {A4}. Assuming
Hardy—Weinberg equilibrium, formula (2) gives

1
R = ,
Dy +2paps+2papc

LR =

)

where p; is the frequency of allele 7 in the population.
Weir et al. (1997) give algebraic formulae for
calculating the likelihoods of all hypotheses involving
a specified set of known and unknown contributors to
the mixture, assuming Hardy—Weinberg equilibrium
and known allele frequencies. These formulae can
become relatively complex. For example, suppose we
have a four-allele crime trace, the data being y,, =
{4,B,C,D}, ¢, ={D}, and & ={D}. We wish to
compare H;: M = {v,s,2U} versus Hy: M = {v,3U}.
Applying the appropriate formulae from Weir et al.

(1997), the likelihood for H; is
12papspc(pa +ps+pc +2pp),
while that for H, is

(pa+ps+pc +PD)6 — (p+pc +PD)6
— (pa+pc +[7D)6
— (pa+pp+pp)°+ (e +pp)° + 5+ pp)°
+ (pa+pp)° =P

On using symbol manipulation software (Maple) to
simplify the algebra, the likelihood ratio in favour of
H; as against Hy becomes 2/{5(p% + paps + ppc +
2pspp + 2p% + 2papp + papc + 2pcpp + pe + p4)}-

The program DNAVIEW (Brenner, 1998) provides a
module to perform such algebraic analysis for mixed-
trace evidence.

2.2. Probabilistic expert systems

As an alternative or adjunct to algebraic manipula-
tion, we can apply probabilistic expert systems technol-
ogy to calculate likelihoods directly. We here give a very
brief introduction to the basic elements, construction
and application of a PES. Fuller details can be found in
Cowell et al. (1999).

The most common type of PES is a Bayesian network,
in which qualitative relationships of dependence and
independence between variables are represented by a
directed acyclic graph &, having a set V of vertices or
nodes, and directed links, drawn as arrows. Each node
veV represents a random variable X,, having a
(typically finite) set y, of distinct possible values or
states. The set pa(v) of parents® of a node v comprises
those nodes in & out of which arrows into v originate. A
Bayesian network for Weir’s example is displayed in
Fig. 1: the details are further explained in Section 2.3.

To complete the PES we need to specify its
quantitative structure. This is expressed in terms of a
set of conditional probability distributions: for each
random variable X,, and each possible configuration
Xpa(v) Of the variables associated with its parent nodes,
we specify the conditional distribution of X,, given
Xpa(s) = Xpa(v), by means of its probability density (or
mass) function p(x,|Xpa(y)). The full joint probability
density of (X,,ve V) is then defined by

p(x) = H p(xv|xpa(v))'
veV

There are algorithms (Lauritzen and Spiegelhalter,
1988; Jensen et al., 1990; Shenoy and Shafer, 1990;
Dawid, 1992) which, after first internally transforming
the graph & into a new graphical representation called a

2This generic usage must not be confused with biological parent-
hood!
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Fig. 1. Network for simple DNA mixed trace.

Table 1
Weir’s mixed trace example

Marker
Profile LDLR GYPA HBGG D7S8 Ge
Crime trace, {: B AB AB AB ABC
Victim, &,: B AB AB AB AC
Suspect, &;: B A A A B
P4 0.433 0.538 0.566 0.543 0.253
DB 0.567 0.462 0.429 0.457 0.195
Pc 0 0 0.005 0 0.552

Junction tree of cliques, allow efficient computation of
the conditional probability p(x,|x.), for any ve V', any
(possibly empty) set of nodes A<V, and any config-
uration x4 of the nodes X4. The nodes in the
conditioning set A would typically be those at which we
observe and input evidence X4 = x4, in which case they
might be described as observation nodes; alternatively, they
might specify hypotheses being assumed. A node v at
which the conditional distribution given the evidence is
desired might be termed a target node. Other nodes in the
network may be distinguished for other special roles.

In Bayesian network software such as HUGIN, one can
use a graphical interface to specify the Bayesian network
qualitatively through its graph £. One can then further
describe its nodes and their possible values, and specify
the conditional probabilities p(x,|xpa()). The software
will first compile the network, i.e. construct its internal
junction tree representation; and then any desired
conditional probabilities p(x,|x4) can be obtained by
entering the evidence X, = x4 at the nodes in 4, and
requesting that this be propagated to the remaining
nodes in the network. Interrogation of node v will then
yield the required updated probability distribution for
X, conditional on the specified evidence.

2.3. Weir's example revisited
We illustrate the PES approach for a rape case

originally analysed by Weir et al. (1997). The data are
given in Table 1.

The evidence comprises observed Polymarker™ DNA
profiles: { for the crime trace, &, for the victim, and &;
for a suspect 5. The presence of three alleles for marker
Gc in { implies that there must have been at least two
contributors to the crime trace.

