Scand J Statist 16: 273-306, 1989 WN% ?
A\ J
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ABSTRACT. The paper surveys the h ical and istical theory of mixed graphical

iath dels as introdeced by Lauritzen & Wermuth (1984), concerned with description of
associations between variables, some of which are allowed to be quantitative and some qualita-
tive. The models originate partly in statistical physics with early work of Gibbs and partly in
genetics with work of Wright on so-called path analysis. All models are determined by restric-
tions of distributional type supplemented by conditional independence restrictions. The models
extend and unify a range of statistical techniques that are well established, primarily in the social
sciences.
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1. Introduction

Mixed graphical association models were introduced by Lauritzen & Wermuth (1984). The
models are concerned with description of associations bewveen variables, some of which can
be quantitative and some qualitative. Each model is represented by a graph where qualitative
(discrete) variables are represented by dots and quantitative (continuous) variables by circles.
Connections between variables are either lines, representing symmetric associations between
variables. or arrows, representing directional influences. Each missing connection represents
a conditiona! independence statement. The basic theory and description of the models and
distributions involved can be found in Lauritzen & Wermuth (1989), the graph theory needed
to understand the structure of the models has been developed in Leimer (1985, 1989a), further
developments of the theory has been made in Lauritzen (1985), Frydenberg (1986, 1990) and
Frydenberg & Lauritzen (1989), development of algorithms and software in Edwards (1987,
1989a) and Frydenberg & Edwards (1989) and case studies and discussions of the interpreta-
tion and practical use of the models are in Edwards (1989a), Wermuth & Lauritzen (1989) and
Wermuth (1989).

The models have a long pre-history. They originate partly in statistical physics with early
work of Gibbs (1902), and partly in genetics with work of Wright (1921, 1923, 1934) on path
analysis. -

In the case of continuous variables models of this type have primarily played a role in the
social sciences (see, for example, Wold, 1954, 1960; Blalock, 1971; Goldberger & Duncan,
1973; Joreskog. 1981; Kiiveri & Speed, 1982; Holland, 1986; and references therein for more
details of the developments). Important precursors in the discrete case are Birch (1963),
Goodman (1970, 1973), Bishop, Fienberg & Holland (1975), Haberman (1974) and Andersen
(1974).

In the last decades much work has been directly involving graphical models in the case of
only one kind of variables. References are, for example, Dempster (1972), Wermuth
(1976a, b, 1980) and Porteous (1985b) in the continuous case and Darroch, Lauritzen & Speed
(1980), Lauritzen (1982), Edwards & Kreiner (1983), Edwards & Havréanek (1985, 1987) and
Whittaker (1982, 1984) in the discrete case.

Recently attention has been focusing on connections between models of this type and the
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handling of expert systems and other types of decision support systems (see Lauritzen &
Spiegelhalter, 1988, for a range of references to this part of the literature, and in particular the
recent book by Pearl, 1988).

The paper falls in two parts. First we review the mathematical basis for the models in such a
way that most proofs are omitted and appropriate references given instead. Then we discuss
the statistical theory, based on selected examples.

2. Graph theory
2.1. Notation and terminology

A graph, as we use it throughout this paper, is a pair & =(V, E), where V is a finite set of
vertices and the set of edges E is a subset of the set VXV of ordered pairs of distinct vertices.
Thus our graphs are simple, i.e. there are no multiple edges and they have no loops. Edges
(a, B) € E with both (a, 8) and (B, a) in E are called undirected, whereas an edge (a, B) withiits
opposite (8, a) not being contained in E are called directed.

We are interested in graphs where the vertices are marked in the sense that they are
partitioned into two groups, such that the vertex set has the structure

V=AUT.

We then use the term marked graph. The vertices in the set A represent qualitative variables
and those in I" quantitative variables. Therefore we say that the vertices in A are discrete and
those in I are continuous. A graph is pure if it has only one kind of vertex.

A graph is a visual object. It is conveniently represented by a picture, where we use a dot for
a discrete vertex and a circle for a continuous. Further a line joining a to B represents an
undirected edge, whereas an arrow from a, pointing towards § is used for a directed edge
(a, B) with (8, a) ¢ E. Fig. 1 contains an illustration of these conventions. Correspondingly we
sometimes use the notation

a—B a~f
apf atp
to signify that
- (a,PeE  (a,B)eEN(B, a)eE
(@, B)EE  (a, BYLEN(S, a)¢E.

Note that a8 then means that there is no arrow between a and 8 and that, for example,
a—sf >E.lv a&a~p.

If the graph has only undirected edges (lines) it is an undirected graph and if all edges are
directed (arrows), the graph is said to be directed.

The symmerrization %~ of a graph % is the undirected graph obtained from & by
substituting lines for arrows. We shall also use the expression that %~ is the undirected graph
corresponding to & . See also Fig. 1 for an example of this construction.

If ASVis a subset of the vertex set, it induces a subgraph ¥,=(A, E,), where the edge set
E,=ENAXA is obtained from % by keeping edges with both endpoints in A.

A graph is complete if all vertices are joined by an arrow or a line. A subset is complete if it
induces a complete subgraph. A complete subset that is maximal (w.r.t. €) is called a clique.

If there is an arrow from a pointing towards 8, a is said to be a parentof fand B a child of a.
The set of parents of § is denoted as pa() and the set of children of a as ch(a).
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Fig. 1. A marked graph, together with its corresponding undirected version. Discrete vertices are
represented by dots and continuous vertices by circles. Directed edges are represented by arrows and
undirected edges by lines.

If there is a line between a and B, a and B are said to be adjacent or neighbours. The
neighbours of a vertex a is denoted as ne(a).
The expressions pa(A), ch(A) and ne(A) denote the collection of parents, resp. children and
neighbours, of vertices in A that are not themselves elements of A:
UNA\AvHCnmi—uwﬁﬁvs
ch(A)=U,c4ch{a\d
ne(A)=Ugcane(a)\A.
The boundary bd(A) of a subset A of vertices is the set of vertices in V\A that are parents or

neighbours to vertices in A, i.e. bd(A)=pa(4)Une(A). The closure of A is cl(A)=AUbd(A).
A subset is closed if A=cl(A). See Fig. 2 for further illustration.

Fig. 2. Hlustration of graph-theoretic concepts. We have a—f and also a— but -6y, a+ y whereas, for
example, e~¢. Also pa(y)={y} and ch(y)={0.7} as well as bd(8}={a, ¢,y}. The connectivity compo-
nent of B is co(B)={8,x}.

A path of length n from a to f is a sequence a=a, .. ., a,=f of distinct vertices such that
(a1, a)eEforalli=1, ..., n.If there is a path from a to 8 we say that a leads to f and write
a>f. The set of vertices a such that at->f are the ancestors an(8) of 8 and the descendants
de(a) of a are the vertices 8 such that a 8. The non-descendants are nd(a)=Wde(a)U {a}].
A set of vertices A is ancestral if an(A)< A. The intersection of two ancestral sets is again
ancestral such that the smallest closed ancestral set containing a given set Bis well-defined. We
denote this by An(B). Thus An(B) contains all parents and ancestors of B, all neighbours of B
and their ancestors, etc.

If both at>f and Br»a we say that a and 8 connect and write a=p. Clearly = is an
equivalence relation and the corresponding equivalence classes co(a) where then

Beco(a) & a=p,

are the connectivity components of . If a e AS V, the symbol co(a),, denotes the connectivity
component of a in F4.

