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Abstract

In this paper we present a method for estimation of functionals
depending on one or several phase-type distributions. This could for
example be the ruin probability in a risk reserve process where claims
are assumed to be of phase-type. The proposed method uses a Markov
chain Monte Carlo simulation to reconstruct the Markov jump pro-
cesses underlying the phase-type variables in combination with Gibbs
sampling to obtain a stationary sequence of phase-type probability
measures from the posterior distribution of these given the observa-
tions. This enables us to find quantiles of posterior distributions of
functionals of interest, thereby representing estimation uncertainty
in a flexible way. We compare our estimates to those obtained by
the method of maximum likelihood and find a good agreement. We
illustrate the statistical potential of the method by estimating ruin
probabilities in simulated examples.
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1 Introduction

In this article we develop a method for estimating functionals of phase-type
distributions. This could for example be the ruin probability of a risk-reserve
process where claim sizes have phase-type distributions and arrivals occur
according to a phase-type renewal process, or the steady state waiting times
(virtual and actual) in a PH/PH/1 queue. When any such functional is
estimated from data on stochastic systems (like above), the estimates are
necessarily subject to uncertainty. We are interested in representing this
uncertainty and will do so using a Bayesian simulation approach, which in
particular enables us to obtain credibility intervals and quantiles for the
posterior distribution of such functionals in a simple way.

The main idea is to generate a stationary sequence of random phase-type
measures from a distribution incorporating the information in the observa-
tions and use ergodicity of such a sequence to estimate the quantities of
interest by the empirical averages of corresponding functionals of the mea-
sures in the sequence.

A crucial part of this task turns out to be the simulation of a Markov jump
process underlying a phase-type variable. More precisely, for an observation
X =z from a phase-type distribution, we establish a method for simulating
from the conditional distribution of the underlying Markov jump process
given the absorption time X = x. This simulation is made as a Metropolis—
Hastings (MH) algorithm. The final algorithm used for inference is a Gibbs
sampler which in each iteration uses this MH algorithm to reconstruct the
Markov jump processes.

The article is organized as follows. In Section 2 we provide some rele-
vant background on phase-type distributions, Bayesian analysis, and Markov
chain Monte Carlo methodology, whereas Section 3 is devoted to construc-
tion of the algorithms. In Section 3.1 we develop an algorithm for generating
Markov jump processes which get absorbed at a fixed time. Section 3.2 is

devoted to the specification of prior distributions over phase-type measures.



In Section 3.3 we construct a Gibbs sampler using the reconstruction from
Section 3.1 and provide some examples of application with simulated data.
Section 3.4 describes the use of hyper-priors for obtaining a less informative
prior and improving the mixing of the Markov chain of Markov jump pro-
cesses. A more challenging example involving a double sampler is described
in Section 3.5. Finally the work is summarized and further perspectives are

discussed in Section 4.

2 Some relevant background

2.1 Phase-type distributions

Consider a Markov jump process {J;}:>o with p transient states and one

absorbing state (state p+1). Then the intensity matrix A can be written in

T t
=(56)

where T' is a p X p sub-intensity matrix, ¢ is the column vector (dimension

a block-partitioned way as

p) of exit intensities (exit to the absorbing state) and 0 is the row vector
(dimension p) of zeroes. Furthermore, let v be the p-dimensional row vector
giving the initial distribution of the Markov jump process, m; = IP(Jy =
i), i=1,...,p. Note that 7 is concentrated on the first p states, i.e. we are
not allowed to start in the absorbing state. Then we say that the distribution
of the time until absorption, X, is a phase-type distribution of order p (or
with p phases) generated by « and T, and we write X ~ PH(w,T). The
pair (7, T) is referred to as a representation of the phase-type distribution.
Note that t = —Te where e is the column vector of 1’s. The density is given
by

Tay (1)

Phase-type distributions generalize mixtures of convolutions of exponential

fx(z) = me

distributions.



Exact solutions to many problems arising in areas of applied probability
such as risk theory and queueing theory can be obtained when distributions
involved are assumed to be of phase-type. Here we give a few examples:

In renewal theory the renewal density u(z) of an arrival at time z has
the form u(zx) = wexp((T + tm)x)t when the inter-arrival distribution is
PH(m,T).

In risk theory, the ruin probability of a risk reserve process can be calcu-
lated exactly when arrivals of claims are Poissonian, phase-type renewal or
follow a Markov modulated Poisson process, and claims are phase-type dis-
tributed, (Asmussen, 2000a; Asmussen & Bladt, 1996). For finite-time ruin
probabilities with phase-type distributed claims we refer to Stanford (1994).