As considered by Weir et al. (1997), we might
entertain the following four competing hypotheses for
the makeup of the set M of individuals contributing to
the mixture:

(1) s&v,
(i) s& U,
(iil) v & U,
(iv) 2U,
where U denotes an unknown contributor. Note that
each of these hypotheses implies exactly two contribu-
tors to the mixture. For the moment we proceed on this
assumption, but this will be relaxed in Section 3.

Weir et al. (1997) specifically consider the following
pairwise comparisons among these hypotheses:

(a) s&v versus v& U,
(b) s & v versus 2U,
(¢c) s& U versus 2U.

Fig. 1 shows a PES representation of this problem.
There is one such PES, with the same graphical structure
but differing state-space and probability specifications,
for each of the five markers. Note that such a PES
models the a priori probabilistic relationships between
the relevant variables, for all their initially possible
values. It is not tailored to any particular evidence that
may be available: this is incorporated at a later stage.

The genotypes of the victim, suspect, and the crime
trace are represented by observation nodes vgt, sgt and
mix, respectively. Since the crime trace is assumed to
come from exactly two contributors, two unobserved
nodes, Tigt and T2gt, are introduced, representing the
genotypes of the contributors T'1 and 72 of the mixture
components 1 and 2, respectively. In order to simplify
the computational burden, we aim to structure the
network at the most disaggregated level possible. In
particular, even though we are not here dealing with
inheritance as in Dawid et al. (2002), it is again helpful
to introduce unobserved nodes representing the paternal
and maternal bands comprising each individual geno-
type, e.g. vpg, vmg for vgt, etc.

The query node T1 = s? represents the binary query:
“Is component 71 from the suspect s, or not?”
Similarly, query node T2 = v? describes whether or
not component 72 is from the victim, v. Query node
Target is constructed as the logical conjunction of the
two nodes T1 = s? and T2 = v7: it thus has states given
by the four hypotheses (i)—(iv). In this way, the PES in
Fig. 1 combines all the candidate hypotheses, together
with the relevant evidence, in a single network.
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Table 2 Table 5
Probability table at founder gene nodes for marker Gc Probability table for T1 = s?
A B C Yes No
0.253 0.195 0.552 0.5 0.5
Table 6
Table 3 Conditional probability table for Target given T1 = s? and T2 = v?
Conditional probability table for sgt given smg and spg Tl=s?: Yes No
Sme: A B ¢ T2=v7: Yes No Yes No
spg: A B C A B C A B C & v 1 0 0 0
AA 1 0 0 0 0 0 0 0 0 s&U 0 1 0 0
AB 0 1 0 1 0 0 0 0 0 v& U 0 0 1 0
AC 0 0 1 0 0 0 1 0 0 2U 0 0 0 !
BB 0 0 0 0 1 0 0 0 0
BC 0 0 0 0 0 1 0 1 0
CC 0 0 0 0 0 0 0 0 1
The query nodes Tl =s? and T2 =v? are given
uniform prior distributions, as in Table 5, so that
Table 4 Target, with 0/1 conditional probability values as in

Conditional probability table for marker Gec for Tlpg given T1 = s?
and spg

Tl=s7: Yes No

spg: A B C A B C

A 1 0 0 0.253 0.253 0.253
B 0 1 0 0.195 0.195 0.195
C 0 0 1 0.552 0.552 0.552

We note that the network contains two essentially
identical submodules, one relating to the victim and one
to the suspect. Such repetition is common in forensic
networks. Although we have not illustrated its use here,
version 6 of the HUGIN software makes it particularly
easy to define, hierarchically, such generic submodules
that can be reused as required (Dawid, 2003).

For each node in Fig. I, we need to specify the
conditional probabilities for its states, given the states of
its parent nodes. This is done as follows. Population
allele frequencies are used to specify the (unconditional)
distribution at the founder gene nodes spg, smg, vpg, vmg.
The relevant values for marker Ge are shown in Table 2.

The state of an individual genotype node, sgt or vgt,
is given by the unordered set of the relevant paternal
and maternal allele states, as represented by the 0/1
conditional probabilities of Table 3.

The paternal [resp. maternal] gene Tipg [resp. Timg]
of contributor 7'1 is either identical to the corresponding
gene spg [resp. smg] of the suspect s, or else is generated
from the relevant population gene frequencies, accord-
ing as the state of the query node T1 = s7 is true, or false
(see Table 4); similarly for 72 and v.

The state of the crime trace node mix is given by the
union of genotypes Tigt and T2gt. The table is too large
to give here, but is analogous to Table 4 with ones and
Zeros in appropriate positions.

Table 6, also has an induced uniform distribution over
its states.

We do not advocate the use of uniform prior
distributions: this is merely a device so that, after
propagating evidence, the resulting posterior probabil-
ities can be directly reinterpreted as likelihoods.