A walk of length n from a to § is a sequence a=aqy, .
a;,.;—a;or a—a;, foralli=1, ..., n.

.., a,=f of distinct vertices such that
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A subset § is said to separate A from B if all walks from vertices a €A to BeB intersect S.

An n-cycleis a path of length n with the modification that a=f, i.e. it begins and ends in the
same point. The cycle is said to be directed if it contains an arrow.

A class of graphs of special interest to us is the class of chain graphs, so denoted in Lauritzen
& Wermuth (1989). These are the graphs where the vertex set V can be partitioned into
numbered subsets, forming a so-called dependence chain V=V(1)U ... U V(T) such that all
edges between vertices in the same subset are undirected and all edges between different
subsets are directed, pointing from the set with lower number to the one with higher number.
As shown in Frydenberg (1989), these are characterized by not having any directed cycles and
the connectivity components form a finest possible partitioning of such a graph, the elements
of which are the chain components of &. The graph in Fig. 2 is a chain graph. Its chain
components are {a,d,¢,¢}, {y}, {B.x}. The chain components are most easily found by
removing all arrows before taking connectivity components.

For a chain graph ¥ we define as in Frydenberg (1989) (in analogy with Lauritzen &
Spiegelhalter, 1988) its moral graph %™ as the undirected graph with the same vertex set but
with @ and 8 adjacent in %™ if and only if either a— 8 or — a or if there are y,, y, in the same
chain component such that a—y, and 8~ y,. In the graph of Fig. 2, the moral graph is obtained
by adding an edge between a and y that both have children in the same chain component
{8, x}, and then ignoring directions.

In the special case of a directed, acyclic graph the moral graph is obtained from the original
graph by “marrying parents” with a common child and then dropping directions on arrows.

2.2. Decompositions of marked graphs

In the present subsection we shall be concerned with decompositions and decomposable
graphs. The notions pertain to undirected graphs and have deep connections to many areas,
other than the statistical analysis of association such as in Andersen (1974) and Haberman
(1974). This includes general graph theory (Diestel, 1987), the four-colour problem (Wagner,
1937), measure theory (Kellerer, 1964a, b; Vorob’ev, 1962, 1963), the solution of systems of
linear equations (Parter, 1961; Rose, 1970), game theory (Vorob’ev, 1967), relational
databases (Beerieral., 1981, 1983) and expert systems (Lauritzen & Spiegethalter, 1988). See
these as well as Lauritzen, Speed & Vijayan (1984) and Golumbic (1980} for further discussion
and references.

In the pure case, decomposable graphs are well-studied objects although they usually
appear under other names such as, for example, rigid circuit (Dirac, 1961), chordal (Gavril,
1972) or triangulated (Berge, 1973; Rose, 1970).

In the case of a marked graph, the notion of a decomposable graph was first introduced by
Lauritzen & Wermuth (1984) and studied further by Leimer (1985, 1989a). The present
developments follow the latter reference rather closely although there are minor differences in
terminology. Since the notion is so central, we state formally that

Definition 1 .
Atriple (A, B, C) of disjoint subsets of the vertex set V of an undirected, marked graph 5 is said
to form a (strong) decomposition of & if V=AUBWUC and the three conditions below all hold:

(i) C separates A from B
(i) Cis a complete subset of V
(iif) C<AVBcT.
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When this is the case we say that (4, B, C) decomposes % into the components % 4,¢ and
% puc- Occasionally, to avoid misunderstanding, we shall use the qualifier strong to dis-
tinguish from a weak decomposition which is defined below.

Definition 2
Atriple (A, B, C) of disjoint subsets of the vertex set V of an undirected, marked graph & is said
to form a weak decomposition of & if V=AU BUC and the two conditions below both hold:

(i) C separates A from B
(it} Cis a complete subset of V,

i.e. a triple (A, B, C) that satisfies (i) and (ii) of definition 1, but not necessarily (iii). In the
pure cases (iii) holds automatically and all weak decompositions are also decompositions.
Note that what we have chosen to call a decomposition (without a qualifier) is what Leimer
(1989a) calls a strong decomposition. Note also that we allow some of the sets in (A,B,C)to
be empty. If the sets A and Bin (A, B, C) are both non-empty, we say that the decomposition
is proper. Fig. 3 illustrates the notions of (strong) and weak decompositions.

A decomposable graph is one that can be successively decomposed intoits cliques. Again we
choose to state this formally through a recursive definition as

(a) (c)

(b) (d)

A C 8 A C B

Fig. 3. Illustration of the notions of (strong) and weak decompositions. In (a) we see a decomposition with
C< A andin (b) with a<T. In (c) the decomposition is only weak because none of these two conditions is
fulfilled. In (d) we do not have a decomposition because the separator C is not complete.

Definition 3
An undirected, marked graph is said to be decomposable if it is complete, or if there exists a
proper decomposition (A, B, C) into decomposable subgraphs %4, ¢ and Fpuc.
The definition makes sense because the decomposition is assumed to be proper, such that
both subgraphs 4y and % have fewer vertices than the original graph ¥
Analogously, a weakly decomposable graph is one that can be decomposed into cliques by
weak decompositions. It is then obvious that any decomposable graph is weakly decompos-
able. The converse is in general false. The smallest graph that is not decomposable is given on
Fig. 4. The only candidate for a separating set C is the vertex (c) but since this is a circle, they
are not allowed dots in both sets A and B (then condition (iii) of definition 1 would be
violated). But the graph is weakly decomposable because (A= {a}, B={b}, C={c})is a weak
decomposition of the graph.
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*—o—9 B

a c b

Fig. 4. The smallest, non-decomposable graph. The graph is weakly decomposable.

A triangulated graph is an undirected graph with the property that every cycle of length n=4
possesses a chord, i.c. two non-consecutive vertices that are neighbours. A classical result
states that

Proposition 1
The following conditions are equivalent for an undirected, marked graph % :
(i) & is weakly decomposable
(ii) % is triangulated
(iii) Every minimal (a, B)-separator is compiete.

Proof. See for example Golumbic (1980). O

The smallest graph that is not weakly decomposable is therefore a 4-cycle and shown in Fig. 5.

Fig. 5. The smallest graph is not weakly decomposable.

An elegant construction, due to Leimer (1989a), makes it possible to take full advantage of
the wealth of knowledge pertaining to triangulated graphs when discussing decomposable,
marked graphs. If % is an undirected, marked graph its stargraph is denoted as $*= (VX E*)
and constructed as follows: the vertex set V is to be extended with an extra vertex, denoted «,
such that V*=VU {«}. This extra vertex, the star, is then connected to all discrete vertices bya
line, such that E*=EU{(», ), (d, *), € A). The construction of stargraphs is illustrated on
Fig. 6.

(a) (c)

(b) (d)

Fig. 6. The construction of stargraphs. In (a), which is the stargraph of the non-decomposable graph from
Fig. 4, the star creates a 4-cycle whilst the other three decomposable graphs have triangulated stargraphs.

N[
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The astonishing fact which makes the construction so valuable is contained in the following
result:

Proposition 2 (Leimer)
A marked graph & is decomposable if and only if * is triangulated.

Proof. See Leimer (1989a).