In queueing theory asymptotic (stationary) waiting time distributions can
be calculated when arrivals occur according to a phase-type renewal process
and service times are of phase-type (Asmussen, 1987). One can also obtain
asymptotic variances of time averages of such waiting times (Asmussen &
Bladt, 1994; Bladt, 1996).

Being very attractive from a probabilistic point of view, phase-type distri-
butions present difficulties concerning statistical issues. The representation
above is heavily over-parametrized using in general p? +p — 1 freely varying
parameters for p-order phase-type distributions when in principle they could
be represented by 2p — 1 parameters when considered as matrix-exponential
distributions, i.e. distributions having a rational Laplace transform; see As-
mussen & Bladt (1992) for details on representing matrix-exponential distri-
butions. Although (1) yields an explicit expression for the likelihood function,
this cannot easily be directly maximized. The EM algorithm developed for
this problem in Asmussen et al. (1996) works very well in lower dimensions.
However, methods for statistical inference beyond estimation of parameters
has not yet been proposed. For a review of methods for estimating phase-type
distributions, see e.g. Asmussen (2000b).

Due to the over-parameterization of phase-type distributions one might

question the relevance of obtaining specific estimates for these parameters.



In most cases it will not be possible or feasible to give a physical interpre-
tation of the corresponding underlying Markov model, and the main reason
for applying phase-type distributions to specific problems are usually dic-
tated by some specific application in stochastic modeling. For example in
risk theory one may be interested in estimating ruin probabilities based on
data concerning claim sizes and their arrivals; modeling claims as phase-
type distributions is convenient both because phase-type distributions are
dense in the class of distributions on the positive real axis and because ruin
probabilities in many cases can be explicitly calculated under the phase-type
assumption. The ruin probability of course depends on the parameters of the
phase-type distribution, but it is unchanged under different representations
of the same phase-type distributions. Hence statistical inference for such
functionals as the ruin probability is more sensible than for the parameters
of the phase-type distribution themselves.

For further properties and general treatment of phase-type distributions
we refer to Asmussen (1987, 2000a), Asmussen & Olsson (1998), Asmussen &
Bladt (1992) or Neuts (1981). Hipp (1989a, 1989b) discusses estimation and
confidence intervals in the special case where the functional is a ruin probabil-
ity. Rolski et al. (1999) give a general treatment of phase-type methodology

in insurance risk.

2.2 Bayesian analysis

This section gives a brief review of basic concepts in the Bayesian approach
as used in this paper. We refer the reader to Bernardo & Smith (1994) for
the complete story.

We consider a situation with observations X; = z1,..., Xy = x5 of i.i.d.
random variables X; from a distribution with density f(-|6), where § € © is
an unknown parameter (possibly of high or even infinite dimension). We let
x = (x1,...,2x) so that

f(@]0) = f(x1]0)--- f(en|0).



In the case considered in the present paper, @ is the representation (7, T') of
a phase-type distribution.

Rather than devising methods for estimation of the unknown parameter
f, a Bayesian analysis first specifies a prior distribution G over the parameter
space O, ideally representing the initial (uncertain) knowledge about 6. We
shall later return to the problem of specification of this prior distribution.
The density f(-|#) is now interpreted as a conditional distribution given 6,
so that f and G together define a joint distribution P over X x ©. The
inference is then summarized through the posterior distribution G* obtained
from P by conditioning with the data x so that

00 =% (0) = D (9) o 10| ) = £(216) = F(a1 1) an | 0)

The density of the posterior with respect to the prior is thus proportional to
the likelihood function L.

The posterior distribution G* represents the complete inference about 6,
combining the prior knowledge, represented by G, with the information in
the data, represented by L.

In specific examples, such as those in the present paper, one may focus
interest on one or several particular functionals ¢ = 1(#) of the parameter.
In our case, 1 could be the ruin probability in a system associated with the
phase-type distribution, or the phase-type distribution itself, e.g. expressed
through its cumulative distribution function.

Inference about v is represented by the posterior distribution of v or

specific characteristics of this distribution such as, for example, its mean

V' = B{u(0) |z} = [ v(0)G"(d0) 2

or the quantiles of the posterior distribution of ¢ if ¢ is one-dimensional. The
posterior expectation ¥* in (2) is often referred to as the Bayes estimate of
1, although this is somewhat inaccurate, because there are many interesting

characteristics of the posterior distribution other than its mean. An interval



such as [u g5, U.975], where u, is the a-quantile of the posterior distribution
of v, is a 95% credibility interval for 1». Beware that the interpretation of
a credibility interval is quite different from that of a traditional confidence
interval, which has a much more complex genesis.