To analyse the case, the observed genotypes &, & and
{ at each marker are inserted as evidence into the
relevant network, at observation nodes vgt, sgt and
mix, respectively. After using the software to propagate
this evidence in the network, the probabilities at the
Target node then provide the likelihood over hypoth-
eses (i)—(iv), based on the evidence for that marker.

For each hypothesis its overall likelihood based on all
the data can now be obtained by multiplying together
these individual marker likelihoods. An arbitrary
further overall scaling may also be applied, as con-
venient, since only ratios of likelihoods are important.
Finally, if desired, a Bayesian analysis can be performed
by multiplying this overall likelihood for each hypoth-
esis by an externally assessed prior probability; posterior
probabilities, taking all the DNA evidence correctly into
account, are then obtained by renormalizing these
products to sum to 1 over all hypotheses.

The above simple additional calculations were per-
formed outside the PES framework. Alternatively, if the
individual components of the likelihood are not
required, an “integrated network”, combining together
all the single-marker networks, could be constructed: the
query nodes T1 =s?, T2 = v? and Target, being the
same across all markers, would appear just once in this
combined network, in an obvious way. Genuine prior
probabilities could be entered at T1 = s? and T2 = v7?,
so long as these events were regarded as independent;
then, after entering all evidence on all markers and
propagating, the correct overall posterior distribution
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Table 7
Likelihoods for Weir’s example

LDLR GYPA HBGG D7S8 Gc  Overall Prior Posterior

s&v 0573 0279 0.285
s& U 0.184 0.198 0.191
v& U 0.184 0.279 0.283
2U 0.059 0.243 0.241

0.280 0.511 0.859 0.45 0.895
0.197 0.143 0.026 0.05 0.003
0.280 0.180 0.096 0.45 0.100
0.243 0.167 0.019 0.05 0.002

Table 8
Likelihood ratios for comparisons (a)—(c)

LDLR GYPA HBGG D7S8 Gc  Overall

@s&vvs.o & U 3.11 1 1.01 1 2.84 893
(b)s & vvs. 2U 9.68 1.15 1.19 1.15  3.06 46.36
(¢©)s & Uvs. 2U 3.11 0.82 0.79 081 0.85 1.40

would be obtained at Target. More generally, if we were
to consider T1 = s? and T2 = v? dependent a priori,
we could achieve this by a slight restructuring
of the network, in which the arrows between
Ti=s?, T2=v? and Target were reversed, with
obvious revisions to the conditional specifications; and
then the full prior at Target entered directly. Integrated
networks are not necessary for the kinds of problems
considered in this paper. However, they can be essential
for correct handling of certain extensions, such as when
there is uncertainty about which genetic population
some or all of the contributors are drawn from.

For the data of Table 1, Table 7 gives the likelihood
for each of the 5 markers, the overall likelihood rescaled
to sum to 1, and the posterior distribution obtained on
using prior probabilities of 0.9 and 0.5, respectively, that
v and s contributed to the mixture, and taking these
events as independent.

This prior is used purely for illustrative purposes: a
sensible and defensible prior distribution should be
based on all non-DNA evidence relevant to the case
under examination. Moreover, this process should, at
least in principle, be justifiable in court, where prosecu-
tion and defense can argue the relevance of the other
evidence and the appropriateness of the prior based on
it. In the final analysis, assessment of the prior
distribution is a task for the judge or jury.

The likelihood ratios for comparisons (a)-(c) are
given in Table 8. The results are in agreement with those
based on the algebraic formulae of Weir et al. (1997).

The question of primary interest is whether the
suspect contributed to the crime trace. On summing
the first two entries in the last column of Table 7 we find
that the posterior probability that the suspect contrib-
uted to the mixture is 0.898. In fact, from the overall
likelihood column of Table 7 we see that, for any non-
extreme prior distribution, only hypotheses s & v and
v& U, and correspondingly comparison (a), need be
taken seriously: the posterior odds for this comparison is

8.93 times the corresponding prior odds, effectively
determining the posterior probability that the suspect
contributed to the mixture. Using a uniform prior over
all four hypotheses, which yields a posterior distribution
numerically identical to the overall likelihood column in
Table 7 and again has prior odds of 1 for comparison
(a), this probability would have been 0.885, rather than
0.898.

The discriminating power of the Polymarker™ system
used in the above example is somewhat limited. The
short tandem repeat markers in widespread current use
are much more powerful: Mortera (2003) presents a
STR case in which the overall likelihood ratio for
comparison (a) is about 4 x 108.

2.4. More contributors

The modular structure of a PES supports easy
extension to cases with still more known or unknown
contributors to the mixture, by adding further similar
nodes. Thus suppose a rape victim v declares that she
has had one consensual partner, p, in addition to the
unidentified rapist. A biological sample obtained from
her might contain DNA from any or all of these three
individuals. A suspect s has been detained, and his DNA
profile measured, as well as those of v and p. An
appropriate PES for this problem is shown in Fig. 2.