It follows from proposition 2 that a forbidden path characterization exists for decomposable
graphs. The following result is also due to Leimer (1989a):

Corollary 1

An undirected, marked graph is decomposable if and only if it is wiangulated and does not
contain any path (8y=ay, ..., a,=d,) between two non-adjacent discrete vertices passing
through only continuous vertices, i.e. with 6,16, and a,eT for 0<i<n.

Proof. The forbidden paths are exactly those that give rise to chordless cycles in ¥*. [

We have illustrated the typical forbidden path in Fig. 7. See also Figs 4 and 6, the latter
indicating clearly how the forbidden path creates a 4-cycle in the stargraph.

® 2l () @
Fig. 7. Path which is forbidden in a decomposable graph.

2.3. Simplicial subsets and perfect sequences

Closely related to the notion of a decomposition is the notion of a simplicial subset, which is a
subset A that satisfies the following two conditions
(i) bd(A) is complete
(ii) ASTAbd(A)<SA.
A subset is said to be weakly simplicial, if the first of these conditions is satisfied. Clearly, when
a subset is (weakly) simplicial the triple (V\cl(A), A, bd(4)) is a (weak) decomposition of .
The notion is illustrated on Fig. 8. A vertex a is said to be (weakly) simplicial if the subset {a}
is.
A sequence (Cy, . .., ;) of complete sets in ¥ such that for all J>1, R;is simplicial in Fn,
where
H=(C\U...U(C), R=Cp\H_,
is said to be perfect. H; are the histories and R, the residuals of the sequence. Thus when we let
§; denote the separators S;=H;_, C;, we have that if a sequence of cliques is perfect then
(H;-0\C, R;, S;) decomposes &y,
A perfect numbering of the vertices V of % is a numbering (aj, .. ., ay) such that
bd(e)N{a,, ..., a,}, j>1

is a sequence of complete sets. Similarly we define weakly perfect sequences and numberings
as those where the relevant sets are only weakly simplicial.
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bd (A) A bd (A) A

" >\o/o = (c)
.\o/ ' (d)
(b) O

bd (A)

bd (A)

Fig. 8. Simplicial subsets. In (a), A is simplicial because AST and bd(A) is complete. In (b), A is simplicial
because bd(A)SA and bd(A) is complete. In (c), A is only weakly simplicial because ANA#@ and
bd(A)NT#§. In (d), A is not even weakly simplicial because bd(A) is not complete.

Perfect sequences play important roles in the understanding and manipulation of decom-
posable graphs. Partly because their existence characterize decomposable graphs but also
because they form the basis for recursive computational procedures. The characterization
resuits are stated below. The proof is in Leimer (1989a), where also fast algorithms for finding -
such numberings are described

Proposition 3
The following conditions are equivalent for an undirected, marked graph % :

(i) The vertices of & admit a perfect numbering
(ii) The cliques of ¥ admit a perfect numbering
(iii} The graph % is decomposable.

3. Markov properties
3.1. Markov fields over undirected graphs

For an undirected graph =(V, E) we consider a random field with V as index set, i.e. a
“collection of random variables (X,), v V taking values in probability spaces .&",, ve V. The
probability spaces in the present paper are either the real line or finite sets. For A being a
subsetof Vwe let # 'y = X, ¢ 4. %, and further & =%&',. Typical elements of %, are denoted as
X4=(x,),e4 and so on. Then a probability measure of P on %" is said to factorize according to
‘¢ if there exists non-negative functions y, defined on .%’, for only complete subsets A, and a
product measure u=®,yu, on %", such that

P=f-u where \A\«vum Yalxa).

The functions y, are referred to as factor potentials of P. These are not uniquely determined.
There is arbitrariness in the choice of u, but also groups of functions 1, can be multiplied
together or split up in different ways. In fact one can without loss of generality assume—
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although this is not always practical—that only cliques (maximal complete subsets) appear as
the sets A, i.e. that

=11 v, 1)

where & is the set of cliques of ¥
Associated with this structure there is a range of Markov properties that in general can be
different. A probability measure P on .#" is said to obey

(L) the local Markov property, relative to %, if for any vertex aeV
alitW\cl(a)|bd(a).

(P) the pairwise Markov property, relative to %, if for any pair (a,8) of non-adjacent
vertices

allf|V\{a, 8},

(G) theglobal Markov property, relative to %, if for any triple (4, B, §) of disjoint subsets
of V such that S separates A from Bin ¥

ALB|S.

Here we have used the notation “AlLB|S", etc., as short for “ X, is conditionally independent
of Xp given X", See Dawid (1979, 1980) for detailed properties of conditional independence.
It is obvious that we have

(G)=>(L)=>(P) @

butin general the three properties are different (see Speed, 1979, for a discussion). In fact, if P
admits a density w.r.t. u which is strictly positive, the properties are equivalent, as shown, for
example, by Pearl & Paz (1986) (see also Pearl, 1988). It is easy to see that in general it is true
that if P factorizes according to %, it also obeys the global Markov property.

The global Markov property (G) is important because it gives a general criterion for
deciding when two groups of variables A and B are conditionally independent given a third
group of variables S. And this criterion can, apart from degenerate cases, not be improved (see
Frydenberg, 1990), in the sense that if A and B are not separated from S then there will be
factorizing probabilities P, such that ALB|C will not hold.

In our special case where P admits a strictly positive density w.r.t. u, each of the equivalent
Markov properties imply that P factorizes, a result known as the Hammersley~Clifford
theorem (see Speed, 1979, for a discussion of the problems involved). It therefore makes sense
to use the term Markov property for any of the four properties.

3.2. Markov fields over directed acyclic graphs

Before we proceed to the case of a general chain graph we consider the same set-up as in the
previous subsection just that now the graph % is assumed to be directed and acyclic. The
Markov property on a directed acyclic graph was first studied systematically in Kiiveri, Speed
& Carlin (1984), but the understanding has recently developed considerably (see, for
example, Pearl, 1986; Verma, 1988; Pearl & Verma, 1987; Smith, 1989; Geiger & Pear!, 1988;
Lauritzen et al., 1989).

We say that P admits a recursive factorization according to % if there exist non-negative
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functions, henceforth referred to as kernels, k*(-, ), veV definedon &', X% p(,) such that

\‘\ﬁeﬁ%s Hl.;v}.A&!..v",—
and

P=f-u where f(x)= :< k(X Xoaq))-

It is an easy induction argument to show that if P admits a recursive factorization as above,
then the kernels k(- .xlsv dre in fact densities for the conditional distribution of X,, given
Xoui)- Also it is immediate (as was noted in Lauritzen & Spiegelhalter, 1988), that if we form
the undirected, moral graph & ™ (marrying parents and dropping directions) such as described
towards the end of subsection 2.1, we have

Lemma 1

If P admits a recursive factorization according to the directed, acyclic graph %, it factorizes
according to the moral graph $ ™ and obeys therefore the global Markov property relative to
sm

Proof. The factorization follows from the fact that, by construction, the sets {v} Upa(v) are
complete in ¥ ,, and we can therefore let () upeasy=k". The remaining part of the statement
follows from the remarks in the previous subsection. o

It then follows (see Lauritzen et al., 1989) that we have:

Proposition 4.

Let P factorize recursively according to & . Then
ALBIS

wherever A and B are separated by S in (¥ aoausus))™, the moral graph of the smallest ancestral
set containing AUBUS.