The remaining difficult issues of Bayesian inference are concerned with
specification of the prior distribution G, representation of the posterior G*,
and computation of integrals w.r.t. G* such as e.g. (2).

For reasons of simplicity one often uses conjugate families of prior distri-
butions. A family G of distributions is said to be conjugate for a Bayesian
inference problem, if it is closed under the prior-to-posterior analysis, i.e.
if G € G implies that G* € G for any possible data x. Conjugate fami-
lies are sometimes conveniently indexed by its own hyper-parameter n, i.e.
G = {G,,n € H}. The prior-to-posterior analysis can then be summarized
by specifying how the posterior hyper-parameter n* depends on the prior
hyper-parameter n and the data x. For a general discussion of conjugate
distributions, see e.g. Diaconis & Ylvisaker (1979) and Pefia & Smith (1995).

In general it may be impossible to find conjugate families where this
dependence is so simple that it is useful, and even when this can be done,
calculation of integrals with respect to the posterior distribution may still
present difficulties which in most cases can be overcome only by using Markov
chain Monte Carlo Methods.

2.3 Markov chain Monte Carlo methods

Modern Markov chain Monte Carlo methods (MCMC) have their origin in
statistical physics (Metropolis et al., 1953), where they have been used to
simulate the behaviour of large systems of particles and complex molecules.
Their primary use in modern statistics has been the computation of inte-
grals with respect to Bayesian posterior distributions in complex problems
(Gelfand and Smith, 1990; Gilks et al., 1996), although they can also be used
for a traditional likelihood analysis (Geyer and Thompson, 1992). See Green
(2001) for a recent tutorial on MCMC methods.



There is an abundance of related but different MCMC algorithms and
here we shall explain and exploit the (systematic) Gibbs sampler, introduced
in this form in Geman & Geman (1984), and the Metropolis—Hastings (MH)
algorithm (Hastings, 1970).

The basis of the Gibbs sampler is a collection (Y, ),cy of random variables
with a joint target distribution 7. It then proceeds as follows. First, pick an
arbitrary starting configuration y° = (y2),cy. Then number the elements of
Vas V = {1,...,|V|} and make successive random drawings from the full

conditionals L(Y, | Yi\(v}) as:
pick y; from L(Y1 |99 1);
pick y; from L(Y5 | y?/\{l,Z}’ Y1);
pick y3 from L(V3 | y?/\{l,2,3}7 y%,2)§
continue in this manner until you pick y|1V| from L(Y}y | y‘l,\ -

Each of the steps above is referred to as a site visit. This reflects the ori-
gin of the ideas in physics where variables correspond to states of particles
placed at different sites. When all sites have been visited, a transition from
¥’ = (¥0)vev to y' = (yl)vev has taken place. Iteration of the procedure
creates successive values 1%, y',...,y", .... The point of the method is that
under very general conditions these successive values form a realization from
a Markov chain which has the target 7 as its equilibrium distribution. By er-
godicity, integrals of a function A with respect to 7 can then be approximated

by averages of the Gibbs sample

[ 1w i) ~ > ). @

In Bayesian inference the target is often the conditional distribution of Y
given an observed subset of the variables Y, = y;,v € A where A C V. The



only modifications needed to obtain a sample from this conditional distribu-
tion are that the starting configuration must satisfy y2 = y; for all v € A
and that sites in A are not updated.

The Metropolis—Hastings algorithm is not necessarily related to specific
sites and we therefore suppress the site index and write the iteration number
as subscript instead of superscript. The MH algorithm constructs a Markov
chain {Y,} by drawing Z = z for each n from a proposal distribution pYr
proposing to let the chain move to Y11 = z, and then accepting or rejecting
this proposal with a suitable probability a(z,y,). In principle the proposal
distribution is almost arbitrary, but the efficiency of the algorithm depends
on the acceptance probabilities not being too small. Thus the MH algorithm

is as follows
e Initiate at any point Yy = yo.

e In the nth step, draw Z = z from p(- | y,) and set

v o_1Z with probability a(y,, 2)
"7y, with probability 1 — a(yy, 2),

where the acceptance probability a(y,, z) is determined as

dr
_ dpr (2)
a(Yn,2) = min 4 1, (- (4)

If p¥ = p we talk about an independence sampler. In this paper all MH
algorithms are independence samplers.

For both the Gibbs and MH algorithms it is common to discard the
observations in an initial burn-in period and only let the average (3) extend
over values obtained after this burn-in. Problems with MCMC methods are
associated with the fact that convergence to equilibrium can be very slow if
the Markov chain is not mixing well and it can be quite difficult to assess

such convergence in a practical situation.