This is similar to Fig. 1, but with a third set of nodes
representing the partner as a possible contributor to the
mixture. For each marker, the evidence ¢, ¢, ¢, on
the genotypes of the victim, the suspect, her partner and
the crime trace are entered at the observation nodes vgt,
sgt, partner_gt and mix, respectively, and propagated
using the software.

For illustration, we use the same data as in Table 1 for
the crime evidence (, victim profile &,, and suspect
profile {,; while we take the partner’s profile ¢, to be the
same as &, with the exception that on marker Gc it is
AB. The resulting likelihoods at the Target query node
are given in Table 9.

The hypotheses listed are all those that involve exactly
3 known or unknown contributors to the mixture.
However, if it were considered, for example, that the
only plausible explanations were either s&v&p or
v&p &U, we could restrict attention to just these
hypotheses: the likelihood ratio in favour of the
suspect’s DNA being in the mixture is then
0.521/0.166 = 3.14.

For another example, suppose that the victim states
that she has been raped by two men and has not had any
consensual partners. One suspect has been detained and
his DNA profile measured; crime and victim profiles are
also taken. The relevant PES is similar to Fig. 2, except
that the nodes involving partner are absent: T3pg, T3mg
and T3gt now represent the genes and genotype of the
unknown second rapist U.
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Table 9
Rape and consensual partner: likelihoods at Target node

LDLR GYPA HBGG D7S8 Gece Overall

s&kv&p 0.433 0.133 0.137 0.133  0.152  0.521
s&p & U 0.139 0.095 0.092 0.094 0.122  0.045
v&p & U 0.139 0.133 0.135 0.133  0.152  0.166

b & 2U 0.045 0.122 0.120 0.122  0.146  0.038
s&kv& U 0.139 0.133 0.135 0.133  0.152  0.166
s & 2U 0.045 0.122 0.120 0.122  0.099 0.026
v & 2U 0.045 0.133 0.134 0.133  0.088 0.031
3U 0.014 0.129 0.127 0.129  0.088  0.009

In such cases, we might also want to consider
hypotheses involving less than 3 contributors, e.g.
v & U. We now turn to a consideration of such problems
where the total number of contributors is not regarded
as known in advance.

3. Unknown number of contributors

In general, while the evidence of the trace itself will
often determine a lower bound to the total number of
contributors to the crime trace, there is in principle no
upper bound. Nevertheless, it will typically be possible
to set a relatively low upper limit to the number it is
reasonable to consider (Brenner et al., 1996; Weir et al.,
1997; Lauritzen and Mortera, 2002). Once we have
agreed to limit attention to some maximum total
number of potential contributors, cases where this total
is not fixed can again be addressed using a PES.
However, particular care is now needed to formulate an
appropriate graphical representation of the problem.

3.1. First attempt

The network presented in Fig. 3 represents a case
where the crime trace could contain DNA from up to
two unknown contributors Ul and U2, in addition to,
possibly, the victim v and/or the suspect s.

Fig. 3. Network for an unknown number of contributors to the
mixture.

The two Boolean (true/false) query nodes s_in mix?
and v_in mix? specify whether or not each of s and v
were contributors to the mixed crime trace. The
node n unknown, with possible values 0, 1 and 2,
accounts for the number of unknown contributors
to the mixture, while total_# counts all contri-
butors. When n_unknown = 1, the genotype Ulgt of
an unknown contributor U1 is included in mix; when
n unknown = 2, both genotypes Ulgt and U2gt of Ul
and U2 are included in mix. The Target query node has
states as listed in column 1 of Table 10, describing the
contributors to the mixture. The state at observation
node mix is formed as the union of the genotypes of the
contributing individuals, taken from among vgt, sgt,
Ulgt and U2gt in accordance with the values of
v_in mix?, s in mix? and n unknown. We again give
independent uniform prior distributions to s_in_mix?,
v_in mix? and n_unknown, implying a uniform distribu-
tion on Target, so as to obtain the desired likelihood
function as output there.
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However, although the graphical representation of
Fig. 3 is simple and intuitive, it is computationally very
inefficient. A measure of the complexity of a Bayesian
network (Cowell et al., 1999) is its total clique-table size.
In Fig. 3 the mix node has seven parent nodes, creating
an 8-node clique with a very large clique table. For
example, for marker Ge this table will have 6* x 3 x
2 x 2 x 8 =124416 entries. These correspond to the 6
possible states for each of vgt, sgt, Ulgt and U2gt, the
3 states of n_unknown, the 2 states for each of s_in_mix?
and v_in_mix?, and the 8 states for the mixed trace. This
clique contributes the bulk of the total clique-table size
of 124 836.