The property in proposition 4 shall be refered to as the directed global Markov property
(DG). Note that our terminology here is different from that used by Kiiveri, Speed and Carlin
(1984). One can show that this global directed Markov property has the same role as the global
Markov property in the case of an undirected graph, in the sense that it gives the sharpest
possible rule for reading conditional independence relations off the directed graph. The
procedure is illustrated in the following

Example 1. Consider a directed Markov field on the graph in Fig. 9 and the problem of
deciding, whether allb|S? The moral graph of the smallest ancestral set containing all the
variables involved is shown in Fig. 10.

It is immediate that S separates a from b in this graph, implying allb|S. 0

To complete this subsection we say that P obeys the directed local Markov property (DL) if
any variable is conditionally independent of its non-descendants, given its parents:

vilnd(v)\pa(v)|pa(v).
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S=(xy)

Fig. 9. The directed, global Markov property. Is allb|S?

S=(x,y)

X

Fig. 10. The moral graph of the smallest ancestral set in the graph of Fig. 9 containing {a}U{b}US. Clearly
S separates a from b in this graph, implying allb|S.

The latter coincides with the terminology of Kiiveri, Speed & Carlin (1984). In contrast with
the undirected case we have that all the three properties (DF), (DL) and (DG) are equivalent
just assuming existence of the density f, stated formally as:

Proposition §
Let % be a directed, acyclic graph. For a probability measure P on X" which is absolutely
continuous w.r.t a product measure u, the following conditions are equivalent:

(DF) P admits a recursive factorization according to %
(DG) P obeys the global directed Markov property, relative to ‘¢
(DL) P obeys the local directed Markov property, relative to %.

Proof. See Lauritzen et al. (1989). a

Since the three conditions in proposition 5 are equivalent it makes sense to speak of a direcred
Markov field as one where any of the conditions is satisfied.
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3.3. Markov fields over chain graphs ‘

In the present subsection we deal with general chain graphs ¥ =(V, E) but otherwise the usual
set-up and ali probability measures are assumed to have positive densities. A complete
discussion of the chain graph Markov property has been given by Frydenberg (1989) and some
parts of this shall be summarized here. For our purposes it suffices to use the definition in
Lauritzen & Wermuth (1989) which is as follows,

Since the graph is a chain graph, the vertex set can be partitioned as V=V (1)U ... UV(T)
such that each of the sets V(1) ohly has lines between vertices and arrows point from vertices in
sets with Jower number to thos¢ with higher number. We then introduce the set of concurrent
variables C(1)=V(1)U ...UV(¢) and say that P satisfies the pairwise chain Markov property
(PCM) if for any pair (a, 8) of non-adjacent vertices we have

allg|C(+*\a, B},

where ¢* is the smallest ¢ that has a, 8 € C(t). It can be shown (Frydenberg, 1989), that—in the
case of positive densities—this property does not depend on the actual partitioning, but only
depends on the graph %. In the case where % is undirected, we get the usual Markov property
and if the chain graph is directed, we get the directed Markov property described in the
previous subsection.

It has been shown by Frydenberg (1989) that the pairwise property above is equivalent to
the global chain Markov property (GCM):

ALB|S

whenever A and B are separated by S in (% anauus))™, the moral graph of the smallest ancestral
sef containing AUBUS. In contrast to the directed and undirected case, we do at present not
know for sure that this criterion cannot be sharpened.

10

Fig. _:. A chain graph with chain components {1, 2, 3, 4}, (5, 6}, {7, 8}, {9,10}. {11}. Is 3U8]{2, 5)?1s
31827

Example 2. As an illustration of this, consider the graph in Fig. 11 which is taken from
Frydenberg (1989), and the question of deciding if 318|{2,5}. The smallest ancestral set
containing these variablesis the set {1, 2, 3,4, 5,6, 7, 8}. The moral graph of this adds an edge
between 3 and 4, because these both have children in the chain component {5,6}. Thus the
graph in Fig. 12 appears. Since there is a path between 3 and 8 circumventing 2 and § in this
graph, we cannot conclude that 318|{2,5).
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-

3 5

Fig. 12. Moral graph of smallest ancestral set in the graph of Fig. 11 containing {2, 3, 5, 8}. A connection
between 3 and 4 has been introduced since these both have children in the same chain component {5, 6).
We cannot conclude 318/ {2,5).

1 3

Fig. 13. Moral graph of smallest ancestral set in the graph of Fig. 11 containing {2, 3, 8}. We conclude that
3L8)2.

If we instead consider the question whether 31L8|2, the smallest ancestral set becomes {1,2,
3,4,7, 8}, no edge has to be added between 3 and 4 and Fig. 13 reveals that 318|2.

4. Distributions and models
4.1. CG-distributions and -regressions

We shall briefly review some standard notation from Lauritzen & Wermuth (1989). Recall
that the set of variables V is partitioned as V=AUT into variables of discrete (A) and
continuous (T) type. A typical element of the joint state space is denoted as in one of the
possibilities below

NuAknvnn—\HAﬁ .v.v"AT‘;vamD, Avh*vwm-.v,

where i, are qualitative and y, are real valued. A particular combination i=(is)sea is referred
to as a cell and the set of cells is denoted by .7. The joint distribution of the variables is
supposed to have a density f with

log f(x)=log f(i, y)=g(i)+h(i) y-1y'K(i)y,

in which case we say that X follows a CG-distribution which is equivalent to the statements
P)=P{X,=i}>0 and % (X|Xs=i)=.1 n{£G), 2()},

where X,=(X,)aes and so on, £(i)=K(i)~'h(i) and Z(i)=K (i) is positive definite. The triple
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The triple (g, h, K) constitutes the canonical characteristics of the distribution and (p, £, X) are
the moment characteristics. Note that combinations of the elements of these triples can be used
to parametrize the distributions. For example, the standard mixed characteristics given as
(p, h, K) are often convenient. We say that the distribution is homogeneaus if the covariance is
independent of i, i.e. if Z(i)mX or, equivalently, if K(/)=K. The homogeneous distributions
were, for example, studied by Olkin & Tate (1961).

From Lauritzen & Wermuth (1989) we have the following facts pertaining to the behaviour |
of marginal and conditional distributions of variables that follow CG-distributions. For a
subset A of V we denote the marginal density of X, by f, and for B=V\4 the conditional
density of X5 given X,=x, as fgj4. A -

Proposition 6
For a CG-density f we have: .

® Forall x4, fg 4 is a CG-density.
® If BCT, f4 is a CG-density.
® [f BcA and BUT|A\B, f, is a CG-density.

Proof. This is straightforward (and in Lauritzen & Wermuth, 1989). 0

The densities fz)4(-|x,) are called CG-regressions and homogeneous CG-regressions if the
original density f is homogeneous. They are described in detail in Lauritzen & Wermuth
(1989). ’

In particular we are interested in the interplay between the distributional properties and the
various Markov properties. For an undirected graph we introduce the symbols M(¥) for the
set of CG-distributions that are also Markov relative to %. Similarly M,(%) is the set of
homogeneous Markovian CG-distributions. Further, the symbols for marginal and con-
ditional distributions:

M(F)a={falfeM(5)}
Mu($)a={falfeM(%)}
M(5Y'={fpalfeM(5)}
MY ={faalfe Mu(%)}.

The distributions in M(¥), (nor M,(%),) will not for general subsets A be CG-distribu- .
tions but those in M(¥)* will always be CG-regressions and also Markovian on %} (see
Lauritzen & Wermuth, 1989). But we have:

Proposition 7
If B is a simplicial subset, then

M(F)=M(¥,) and My(F)a=Mu(%,).