A variant of the algorithms is known as ‘Metropolis-within-Gibbs’, where
an MH-step is used to replace the Gibbs updating at a single site. Indeed, the
final algorithm of the present paper is such a variant, where observations from
a burn-in period of the MH sampler are discarded before the Gibbs updating
is made. The Gibbs sampler is in the present paper used in a case where |V | =
2 and the target distribution is the conditional distribution of (6,Y") given
data x, where § = (7, T) is the phase-type representation and Y denotes
the collection of full trajectories of the underlying Markov jump processes.
We then sample 6 given y (and x) using simple conjugate distributions and
Y given (0, x) using a Metropolis-Hastings algorithm. Strictly speaking,
we update each component of # separately, and each of the N trajectories
separately but, as we shall see below, appropriate conditional independencies
allow us to consider the joint updating of these groups as single updating

steps.

3 Sampling of phase-type distributions

3.1 Sampling from the Markov process associated with
a phase-type variable

Let X be a random variable with a phase-type distribution and J be the
associated Markov jump process. We would like to simulate the Markov
jump process J from the conditional distribution of J given X = z, where
X is the time to absorption of a Markov jump process with intensity matrix
A and initial distribution (r, 0).

The idea is to substitute this Markov jump process, which gets absorbed
exactly at time x, with another Markov jump process having absorption
time beyond x and use the substitute as a proposal in a Metropolis-Hastings
algorithm.

Let {J;} denote the Markov jump process with intensity matrix A and

initial distribution & = (7 0). Then the distribution of J; is aels, and

10



hence
gi(s) :=Pqu(Js =1) = aeASei,

is the probability that the Markov jump process is in state ¢ at time s, where

e; is the column vector which #'th coordinate is 1, all other zeroes. Since

eAs _ 6T$ e — eTse
0 1 ’

it holds for i € {1,2,...,n} that

g(s) = W@Tsei.

Also, since t = >, t;e;, the density itself can be expressed simply by the
function ¢ as

fx(z) = Z qi(2)t;.

The distribution of the Markov jump process exactly prior to absorption
is

FmTP{J, —i| X —a} = ‘jc)(jl’; (5)

which follows from

gi(x)tide = TP (J,- =14, X € [z,z+dx))
= P(J,- =i| X =2)fx(x)dz.

Let IP, = IP(-| X =z) denote the distribution of interest and let IP; =
IP (-| X > z) be the distribution of J;_,0 < ¢ < x conditionally on the event
that X > z. Hence IP, is the target distribution and IP; will serve as a
proposal distribution. The latter is easy to simulate, as we just simulate the
original process and reject if absorption happens prior to z. Otherwise we
accept.

The strong Markov property of {J;} implies that J;, ,0 < ¢ < z and X
are conditionally independent given J,_. Hence,

]Pz({Jt—}t<z = {jt—}t<z | Jz—) = ]P;({Jt—}tq = {jt—}t<z | Jz—)-

11



The distribution IP; at time z— is given by

ﬁj::]P{J_:i\sz}:%

because IP(X > x) = ¥}_, IP(J,— = j) = X7_; ¢j(z). Thus we get that

dP, .  P.({hit<z}={j:t <z}
apr et ST = e = < 2]
Po({J;:t<z}={ji:t <z} Jo = jo )Pu(Jo_ = js_)
P,({Ji:t<z}={jr:t<z}|Jo- = juo)Po(Joe = ju)
Po{lo =jo} _ Fp

P:{J, =j.} 7.

These fractions could in principle be used as weights for an importance
sampling procedure based on sampling from IP), instead of IP,. However, it
may be computationally burdensome to calculate the importance weights,
since they involve matrix-exponentials.

Instead we construct a stationary Markov chain with IP, as equilibrium
distribution based on the MH-algorithm with IP; as proposal distribution.

This involves the repeated potential replacement of a given sample j' =
(ji,t < ) with a new sample j = (j;,t < x), obtained by sampling from IP}.
The MH acceptance probability a(j, j') involves the ratio of the importance
weights, cf. (4)

T %

L AN Jz— ﬂ-jz— _ t]m—
a(j,j) = = = o
Jo— " Ja— Jz—

Note that this ratio does not involve the numerically troublesome matrix-
exponentials and therefore is easily computed.