Table 10

Unknown number of contributors: likelihoods at Target node
Target LDLR GYPA HBGG D788 Gec Overall
s&v&2U 0.022 0.111 0.111 0.111  0.193  0.060
s & 2U 0.022 0.102 0.100 0.102  0.125 0.029
v & 2U 0.022 0.111 0.111 0.111  0.112  0.035
2U 0.022 0.097 0.096 0.097 0.063 0.013
s&v& U  0.068 0.111 0.112 0.111  0.193  0.188
s& U 0.068 0.079 0.076 0.078  0.054 0.018
v& U 0.068 0.111 0.112 0.111  0.068 0.066
U 0.068 0.055 0.055 0.055 0 0
s&v 0.213 0.111 0.113 0.111  0.193  0.591
K 0.213 0 0 0 0 0

v 0.213 0.111 0.113 0.111 0 0
NULL 0 0 0 0 0 0
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This representation would have even more difficulty
in handling cases with a larger number of alleles for each
marker, and could not be extended to handle a large
number of unknown contributors.

3.2. Second attempt

An alternative network for this problem is shown in
Fig. 4.
In this representation:

(1) The query nodes v_in mix?, s_in mix?, n_unknown,
total # and Target are defined and structured as
in Fig. 3.

(i1) The genotypes are now represented indirectly, each
by a collection of Boolean allele nodes, one for each
relevant allele. Thus for the victim v we have
observation nodes A_in_v, B_in_v, C_in_v, indicat-
ing, respectively, whether or not the victim’s
genotype contains allele A, allele B, or allele C:
formally, A_in_v is defined as the logical disjunc-
tion {vmg =A}v {vpg =A}, etc. Similarly for the
suspect s, the first unknown U1, and the second
unknown U2. Evidence on an observed genotype is
entered by setting the state of each associated allele
node to true when that allele is observed in the
genotype, and to false otherwise.

(iii) The state of the node Av is given by the logical
conjunction Av = A_in vAv_in mix?: this is true if
both parent nodes are true, i.e. when the mix

Target

Fig. 4. Alternative network for an unknown number of contributors to the mixture (up to two unknown contributors and up to three alleles).
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contains an allele A contributed by the victim v,

and false otherwise. Similarly for As, Bv, etc.
(iv) The state of node Avs is given by the logical
disjunction Avs = AsVv Av: this is true if either
parent node is true, i.e. when the mix contains an
allele A, contributed by at least one of v or s, and
false otherwise. Similarly AvsU = Avsv AU1: this is
true if the mix contains an allele 4 contributed by
at least one of s or v, or the first unknown U1, etc.
The mixture itself is represented by the observation
nodes A_inmix, B.inmix and C_in.mix. The
relevant expressions are: A in mix = AvsUvAU2,
and similarly for B_.inmix and C_in_mix. Thus
A in mix is true exactly when the mix contains an
allele A, contributed by any one or more of the
individuals v,s, Ul or U2. The evidence on the
mixture profile is inserted into these allele nodes,
exactly as described for the observed genotypes in
(i1) above.

(v

S~

As an optional extra, Fig. 5 shows a reformulation of
the “query subgraph” of Fig. 4. The purpose of this is to
allow the use of simple arithmetic expressions to avoid
the somewhat tedious construction of the states and
tables for these nodes. This is done as follows:

(1) Node v_plus_s takes values 0, 1 or 2, according to
the number of true states in its parent nodes
v_in.mix? and s_in_mix?. Then node total_# is
given by n_unknown + v_plus_s.

(i) Node v_by_s takes values 0,1,2,3, in one-to-one
correspondence with the four joint configurations
for its parent nodes v_in mix? and s_in mix?.

(iii) The Target node is now given by:
Target = v_by_s + 4 X n_unknown, and has new
numbered states 11,...,0, in one-to-one corre-
spondence with the Target hypotheses in column 1
of Table 10.

v_plus_s

v_in_mix? s_in_mix?

n_unknown

total_#

Fig. 5. Optional submodule for computing the Target and total #
nodes.

Although Fig. 4, with or without Fig. 5, is seemingly
graphically more complex than Fig. 3, it is much more
efficient computationally. The effect of the restructuring
of the problem has been to remove the enormous table
for mix in Fig. 3 by breaking down its logical definition
into a number of simpler parts, each of these now being
represented by a small table. In consequence, the
maximum clique-table size for marker Gc, for example,
has been reduced from 124416 to 768, and the total
clique-table size from 124836 in Fig. 3 to 3476 in Fig. 4,
or 3563 with the variation in Fig. 5.

The construction underlying Fig. 4 can be easily
extended to account efficiently for many more unknown
contributors: Fig. 6 shows this for up to 6 unknown
contributors.