Proof. Lauritzen & Wermuth (1989). 0

4.2. The graphical association models

We now have the necessary prerequisites to specify the classes of joint distributions that
constitute the models of our concern.
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Consider first an undirected graph . Thus the graphical association model determined by
¥ is given by the family of densities M (%), and the homogeneous graphical association model
by Mu(%). In the pure cases there is no difference between the homogeneous and non-
homogeneous cases since then M(%)=M,(¥). In the pure discrete case these models are
known as the graphical log-linear models studied in Darroch, Lauritzen & Speed (1980) and in
the pure continuous case as covariance selection models introduced by Dempster (1972). As
shown in Lauritzen & Wermuth (1989) these models are characterized by their canonical
characteristics having interaction expansions (cf. Darroch & Speed, 1983), as

gi)=2 M), hG)=2 na), K@G)=2 W),

dca dsa dsA
where functions of the type ¢, only depend on i through i, and where
A4(i)=0 unless d is complete in &
74(¥),=0 unless dU{y} is complete in $
Ya(i)y,»=0 unless dU{y, u} is complete in &

In the homogeneous case, the mixed quadratic interactions W /i), d# are all equal to zero.
The terms A, are the pure discrete interactions, and 1,(i), d#@ are the mixed linear interactions.
Because of this interaction representation of the densities, we use the term graphical interac-
tion model in the case of an undirected graph. Edwards (1989b) has extended the class of
models to hierarchical mixed interaction models.

In the case of a directed acylic graph % we proceed as follows. As explained in subsection
3.2, a directed Markov field is specified through the kernels k*, specifying the conditional
distribution of any variable, given the values of its parent variables. In this case we say that
feM() resp. fe My(F) if f=I1,k* where k* are the CG-regressions

ke M(Shyupm)™™ resp.  k*e My($ Toyupm)™™.

The overlining indicates that all lines between vertices in pa(v) have been added. Recall that
%~ is obtained from ¥ by dropping directions on edges. The models M(%) and M(% ~) are
in general different, both concerning distributional type and Markov properties, but for some
special graphs they are identical as stated precisely below.

Proposition 8
If all ve V are simplicial in ${,yypaq) then

M(£)=M($~) and M (F)=M(%").
Proof. Lauritzen & Wermuth (1989). (]

Frydenberg (1990) has shown that the converse to the above is true.

In the pure cases there is as usual no difference between the homogeneous and the general
case. The pure continuous case was discussed by Wermuth (1980) and the pure discrete case by
Wermuth & Lauritzen (1983). See also Birch (1963) for an early example in the case of three
variables.

In the general case of a chain graph & the construction is similar. Instead of single vertices
we have to consider the set Q of chain components o of %. Then we say that fe M(%) resp.
feMy(%) if f=T1,.qk” where k® are the multivariate CG-regressions

ke e M(Foupm@)™® resp.  kveMy( B @),
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This definition is shown by Frydenberg (1990) to coincide with the definition given in
Lauritzen & Wermuth (1989).

In the pure cases there is as usual no distinction between the general and the homogeneous
case. The pure discrete case has, in a slightly different framework, been studied by Goodman
(1973) and Asmussen & Edwards (1983) and the pure continuous case briefly by Porteous
(1985a). Again we have found from Lauritzen & Wermuth (1989) the analogous result to
proposition 8. '

Proposition 9 J
If all weQ are simplicial in %5 ;pya) then
M(%)=M($5") and My(F)=My(F").
And the converse holds as well (cf. Frydenberg, 1989, 1990).

Necessary and sufficient conditions for the Markov properties of two chain models to
coincide has been given by Frydenberg (1989). Further results giving conditions for models to
be equal when their graphs have the same vertex set and the same connections between
vertices, just with possibly different directions, can be found in Lauritzen & Wermuth (1989)
and Wermuth & Lauritzen (1989), but the general result waits to be formulated.

As discussed in Wermuth & Lauritzen (1989), these conditions are both helpful when

models are to be interpreted and also when models are to be fitted. We shall give examples of
this later in the paper.

5. General notation

Throughout the paper we consider the situation with a sample (x', .. ., x*) of size n from a
distribution with density f which is unknown apart from it belonging to M(¥) (or My(¥%)) for
a marked graph %. :

Itis convenient to introduce the following notation for standard sampling statistics, where 4
is an arbitrary subset of V, and where we abbreviate to let iy =i ,, Fa=T sus Ya=Yaur and
S0 on.

d(i)={v]ir=i,}
n(is)=|d(i,)|=the number of observations in cell i,

s(ia)= M y*=the sum of the y-values in celi i,
ved(i,)

Y(a)=s(ia)/n(is)

ssd(ia)= X {y=Fl)Hy —Fia)}’

ved(i,)

=the sum of squares of deviations from the mean in cell i,

ssd(A)= 3, ssd(i,)

ir€.7,
=the “within” ssd in the marginal table .7,
ssd=ssd(V).

Strictly speaking the quantities 7(i,) and hence also ssd(i,) are only defined for n(i,)>0, but
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they can be assigned any value—O0, say—in the case n(i,)=0. In common with standard
practice, we shall use capital letters for the random variables corresponding to all the quan-
tities above. An expression for BcV such as ssd(i,) denotes the submatrix {ssd(is),u}y.uenr>
and similarly for the other quantities.

6. Graphical interaction models
6.1. Saturated interaction models

Basic elements in all models are the saturated interaction models given by M( %) where % is an
undirected graph with all edges present. Then the restrictions only pertain to the distributiona!
type. From Frydenberg & Lauritzen (1989) we have the sampling distributions of the sufficient
statistics as described below, where .4(£, T) is the multivariate Gaussian distribution with
mean ¢ and covariance matrix X and #;(Z, f) is the corresponding k-dimensional Wishart
distribution with f degrees of freedom (cf. Anderson, 1984). We shall here omit a discussion of
the homogeneous case.

Proposition 10 B
The set of statistics (N(i), Y(i), SSD(i)); 7 is minimal sufficient and has a sampling distribution
which can be described as follows:

® All components of {¥(i), SSD(i)};c are conditionally independent and independent of
", ..., I") for a given table of counts {N(i)}ie5-

® For all ie J we have {Y(i), SSD()}L{N()} il N(i).

® {N(i)}ics has a multinomial distribution with parameters n and p={p(i)};c 5.

o Z{Y()|IN@)=n(i)}=-4"1r{EG), n(i)'E(i)}, when n(i)>0.

® £ {SSD(i)|N(i)=n(i)} = % r/{Z(0), n(i)—-1}, when n(i)>1.

Proposition 11.
The likelihood function for the saturated model attains its maximum if and only if ssd(i) is
positive definite for all ie 7 which for all fe M(%) is almost surely equal to the event

N {n()>]r]}.

ied
Then the maximum likelihood estimate is given as
BG)=n(i)/n, &G)=5(), L()=ssd(i)/n(i).

Note that the number of observations in any given cell is random and that the critical events
{r(i)<|T'|} thus have positive probability. The practical consequence of this is that saturated
models with many cells typically require large datasets. For any given set of data one can of
course check the condition n(i)>|T| just as easily as if it had been non-random.