The stationary distribution of the Markov chain of Markov processes con-
structed in this way will be that of IP,. Thus applying the scheme iteratively
implies that, after a suitable burn-in period, the realizations can be seen as
Markov jump processes drawn approximately from the desired conditional

distribution x. Formally the algorithm becomes:

12



Algorithm 3.1 Sampling from P, = P(- | X = ) can be done as follows:
0. Generate {j;,t < z} from P} =1P(-| X > x) by rejection sampling.
1. Generate {ji;,t < z} from P, =P(- | X > z) by rejection sampling.
2. Draw U ~ Uniform|0, 1].
8. If U <min(1,t;, [ty ) then replace {j;}i<e with {ji}i<e-

4. GO TO 1.

3.2 Conjugate priors for Markov jump processes

The next step in the construction of our Gibbs sampler is the specification of
prior distributions on the parameter space for the phase-type distributions
under study.

We then choose constant hyper-parameters f;, v;; and (; and specify the
prior density of (ar,T) as being proportional to

PP PP
=TI =" I exp (¢:ci) I1 H 5
-1 o1 =1 =0

where (0 denotes the absorbing state and t;; = ¢; is the exit intensity. Using
lyy = — Z?Zl:#i tij — t; we obtain

H Wﬂ’_l H o ! exp(—t;(;) H H t'/“ ! exp(—ti;G)-

i=1 j=1
JFi
It is easy to sample from this distribution since r, ¢;, and ¢;; are all indepen-
dent with 7 Dirichlet distributed and ?; and ¢;; are gamma distributed with
the same scale parameter.
Let now x1,...,zy denote the observed data from the phase-type dis-
tribution to be estimated. As in Asmussen et al. (1996), these can be seen

as absorption times and incomplete observations of underlying Markov jump

13



processes, the complete observations being y = (y1,...,yn), where we now
have let y; = {ji,t < x;} denote the entire sample paths of the Markov jump
processes.

The likelihood function for the complete data y can be written as (As-

mussen et al., 1996)

P P p

p
p(’y | T, T) — H TzBl H etiiZi H H tz’j”
=1 =1 =1 j=0
J#i
b b 14 N
— H ,n.iBi H tleio e—tiZi H tij“ 6_tijZi,
=1

=1 j=1

J#i
where B; is the number of times the Markov processes are initiated in state
i, Z; the total time the Markov processes have spent in state 7, and N;; the
number of jumps from state i to j. Thus the posterior distribution of (7, T)

becomes

p'(m,T) = p(mT|y)
o ¢(m, T)p(y|w,T)
P P A
— H 7} i+B8i—1 H thiO'f‘ViO_le—ti(Ci'i‘Zi) H H tij” Vij e—tij(Zq;-I-Ci)_
=1 =1 i=1 j=1
J#i
and the family of prior distributions is therefore conjugate for complete data

with the following updating formulae for the hyper-parameters:

B; = Bi+ B
Z/;j = l/ij + Nij
G = G+Z.

This leads to a posterior distribution which again has 7 Dirichlet distributed,
the exit intensities following gamma distributions Gamma(1/(’, v%) and the

transition intensities Gamma(1/(}, v};), all independently. This conjugate

s g
property is computationally very convenient, since it now becomes trivial to

sample from the conditional distribution of (&, T') given complete data y.

14



3.3 The Gibbs sampler

The Gibbs sampler used for inference alternates between sampling from the
conditional distribution of the Markov jump processes Y given (w,T) and
Z1,...,Zn, and the conditional distribution of (7, T') given complete data y.

For the first step, we use the Metropolis-Hastings algorithm derived in
the previous section, and for the second we use the conjugacy property of the
prior distribution for complete data. In summary, we obtain the following
algorithm.

Algorithm 3.2 The full Gibbs sampler: Specify B;, vij and (;, 4,7 =1,...,p
and let B ={p;,i =1,..,p}.

0. Generate m, t;5, 1 # j and t;, i =1,...,p from the prior distribution.

1. Generate Y = (Y1,...,Yn), where each Y; is a Markov jump process
which gets absorbed at time x; obtained using a fixed number of steps
of Algorithm 3.1.

2. Calculate the statistics b={B;,i=1,...,p}, z=1{Z;;i=1,...,p} and
N ={N;j,i,j=1,...,p} from the data Y .

3. Draw m, t;;, t # 7 and t;, = 1,...,p from the full conditional:

w ~ Dir(8+0b)
ti ~ Ga‘mma(l/(cz'+2i)7Ni0+Vi0)a 221,,]9
tiy ~ Gamma(l/(G+ 2), Nij +vij), i # J

4. GOTO 1;

In this way, after a certain burn-in period, we produce an approximately
stationary sequence of distributions (measures) drawn from the given class

of phase-type distributions. This sequence can be used in several ways to

15



obtain information about functionals of the unknown phase-type measure,
as we shall see later.