3.3. Case analysis

Suppose that, for each marker, we were first to insert
total # =2 as “‘evidence” in Fig. 4, so conditioning on
there being exactly two contributors to the crime trace;
and then insert and propagate the evidence of Table 1.
At the Target node we would obtain results identical to
those of Table 7, all hypotheses involving other than two
contributors now necessarily having zero likelihood.
Thus Fig. 4 could have been used, in place of Fig. 1, as
an alternative PES representation of Weir’s example in
Section 2.3. But this new representation is also applic-
able, as described below, to more general queries,
involving an unknown number of contributors. In
general, there may be several alternative ways in which
a given problem can be represented as a PES. Some of
these may be more efficient computationally, some more
readily extendible, and some more easily intelligible to
the non-specialized user. In any particular problem
considerable ingenuity may be required to develop a
PES which strikes the right balance between these often
conflicting requirements.

If we do not constrain the node total_#, Fig. 4 will
handle cases where we do not suppose we know the
number of contributors to the crime trace in advance,
but allow all the hypotheses represented at the Target
node. On entering and propagating the data of Table 1,
we obtain the likelihoods for the Target node given in
Table 10.

Table 11 shows the posterior probability for each
hypothesis under the prior distribution specified in
column 2. This assigns independent prior probabilities
pr(s.inmix?=true)=0.5, pr(v_in mix? = true) = 0.9,
and n_unknown = 0,1,2 with respective probabilities
0.6, 0.3, 0.1.

Note that this prior assigns a positive probability,
before examining the crime trace, that there are no
contributors, which appears unrealistic. However, since
the evidence in the crime trace excludes this possibility,
the identical posterior distribution would result if we
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v_in_mix?

Target
ﬂﬂ t

/
R

s_in_mix? -

Fig. 6. Alternative network for up to 6 unknown contributors to the mixture.

Table 11
Unknown number of contributors: prior and posterior distributions
for Target

Target Prior Posterior
s&v &2U 0.045 0.0136
s & 2U 0.005 0.0007
v & 2U 0.045 0.0079
2U 0.005 0.0003
s&ov&U 0.135 0.1278
s& U 0.015 0.0013
v& U 0.135 0.0450
U 0.015 0
s&v 0.270 0.8033
K 0.030 0

v 0.270 0
NULL 0.030 0

were to use, instead, the possibly more appropriate prior
distribution obtained from the above by conditioning
on total #+#0, i.e. setting to zero the probability of
no contributors, and renormalizing the remainder
to sum to 1.

By marginalizing in the posterior distribution we
can obtain the probabilities of various interesting
events. Thus we find: pr(s.in mix? = true) = 0.947,
pr(voin mix? = true) =0.998, pr(s and v both in mix)=

0.945, pr(n_unknown=0)=0.803, pr(n-unknown=1)=
0.174, and pr(n_unknown = 2) = 0.023. The posterior
distribution (Posterior 1) on the number of contributors
to the mixture is shown in Table 12. For comparison,
the last column of Table 12 also shows the posterior
probability (Posterior 2) on the number of contributors
under a uniform prior for Target.

4. Adding complexity

In this section we show how the modular structure of
the Bayesian networks presented can be used to handle
more complex problems, e.g. with missing individuals
and/or silent alleles.

4.1. Missing individuals and mixtures

One of the benefits of representing forensic identifica-
tion problems by means of probabilistic expert systems
is that we can construct networks for complex cases by
piecing together simpler modules. For example, we can
combine the problem of missing individuals, as studied
in Dawid et al. (2002), with that of a mixed crime trace.
Thus suppose a mixed trace is found at the scene of the
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Table 12
Posterior distribution for total number of contributors

As Table 11 With uniform prior
total # Prior Posterior 1 Posterior 2
0 0.030 0 0
1 0.315 0 0
2 0.425 0.8500 0.6880
3 0.185 0.1364 0.2521
4 0.045 0.0136 0.0599

crime, but DNA from the suspect is not available.
Instead, a DNA profile is obtained from his full brother.
An appropriate PES for this problem is shown in Fig. 7.

The evidence, to be entered in the observation nodes
mix, vgt and bgt, respectively, now consists of the
mixed crime trace {, the victim’s genotype &, and the
brother’s genotype &,.

We again use the data in Table 1 for the crime trace {
and the victim profile, &,; but now regard the profile
there labelled as belonging to the suspect as being,
instead, that of his brother, &,. On propagation of this
evidence we obtain the likelihood function given in
Table 13, yielding likelihood ratios as in Table 14.

Comparing Tables 13 and 14 to Tables 7 and 8, we
see that the likelihood ratio for comparisons (a) and (b)
are now roughly half the values found in Section 2.3,
where the evidence was more informative.> The poster-
ior probability that the suspect contributed to the
mixture is now 0.819, compared with 0.898 obtained
before.