It is of interest to consider the behaviour of other estimates of the concentration matrices
K(i) than the maximum likelihood estimator. Usual practice would conform with normalizing
ssd(i) by n(i)—1 but the desire for unbiased estimates of the interaction parameters suggests
that normalization with N(i)—|I'| -2 could be more appropriate. Note that the term unbiased
has to be interpreted with caution. The distribution of SSD(i) is mixed Wishart and contains a
component where SSD(i) is not invertible. Thus unbiasedness of K(i) has to be discussed
conditionally on n(i), and then only for n(i)>|T'|+3 because otherwise expectation in the
inverse Wishart distribution is not finite.
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6.2. General interaction models

In the case where the model is not saturated, the identification of Markov distributions with
those where interactions are missing, automatically leads to likelihood functions of exponen-
tial families (Barndorff-Nielsen, 1978), and the problem of maximizing the likelihood function
can be solved iteratively, using the algorithm described in Frydenberg & Edwards (1989) and
implemented in the program MIM (Edwards, 1987), that also has other facilities to be used in
the analysis of mixed interaction models. The algorithm used in MIM specializes in the pure
discrete case to iterative proportional scaling (Darroch & Ratcliff, 1972), and in the pure
continuous case to the analogous algorithm for covariance selection models described by
Speed & Kiiveri (1986). It should be noted that the algorithm is known to be convergent in the
two pure cases whereas no proof of convergence in the general case is available.

If the graph is decomposable, the estimates can be found explicitly, such as described in
Frydenberg & Lauritzen (1989). We shall illustrate the issues involved by three examples
depicted in Fig. 14. )

Models of this type are primarily appropriate as building blocks for models with response
structure in the variables, but can have some independent interest. The variables could for
example be students’ marks in four subjects, where the marks a, b are given as pass/fail and c,
d on a quantitative scale.

c d c d c d
| 0] i

Fig. 14. Three graphical interaction models. Model II is not decomposable and iteration is needed to
maximize the likelihood function.

Example 3. Consider the model given by graph I in Fig. 14. The only interactions which are
not allowed are such that involve variables b and c. This does not affect the first component g
of the canonical characteristics, but only 4 and K. Thus the log-density can be written as

10g f=g (ias) +A (i) yc+ B(iw)ya= (ki) i+ 2k(i.)y ot k(i) y3} /2. 3)

Here and in the following, i, is short for it by = (i, 6y).
The graph is decomposable and the estimates can therefore be obtained in closed form.
From Frydenberg and Lauritzen (1989) we have

k

Ecum n(ic)/n(is) 0]
k

s..vu.M_ [{ssdc (ic) s (ic)) =~ {ssds (is)'s5,(is))] ®)
pa
k

RO=2 [nlic){ssdcic) ") ~n(is) {ssds (is) )], ©

j=1
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where {A}Cis the matrix or vector obtained by filling up coordinates with zeros until the right
dimension is obtained. The sets C; are the cliques ordered to form a perfect sequence and S; are
the separators (see subsection 2.3). In our example we have the cliques {a, b, d}, {4, c,d} and
the separator {a,d}. Recalling that in the formulae C; is either short for ;T or for C;NA,
whichever appropriate, we get

Pliw)=n(in)/n
he(iy)=s5d(ig)s (i) +55d(i.)sa(i,)
he(is)=s5d®(i,)s(i,) + {ssd®(i,) — 1/ssd 1 (i,)}sa(ic) +54(ios)/55d (i)
ke(i)=n(issd=(i.)
ke(i)=n(i)ssd(i,)
Ke(ios)=n(i)ssd (i) + nins)/55da(iar) — n(ic)/ ssda(is)-

Here ssd* is the cc-element of ssd~* and so on. 0

Example 4. Consider then the model given by II of Fig. 14. It is not decomposable because
its graph is not triangulated. Therefore there is no explicit expression for the maximum
likelihood estimates of the parameters involved. Apart from the interactions that were
forbidden in model I, no interaction involving a and d is allowed whereby the log-density has
the expression

log f=g(iw) + A (ia)yc+h*(is)ya— {ee(i) y2+ 2key  y 4 K24(iy) y3) /2.
The model has to be fitted iteratively using MIM. [m]

Example 5. Finally, let us consider the thirdmodel in Fig. 14. Here no interactions among a
and c are allowed either, and the log-density has therefore an expression as

log f=g(is)+hy.+h(iy)ys— {k<yi+2k<y, y+ k% (iy)y3} /2.

This model is again decomposable. The cliques, ordered to form a perfect sequence are {a, b},
{b.d}, {c,d} with separators {b}, {d}. We get from the formulae (4, 5, 6) that

Plics)=nlio)/n
<= 55d s +5sds,
Re(i,)=ssds + (ssd“d—1/ssdy)s g +34(is) /s5da(is)
kee=n ssd«
ked=n ssde
k4(iy)=n ssd®+n(iy)/ssdy(is)—n/ssd,.

The likelihood ratio for comparing models I and II as well as that for comparing 1l and III
cannot be obtained in closed form, essentially because model 11 is not decomposable. But the
likelihood ratio for comparing model 111 to model I cannot only be obtained in closed form but
it can be partitioned into the product of those for comparing model I1I to II' and for comparing
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model II' to modet I. Here model IT’ is obtained from mode! I1I by adding an edge between a
and d. Each of these likelihood ratios can be calculated in appropriate marginal problems.
This has been shown in Frydenberg & Lauritzen (1989) and is illustrated in Fig. 15.

[~

Fig. 15. Hlustration of the decomposition of likelihood ratios. The likelihood ratio for the total reduction
factorizes into products of likelihood ratios of the stepwise reductions indicated. Each of these are equal to
the corresponding likelihood ratios for removing one edge in suitable marginal saturated models.

The result is analogous to corresponding results in the pure cases obtained by Sundberg
(1975) and Wermuth (1976b), and can be used to obtain Bartlett corrections of the test statistic
such as in Williams (1976) and Porteous (1985b) (see also Porteous, 1989). a

7. Homogeneous recursive models

In the present section we shall illustrate the elements involved in analysing the recursive
models corresponding to directed acyclic graphs. We shall for the sake of simplicity only deal
with the homogeneous models M,(%’) although there is not such a great difference between
the models in the two cases. In contrast to the previous section we do not discuss the saturated
models but shall base our discussion entirely on three examples, selected to have the same
corresponding undirected graphs as those in Fig. 14. The models to be discussed in the present
section are shown in Fig. 16 and could for example be appropriate in a situation where two
groups (1,) of recent mothers were to be compared with respect to two measurements (Y3, Y3)
of a pregnancy-related quantity such as, for example, the log-concentration of haemoglobin
taken at two consecutive time points during pregnancy, and where one is further interested in
the relation between these and the frequencies of newborn babies that are underweight (1,).
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1 4 1 4 1 4
2 3 2 3 2 3
A B8 C

Fig. 16. Three recursive models. All models involve a logistic regression of variabie 4 on variables 1 and 3
and iteration is therefore needed to maximize the joint likelihood function.

Example 6. Consider first model A of Fig. 16 which in the context given is to be interpreted
by the early measurement not having any significance for predicting underweight of the baby,
when the group and the later measurement is known. From Lauritzen & Wermuth (1989) we
get

® [, has an arbitrary distribution with positive probabilities
® the conditional distribution of Y, given I,=i, is 4" {a,(i;), ¢;}
® the conditional distribution of Y; given (1}, Y2)=(iy, y,) is .47 {a3(iy) +by,, ¢;)}
® the conditional distribution of ,, given the remaining variables has log-probabilities
log p(i.)iy, ysy=log p(idlis, y3)=u(is| i)+ v(is]iy)ys—log #(iy, y3),
where x is a normalizing constant.