For Algorithm 3.2 it is in principle sufficient to use a single MH-iteration
in step 1. This did, however, not provide a satisfactory mixing for the Gibbs
sampler, so we use a larger number of initial steps of the MH algorithm for
each site visit.

By ergodicity, the empirical average of the phase-type measures with rep-
resentations drawn in the Gibbs sampler converges to the posterior mean of
the phase-type distribution which is the object for estimation. However, it
should be noted that although this average is a mixture of phase-type distri-
butions and therefore itself of phase-type, the representation of this mixture

would need many more phases than the original phase-type distribution.

Example 3.1 To test the algorithms developed we initially analyse the fol-
lowing simple example.

We consider 250 simulated observations from a log-normal distribution
LN(—0.32,0.8). This distribution has been considered earlier in risk theory
for adjusting insurance claim data (Asmussen & Rolski, 1991; Asmussen &
Bladt, 1996). We adjust a fourth-order phase-type distribution to data by
the EM-algorithm and compare with an empirical average of draws obtained
from the Gibbs sampler. The empirical average is obtained through aver-
aging histograms generated from each of the draws. An initial burn-in of
80 iterations was given (though 20-30 appeared to have been sufficient) and
an additional of 1000 iterations were performed for displaying the following
graphs.

In Figure 1 we have displayed the fits of the EM-algorithm and the aver-
aged histograms of Gibbs samples from the posterior distributions and they
seem to be quite alike. Also the tail behaviour of the estimated distributions
are similar, as can be seen in Figure 2.

Next we estimate the ruin probability for this distribution in a model

with Poisson arrivals. More precisely, we consider a risk reserve process I?;

16
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Figure 1: True density, histograms of data, and densities estimated by max-
imum likelihood via the EM algorithm and posterior mean via MCMC.
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Figure 2: Logarithmic plot of theoretical and estimated densities
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defined by

N(t)
Rt - C + t— Z Ui,
i=1
where insurance claims Uy, U,, . . . arrive according to a Poisson process with

intensity A, C' is the initial capital, N(¢) is the number of claims which have
arrived up to time ¢, and it is assumed that the claims are independent
and follow a phase-type distribution PH (7, T). Unit rate increase of capital
between arrival of claims has be assumed without loss of generality. For fixed

parameters (7, T) the ruin probability p(C) is given by
p(C) =TP(inf R, < 0| Ry = C) = e THmCe

where e= (11 ... 1) and w, = —AnT .

Note that the problem of estimating the ruin probability for this model
with Poisson arrivals is equivalent to estimating M/PH/1 waiting time dis-
tributions for the stationary virtual waiting time (residual workload) V' and
actual waiting time W, since p(C) = P(V > C) = P(W > C) (Asmussen,
1987). We assume for simplicity that the arrival intensity is known and that
claims data x1,xs,..., Ty are available.

Using consecutive draws of (7, T')’s of the Gibbs sampler and evaluating
the corresponding ruin probability for each draw, we obtain a time series
of ruin probabilities. By ergodicity we may use this to calculate credibility
intervals for the ruin probability and quantiles for its posterior distribution.

We used arrival intensity A = 0.3 and C' = 1, obtaining the following

results:

e Estimate of ruin probability using estimated parameters of the EM-
algorithm: 0.1800

e Posterior mean of ruin probability, obtained as average in MCMC:
0.1806

e Quantiles of posterior distribution of ruin probability:

18



2.5 % 25 % 50 % 75 % 97.5 %
0.1377 | 0.1643 | 0.1783 | 0.1961 | 0.2316
£ 0.005 | £ 0.002 | £ 0.002 | £ 0.002 | &= 0.008

e 95% credibility interval for ruin probability: [0.137,0.235].

The bounds given above on the estimated quantiles were ordinary 95% confi-
dence intervals referring to the Monte Carlo error associated with the compu-
tation of these quantiles. The bounds were calculated by the formula (Hald,
1952, p. 138)

p(1 —p)
nf(i,)?

as the series of ruin probabilities appeared to be uncorrelated by the inspec-

1.96 (6)

tion of auto-correlation functions and partial auto-correlation functions. Here
n is the length of the series used to calculate the quantile, f () is the pos-
terior density at the estimated p-quantile 4,, as estimated by the histograms
of ruin probabilities displayed in Figure 3. The 95% credibility interval for
the ruin probability is obtained by also taking into account the Monte Carlo

error when calculating the quantiles of the posterior distribution.