Although we do not consider it in detail here, there
would be no difficulty in elaborating analyses such as
the above to allow for an unknown number of
contributors and/or the possibility of mutation in the
inheritance of alleles, as in Dawid et al. (2002).

4.2. Silent alleles

Another practically important complication that can
be handled by networks such as those presented here is
the possibility of observing profiles having unseen or
“silent” alleles. In this case, when a single band, say 4, is
observed at a certain locus in an individual’s profile it
could mean, indistinguishably: either that the individual
is homozygous, AA, as before; or that he is heterozygous
An, where n represents a silent allele. Similarly, a
mixed trace might contain silent alleles that remain
unobserved.

Silent alleles can occur for various reasons. One of
these, a particular problem for VNTR profiling technol-

*Note however that the likelihood ratios based on markers GYPA
and D7S8 are unchanged on reinterpreting &, as &,. It is not hard to see
that, for these profiles and with pc = 0, this must be so. For marker
HBBG, with very small pc¢, the differences are correspondingly small.

ogy, is that for certain loci some allele values may be
beyond the end of the instrumental scale of measure-
ment, and so always be unobservable. Silence of such an
allele will then be inherited in the usual way. We shall
examine this case in detail below. Other possibilities,
which could also be addressed by a suitable PES, might
arise when at each measurement occasion there is a
certain probability, typically depending on the allele
value, that the instrumentation will fail to spot an allele
that is truly present; or, in the case of a mixed trace,
when imbalances in the amounts of DNA contributed
by different individuals, or in their locations on the
measurement scale, may lead to some profiles being
wholly or partially missed.

We can allow for the possibility of an inherited silent
allele by simple modifications of networks already
introduced. We again illustrate this by means of
examples.

4.2.1. 0. J. Simpson

Weir et al. (1997) describe the following problem that
arose in the case of People v. Simpson (Los Angeles
County Case BA097211). At VNTR marker D2S44, the
crime trace showed a three-band profile 4 BC; the victim
had profile AC, and the suspect had profile AB. The
population allele frequencies are p4 = 0.0316, pp =
0.0842, and pc =0.0926. We allow for up to two
unknown contributors to the mixture, and consider
possible values 0.01,0.05,0.1 for the total frequency p, of
silent alleles.

The network in Fig. 8, a simple extension of Fig. 4,
can be used to solve this problem. It involves all the
observed alleles A, B and C, and the collection of all
other non-silent alleles, denoted by x. The paternal and
maternal founder gene nodes vpg, spg, Ulmg, etc. all
have states A4, B, C,n,x, with respective probabilities
0.0316, 0.0842, 0.0926, p, and p, = 0.7916 — p,, expli-
citly allowing the possibility of silent alleles, n. Other-
wise the network structure is exactly as previously
described. A slight variant of this PES representation
would be to include in the network a further string of
nodes relating to the collection of silent alleles, n;
although strictly unnecessary, this can make it easier to
modify an existing network.

The evidence is entered as: A_in_.v = frue, C_in_
v=true, A.in_s = frue, B_in_s = frue, A_in mix="true,
B.in mix = true, C_in mix = true, x in mix = false. If
we had included explicit nodes for allele 7, we would not
enter any evidence for these, since the presence or
absence of n remains unknown. We could, in addition,
have entered the known evidence B_in v = false,
C_in s = false, x_in v = false, x_in s = false, but since
the network already embodies the property that no
individual can have more than two alleles, this would
have made no difference. In the case of an individual
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Fig. 7. Network for mixture with missing suspect.

Table 13
Missing suspect and mixture: likelihoods for Target

Target LDLR GYPA HBGG D7S8 Gc¢  Overall Prior Posterior

s&v 0497 0271 0276 0.272 0.437 0.745 0.45 0.811
s& U 0.160 0.222 0.216 0.221 0.209 0.060 0.05 0.007
v& U 0260 0.271 0.274 0.272 0.183 0.163 0.45 0.178
2U 0.084 0.236 0.234 0.236 0.170 0.031 0.05 0.004

Table 14
Missing suspect and mixture: likelihood ratios

LDLR GYPA HBGG D7S8 Gc  Overall

@s&vvs.o& U 191 1 1.01 1 238 457
(b) s & vvs. 2U 5.94 1.15 1.18 1.15  2.56 23.73
(©s & Uvs. 2U 1.91 0.94 0.92 094 123 191

genotype having a single observed allele value, however,
such additional negative evidence would be essential.

For each value of p,, after propagation the Target
node contains the appropriate likelihood function,
based on the marker D2S44 only, as given in the central
columns in Table 15.

The same network was used to calculate the like-
lihood function on the assumption of no silent alleles, by
setting p, = 0. Alternatively, if a collection of nodes for
n had been included, with some p,#0, we could have
entered the further evidence n_in mix = false, and also,
for this case optionally, n_in v = false, n_in_s = false.
We see that the likelihood increases with p, for all
hypotheses involving unknown contributors, while
decreasing for the remaining hypothesis s & v, it being
clear that these individuals could not have contributed
any silent alleles to the crime trace.