This gives a joint density of the form

log f=g(i2)+h*(i1)y2+ (i) ys— {k¥(01)y3+2k2(i )y, y3+ K¥X(in)y3} /2
+ulisfin)+v(i]i)ys—log (i, y3)

=8I+ i)y, + R (i) ys— (k2(0) Y3+ 2k3(ir)y, ya+ K3(iy)y3} /2~ Log x(iy, ys)

which should be contrasted with expression (3). The basic difference is that the normalizing
constant x enters into the expression. The model is fitted by fitting each of the conditional
models separately. This can be done in closed form in the first three cases, where the
conditional models are quite standard models and we obtain:

Pi)=n(ir)/n
a(0)=3(ir)
&y=ssdn({1})/n
as(i)=ys(ir) —ssdy({1})7:0i)/ssdn({1})
b=ssdy({1)})/ssdn({1})
cy=s5d35({1})—ssdy({1})}/ssd({1}).
The parameters of the last conditional model have to be computed iteratively and GLIM can
for example be used for this purpose (as it can for the first three conditional models as well).

Note that MIM cannot be used for this last part (in contrast to the first part) reflecting that the
model is not equivalent to an undirected model (cf. proposition 8).
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Example 7. Next consider model B that corresponds to the group being uninformative for
the late quantitative measurement, when the early measurement is known. The additional
restriction only involves the conditional distribution of Y, given (Y3, 1) where the intercepts
(and therefore the regression lines) are now assumed identical. We get the same estimates as
before, apart from

&y(i\)=5s~ssdy, y,/s5dn,
b=ssdy,/ssdy,
&3=55dy;—5sd%/ssdp,

where now the total sums of squares of deviations have been substituted for the “within” sums
of squares of deviations. The likelihood ratio test for mode! B, assuming model A, is done by
the usual comparison of estimates for ¢; and leads to the well-known F-test. Note that this is in
spite of the fact that iteration was needed in both models A and B. This is very different from
example 4. w]

Example 8. Finally, consider model C of Fig. 16, having the feature that the group has no
predictive value at all for the measurements. The only change in relation to the previous
example concerns the conditional distribution of ¥, given I, which no longer depends on the
latter, i.e. we have a,(i,)=a,. Thus estimates are as before apart from

d=5,/n, &=s5dy.

Again the likelihood ratio only involves the conditional distributions of Y, given /;, and leads
to the usual comparison of the “within” and “total” sums of squares of deviations ssdp({1})
and ssdp, as known from one-way classification in the analysis of variance. ]

Concluding this section we emphasize that although the joint likelihood could only be
maximized iteratively and, in fact, no joint sufficient data reduction is available, the testing
problems can be solved for some specific hypotheses. Note also that the models determined by
the directed graphs in the examples above are very different from their undirected counter-
parts, not only in interpretation but also in the way they predict data behaviour.

8. Graphical chain models

General graphical chain models determined by M(%) or My(%) where  is a marked chain
graph lead to likelihoods that factorize into likelihoods of the variables in each chain compo-
nent given the parents determined by the conditional densities Soipate) € M(F 5 upai)P*@). In
general each of these likelihood functions are exponential family likelihoods and standard
theory (Barndorff-Nielsen, 1978) therefore applies but currently no suitable software is
available for maximizing the likelihood functions in general. In special cases we can, however,
exploit proposition 5 of Frydenberg & Lauritzen (1989) to deduce the following. Let f (wUp(@)]
denote the maximum likelihood estimate of the density in the model M(% wupata)) for the
marginal data x,,,. Then we have

Proposition 12
Let M(:$ ) be a graphical chain model such that all chain components w satisfy
wsT'Vpa(w)cA.

Then the maximum likelihood estimate of the joint density fexists if and only if f| fwUpa(ey] €Xist for
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all w in which case we have

7= Fovssion/F -

weQ

Proof. 1f the condition is satisfied, {#, w,pa(w)} is a decomposition of & wupa(w)- From
proposition 5 of Frydenberg and Lauritzen (1989) we then have that the maximum likelihood
estimate of f,,pa(4) in the conditional model M A.Wmcgvg can be obtained by conditioning
in the estimate of f,, () in the model M( & Supatwy) and that this is equal to the ratio between
f (wUpa(wyy and W {pata}» Which gives the result. [m}

In the pure case, all variables are of the same type and the condition is automatically satisfied
and proposition 12 applies. The denominators correspond to saturated models and can be
obtained explicitly, whereas iteration might be needed to obtain the denumerators if the
corresponding part of the model does not have a decomposable graph. Again, MIM can be
applied for this purpose. The general formula for the estimate of the inverse covariance matrix
in the pure continuous case becomes:

R=73, (Raw))*~n{(s5dpua) )", ™

weld

where Ko, is the inverse covariance in (o ujatay)-

In the examples of this section we limit ourselves to discuss graphical chain models where all
variables are continuous. This means that models are automatically homogeneous and that the
distributional assumptions have a particular simple expression being multivariate Gaussian
with an unknown mean. Thus these models are all models for the covariance structure of a
multivariate normal distribution. In this particular case, all models can alternatively be
defined through a particular type of linear structural equations, as shown by Wermuth (1988).
We define a recursive path analysis system as a system of linear structural equations

AY=U

where Y=Yy is the vector of variables, partitioned into groups V(1)U - - - U V(T) (correspond-
ing to the dependence chain associated with the model), A is—when partitioned accord-
ingly—an upper block-triangular matrix of coefficients with positive definite symmetric
matrices in the blocks along the diagonal, U is a vector of residuals with its covariance matrix ®
being block-diagonal and with the blocks in its diagonal equal to the corresponding blocks in A.
In this way, A and the covariance matrix of £ of Y are in one-to-one correspondence.

Wermuth (1988) shows that the elements of A then can be interpreted as appropriate
particular partia! concentrations, whereby the conditional independence restrictions of a
graphical chain model amount to specifying the elements in A to be zero for all corresponding
missing edges in the chain graph.

We shall as examples consider the models shown in Fig. 17, but it should be noted that the
interpretation of pictures similar to these given by linear structural equations such as in the
LISREL models without latent variables (Joreskog, 1973, 1977, 1981), is different from ours
in general, if no special structure in the equations is assumed. This is, for example, reflected
through the occurrence of identifiability problems in connection with LISREL models.

Example 9. The model in 1 of Fig. 17 is by proposition 9 equal to its undirected counterparts,
i.e. covariance selection model, and has the conditional independence restriction
Alb{{a, B}. Thus the covariance matrix can be estimated explicitly by using equation (6).
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a A a A a A.
b B b B b B
1 2 3

Fig. 17. Three chain models for continuous variables. The first model has an explicit solution whereas the
two latter models need iteration to maximize the joint likelihood function.

The representation of the model as a recursive path analysis system is given by

Ao Aas Ay O Y. U,
Asa Aps Ane Am| | Y Uy
0 0 . ]y U,
0 0 A Awl v, U

where 445=A54, As=4s, and (U,, Us) and (U,, U,) are independent with covariance matrices
given by the blocks along the diagonal of A.