3.4 Improved mixing through hyper-priors

Although Example 3.1 seemed to give a good fit, there may be problems for
the Gibbs sampler to tune in on data when e.g. data are bimodal or with low
probabilities of small values. In these cases the sampler will have problems
pulling away from a too dominant prior. In order to improve on this we
may choose to make the prior less dominant and propose a more flexible
class of priors by adding randomness to the hyper-parameters in the form of
hyper-priors.

In other words, we let the prior depend on hyper-parameters which are
random variables instead of fixed, and these random variables are now as-
sumed to have distributions with known fixed parameters. For some surveys
on how to choose hyper-priors we refer to Gilks et al. (1996).
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Figure 3: Histogram of ruin probabilities, sampled from their posterior dis-
tribution.

In our case we propose to randomize the hyper-parameters (;. Since the
values of (; also control mean and variance of the ¢;;’s, we do not impose
further randomization of the v;;’s nor of 8. We then propose the following
family of prior distributions:

7 ~ Dir(B)
t; ~ Gamma(1l/(,v)
1/ G Vz])

(
tij ~ Gamma(
(
0; ~ Gamma(l/d,c).

This family of prior distributions is again conjugate for complete data and

the full Gibbs sampling algorithm becomes:
Algorithm 3.3 Gibbs sampler with hyper-prior: Specify i, vij, i, ¢ and d.
0. Draw m, 0;, (;, tij, © # j and t;, © = 1,...,p according to the prior

indicated above.
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1. Generate Y = (Y1,...,Yn), where each Y; is a Markov jump process
which gets absorbed at time x; obtained using a fived number of steps
of Algorithm 3.1.

2. Calculate the statistics b={B;,i=1,...,p}, z={Z;,;i=1,...,p} and
N = {Njj,i,j =1,...,p} from the data Y .

3. Draw m, 0;, G, tij, 1# j and t;, 1 =1,...,p from the full conditional:

m ~ Dir(8+b)
0; ~ Gamma(1l/(¢+d),r;+c)

p
G~ Gamma(1/(0; — ti), Z Vij +1;)
7=0

t; ~ Gamma(1/(¢ + 2), Nio + vio)
tyy ~ Gamma(1/(G + z), Nij + vi;)

4. GOTO 1.

Example 3.2 We consider two examples of potentially difficult data: Data
from a distribution obtained through mixing a log-normal distribution with
a gamma distribution, and data from an Erlang(7) distribution. The former
is challenging due to bimodality and the latter due to the fact that values
close to zero have small probabilities. The bimodal distribution was fitted
with 8 phases while the Erlang distribution was fitted with the same number
of phases as the Erlang distribution itself (=7). In both cases 250 simulated

observations were used. The resulting fits are displayed on Figures 4 and 5.

3.5 A double sampler

Finally we show how to use the MCMC-algorithms constructed above in a
situation where the functional of interest depends on two data streams. We
consider the risk reserve process from before, but instead of Poisson arrivals

we assume that arrivals occur according to a phase-type renewal process, i.e.
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Figure 4: Estimates using 8 phases for a density which is a mixture of a
log-normal and a Gamma density.
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Figure 5: An Erlang(7) distribution, fitted with 7 phases.
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inter-arrival times are i.i.d. with a common phase-type distribution PH(e, S),
while the claims remain i.i.d. with common distribution PH(7r, T') and inde-
pendent of the arrival process. Then the (infinite horizon) ruin probability
is given by (see Asmussen (2000b), Proposition 4.4)

(T+tm)c

:0(0) =m.e €,

where 7, = lim,,_, WSZL ) and

WT) = 71'/00 €(T+t7r$kl))y0'esysdy.
0

We are interested in the posterior distribution of this ruin probability given
data of inter-arrivals and claims. Since they are all assumed independent, we
can run two MCMC-samplers as above, but instead of one sample of param-
eters in each draw we now get two samples from respectively the inter-arrival
and the claims data. Then for each pair of parameters, we calculate the cor-
responding ruin probability. Iterations of this method obviously results in a

stationary sequence of ruin probabilities.

Example 3.3 We considered the following numerical example with simu-
lated data. Claims were 250 observations from a log-normal LN(—.32,0.8)
distribution, inter-arrivals being 250 observations from an Erlang(3) distri-
bution (the number of observations in each series need of course not be the
same). We ran 10000 iterations on the double MCMC sampler with 20 it-
erations in each MH step and hyper-parameters as indicated above, where
the dimensions of the phase-type distributions were 3 for the inter-arrivals
and 5 for the claims distribution. The last 9500 iterations were considered
as stationary.