The final column of Table 15 gives the normalized
likelihood based on the “2p rule” for mixed traces
accounting for unseen alleles, as recommended in the
report of the National Research Council (1996),
calculated as described by Weir et al. (1997).

The results we obtain coincide with those derived
from the algebraic expressions given in Weir et al.
(1997)—although we do not reproduce their numerical
values for the likelihood ratios, as given in row 3 of their
Table 6, obtaining instead 1097, 73 and 4.9 in place
of their 3380, 226 and 15, respectively. However
these corrections do not affect their criticisms of the
2p rule.

4.2.2. Missing suspect with silent allele

Consider a case as described in Section 4.1, where the
suspect is unavailable but we have DNA evidence from
his brother, b. Suppose that on marker HBGG the
evidence is: crime trace, y,, = B; victim, ¢, = B; brother,
¢, = B. Now, however, we further suppose that allele C
is silent. The true genotypes of the brother and the
victim could thus each be either BB or BC, while the
crime trace could be B or BC.

Three new observation nodes, v_obs, b_obs and
m_obs, are added to the network in Fig. 7 to produce
the new network of Fig. 9.

Each new node has state-space {4, B,AB, NULL}, its
state being determined from that of its parent node by
deleting any instance of C, and any duplicates. On
entering the evidence B at each of these nodes, we obtain
the likelihood given in the final column of Table 16. For
comparison we also give the corresponding likelihood
when C is not regarded as missing: this is obtained by
entering evidence BB at nodes vgt, bgt, and B at mix.
We see that, even though the probability of having a
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Fig. 8. Network for O. J. Simpson case with silent alleles.

Table 15
0. J. Simpson case: likelihoods for unknown number of contributors,
allowing for silent alleles

Target Without With silent allele, p, “2p” Rule
silent allele
0.01 0.05 0.1

s& v &2U 0.0017 0.0020  0.0039  0.0075  0.0836
s & 2U 0.0015 0.0018  0.0032  0.0057  0.0598
v & 2U 0.0015 0.0017  0.0031  0.0054  0.0719
2U 0.0006 0.0006  0.0008  0.0010  0.0027
s&v& U  0.0392 0.0427  0.0578  0.0785  0.1886
s& U 0.0271 0.0286  0.0340  0.0400  0.0878
v& U 0.0253 0.0266  0.0315  0.0370  0.0805
U 0 0 0 0 0
s&v 0.9031 0.8959  0.8657  0.8250  0.4251
K 0 0 0 0 0

v 0 0 0 0 0
NULL 0 0 0 0 0

silent allele is very small, allowing for it can have a non-
negligible effect on the inference drawn.

5. Future perspectives
In this paper we have aimed to demonstrate how the

modularity and flexibility of the PES approach can be
exploited to calculate likelihoods for DNA profile

evidence in cases involving mixed traces, with or without
further complicating features.

The PES construction will be even more useful and
powerful when we wish to address still more complex
situations. Such complications might arise, for example,
in cases in which each potential contributor could
belong to one of several populations, having different
gene frequencies; in cases where uncertain knowledge
of gene frequencies needs to be taken properly into
account; and in cases yielding partial DNA profiles,
where the presence of one or more alleles might not
be detected, as might occur, for example, when
one contributor’s DNA constitutes only a small fraction
of the mixed trace. In future work, we hope to extend
these results to incorporate information on the
amount of DNA for each allele, which gives some
indication as to which alleles might be from the same
contributor.

A related issue is the proper treatment of measure-
ment uncertainty, which can be particularly problematic
when attempting to determine a DNA profile from a
mixed trace. These and other extensions should easily
lend themselves to treatment by the PES approach;
however, further work is needed to make this fully
operational.

One advantage of the PES approach over the
algebraic approach represented by programs such as
DNAVIEW is its natural flexibility and modularity,
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Target

Fig. 9. Network for mixture with missing suspect and silent alleles.

Table 16
Likelihoods for missing suspect without and with silent allele

Target Without silent allele With silent allele
s&v 0.713 0.616
s&U 0.131 0.116
v& U 0.131 0.226
U&U 0.024 0.043

which enables the end-user to modify a standard PES,
or, as demonstrated in Section 4, to combine distinct
modules to account for special circumstances and
complications in a given case. In addition, the PES
approach has an inherent logical transparency which
makes it open to criticism and discussion. However,
a promising line for further research would be
to develop software combining the algebraic manipula-
tion facility of programs such as DNAVIEW with
the efficient propagation algorithms of PES pro-
grams such as HUGIN; this would, for example,
be valuable for the analysis of the sensitivity of the
answers to variations in gene frequencies, mutation
rates, etc.
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