The ruin probability was evaluated at C' = 1. Figure 6 illustrates the
burn-in period and the settling down of the ruin probabilities to a stationary
sequence.

The mixing of the Gibbs sampler can be seen in Figure 7, showing a trace

plot of the 9500 ruin probabilities. We notice that the ruin probabilities seem
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Figure 6: Trace plot of the ruin probabilities during the burn-in period as
obtained from the double sampler

to move nicely around in an apparently stationary sequence, although they
make a single extreme excursion to the value .2474 at index 7373.
A histogram of the ruin probabilities, representing the posterior distribu-

tion of these, is shown in Figure 8. In conclusion we inferred the following:

e Ruin probability calculated using estimated parameters of EM: 0.0805
e Posterior mean of ruin probability: 0.0862

e Quantiles of posterior distribution:

2.5 % 25 % 50 % 75 % 97.5 %
0.05320 0.07141 0.08363 0.09835 | 0.13354
£ 0.0008 | &£ 0.00076 | £ 0.00092 | £ 0.0012 | = 0.002

e 95% credibility interval for ruin probability: [0.0531,0.1355].
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Figure 7: Trace-plot of ruin probabilities as obtained from the double sampler

The confidence bounds on the quantiles were essentially calculated in the
same way as in Example 3.1 apart from the fact that here the plots of
autocorrelation functions showed that the ruin probabilities could not be
considered as being approximately independent. We therefore proceeded as
follows. For each estimated p-quantile we constructed a series of data by
{1{r,<a,} Fi=1,..,9500, where {r;} denotes the 9500 ruin probabilities. This gen-
erated five time series of binary data, counting 1 if the corresponding ruin
probability is below %, and 0 otherwise. For each of these binary time se-
ries we estimated their auto-covariance functions and calculated the variance
of the average of the series using the initial monotone sequence estimator
proposed by Geyer (1992) (see formula (3.3) and following comment on p.
477 and Gilks et al. (1996), pp. 247-248). The confidence limits were then
obtained by formula (6) replacing p(1 — p)/n by the estimated variance of
the averages.
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Figure 8: Histogram of ruin probabilities as obtained from the double sampler

4 Discussion

We have introduced an MCMC algorithm for simulating Markov jump pro-
cesses which get absorbed at a fixed time. Using this and suitable prior
distributions, we have constructed a Gibbs sampler which draws phase-type
parameters from their posterior distribution. The method was extended to
involve hyper-priors to improve mixing. The overall performance of the al-
gorithm was good, and fits were comparable to those obtained through max-
imum likelihood estimation (EM algorithm) when these applied. A main
advantage of the method is that the uncertainty of estimates of complex
functionals of the phase-type distribution, such as e.g. ruin probabilities, can
be easily represented.

The estimation of ruin probabilities is just one of a wide range of poten-
tial statistical applications. Extension to more complicated situations where
several MCMC samplers work together should be possible, for example to a

situation where the underlying arrival process is a Markov modulated Pois-
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son process. The case of phase-type renewal arrivals was presented in the last
example and involves two independent MCMC samplers working together.

Fitting higher order models is numerically feasible but may be statistically
unstable. While the EM algorithm was significantly slowed by 15-20 phases
and almost detained by 30, it continued to be precise. This is due to the fact
that it is based on a numerical maximization by a deterministic algorithm and
ignores the sampling uncertainty of the estimates. In principle, the MCMC
algorithm presented can be run for quite high dimensions (100, say) without
the program being detained, but they then become statistically unstable
when the information in the data is too modest.

An interesting direction of further research would be the use of the MH
algorithm as a part of a Monte Carlo EM algorithm (Wei & Tanner, 1990),
which replaces the time consuming numerical integration involved in the E-
step with a MH simulation of the corresponding means. This is an interesting
alternative since the time-complexity of the MH is much lower than the
numerical integration needed for the EM-algorithm, so the MCEM-algorithm
might work faster in higher dimensions.

A stochastic EM-algorithm, see Ch. 15 of Gilks et al. (1996), where the
E-step is replaced by a single MH-step will not work. Eventually samples
will appear with no initiation in some state ¢, or no transitions from some
states ¢ to 7, or no exit from some state 7. The corresponding statistics will
remain zero from that iteration and onwards due to the M-step. Thus the
the limiting phase-type distribution of the stochastic EM-algorithm will be
an exponential distribution.

The extension of the algorithm to an unknown number of active phases,
possibly exploiting reversible jump processes (Green, 1995), would be of con-

siderable interest.
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