®

O

Example 10. Model 2 of Fig. 17 has a representation in structural equations as

Aaa Ass Au O Y, U,
Aga Aps O Aps) |Ys Us
0 0 e Aa Y, U,
0 0 Ave  Aw Y, U,

i.e. equation (8) modified by also assuming 4,=0. The model is by proposition 9 equivalent to
the corresponding (non-decomposable) model where no arrows are present. Thus iteration is
needed to calculate maximum likelihood estimates, but the program MIM can be used.

This particular model has been used in an analysis by Wermuth (1989) to describe data
collected by C. D. Spiclberger on the personality characteristics of students. The variables A
and B were state anxiety and anger, whereas a and b were trait anxiety and anger, all variables
measured on a quantitative scale through psychological tests.

Example 11. Finally we consider the third model in Fig. 17. As structural equations it is
given as

Aan Aup Aue O Ya Ua
Aps Agp O Ass Yy | Us
0 0 A, 0 Y, v, |

0 0 0 Asy Y, U,

Thus here the coefficient A,,(=4,,) has also been set to zero, reflecting the marginal indepen-
dence of @ and b. This model is not equivalent to its undirected counterpart. Iteration,
combined with the formula (7), is needed to calculate the estimates. The joint concentration
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matrix is estimated by

0 0 0 0 00 O 0
N 0 0 0 0 00 0 0
R=K-n + S
0 0 .n.n&ﬂ..vv hh&“wz 00 \-\hh&nn 0
0 0 ssdis,y ssdis 00 O n/ssdy,

where K is the estimate of K in example 10. But note that the likelihood ratio for comparing
model 3 to model 2 reduces to that of marginal independence between 2 and b and leads to a

standard test.
O

9. Problems for future research

This paper will be concluded by pointing out some points that, in my opinion, are particularly
needing further development.

® Reliable and flexible software needs to be developed that handles models where response
structures can be specified in a flexible manner and such that the computer can assist the
user in interpretating the models.

® Algorithms for estimating in general chain models need to be developed to be used as
elements in such software. Here theoretical research is needed.

® Modern methods and techniques for model diagnostics in the spirit of Atkinson (1985),
Pregibon (1981), etc., shall be incorporated in such software with user-friendly inter-
active graphical interface.

® Practical experience with the application of models needs to be achieved. This has so far
only been possible to a limited extent because of lack of suitable software.

® Theoretical work concerning the approximate distribution of estimates and test statistics
have to be developed, based partially on asymptotic theory for maximum likelihood in
exponential families. Structures of decomposability and partitioning of tests have to be
maximally exploited to obtain as explicit results as possible.

Acknowledgements

The present paper was essentially completed while the author was visiting the Statistical
Laboratory, University of Cambridge. The author is indebted to the Laboratory for hospi-
tality and to the Danish Natural Science Research Council for financial support.

References

Andersen, A. H. (1974). Multidimensional contingency tables. Scand. J. Statist. 1, 115-127.

Anderson, T. W, (1984). An introduction to multivariate statistical analysis, 2nd edn. Wiley, New York.

Asmussen, S. & Edwards, D. (1983). Collapsibility and response variables in contingency tables.
Biometrika 70, 567-578.

Atkinson, A. C. (1985). Plots, transformations and regression. Clarendon Press, Oxford.

Barndorff-Nielsen, O. E. (1978). Information and exponential families in statistical theory. Wiley, New
York.

Beeri, C., Fagin, R., Maier, D., Mendelzon, A., Ullman, J. & Yannakakis. M. (1981). Properties of
acyclic database schemes. In Proc. 13th Annual ACM Symp. on the Theory of Computing, Milwaukee.
Assoc, Comput. Mach., New York.

Beeri, C., Fagin, R., Maier, D. & Yannakakis, M. (1983). On the desirability of acyclic database schemes.
J. Assoc. Comput. Mach. 30, 479-513.



)

298 S. L. Lauritzen

Scand J Statist 16

Berge, C. (1973). Graphs and hypergraphs (transl. from French by E. Minieka). North-Holland,
Amsterdam.

Birch, M. W. (1963). Maximum-likelihood in three way contingency tables. J. Roy. Statist. Soc. Ser. B 25,
220-233.

Bishop, Y. M. M., Fienberg, S. E. & Holland, P. W. (1975). Discrete multivariate analysis: theory and
practice. MIT Press, Cambridge, Mass.

Blalock, H. M.. Jr (ed.) (1971). Causal models in the social sciences. Aldine-Atheston, Chicago.

Darroch, J. N., Lauritzen, S. L. & Speed, T. P. (1980). Markov-ficlds and log-linear models for
contingency tables. Ann. Statist. 8, 522-539.

Darroch, J. N. & Ratcliff, D. (1972). Generalized iterative scaling for log-tinear modeis. Ann. Math.
Statist. 43, 1470-1480.

Darroch, J. N. & Speed, T. P. (1983). Additive and multiplicative models and interactions. Ann. Statist.
11, 724-738.

Dawid, A. P. (1979). Conditional independence in stati
Ser. B 41, 1-31.

Dawid, A. P. (1980). Conditional independence for statistical operations. Ann. Statist. 8, 598-617.

Dempster, A. P. (1972). Covariance selection. Biometrics 28, 157-175.

Diestel, R. (1987). Simplicial d positions of graphs—some uniq results. J. Combin. Theory B
42, 133-145.

Dirac, G. A. (1961). On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71-76.

Edwards, D. (1987). A guide to MIM. Res. Rep. 1. Statistical Research Unit, Copenhagen.

Edwards, D. (1989a). Graphical modelling in multivariate analysis. Proc. Ist Im. Conf. on Statistical
Computing, Izmir, Turkey (to appear).

Edwards, D. (1989b). Hierarchical interaction models (with discussion). J. Roy. Statist. Soc. Ser. B §1 (to
appear).

Edwards, D. & Havrének, T. (1985). A fast procedure for model search in multidimensional contingency
tables. Biometrika 72, 339-351.

Edwards, D. & Havrének, T. (1987). A fast model selection procedure for large families of models. J.
Amer. Statist. Assoc. 82, 205~-211.

Edwards, D. & Kreiner, S. (1983). The analysis of contingency tables by graphical models. Biometrika 70,
553-562.

Frydenberg, M. (1986). Blandede interakti deller, § le modeller, kollapsibilitet og estimation
[in Danish]. Thesis, University of Aarhus, Statistiske Interna No. 42.

Frydenberg, M. (1990). Marginalization and collapsibility in graphical interaction models. Am. Statist. 18,
(to appear).

Frydenberg, M. (1989). The chain graph Markov property. Res. Rep. No. 186, Dept. Theory Stat.,
University of Aarhus.

Frydenberg, M. & Edwards, D. (1989). A modified iterative proportional scaling algorithm for estimation
in regular exponential families. Comput. Statist. Data Anal. (to appear).

Frydenberg, M. & rm.E.:Na:. S. L. (1989). Decomposition of maximum likelihood in mixed interaction

dels. Bi ika 76 (to appear).

Gavril, T. (1972). Algorithms for minimum coloring, maximum clique, minimum coloring by cliques and
maximum independent set of a graph. SIAM J. Compur. 1, 180-187.

Geiger, D. & Pearl, J. (1988). On the logic of influence diagrams. Proc. 4th Workshop on Uncertainty in
Artificial Intelligence, Minneapolis, Minn., 136-147

Gibbs, W. (1902). Elementary principles of statistical mechanics. Yale University Press.

Goldberger, A. S. & Duncan, O. D. (eds) (1973). Structural equation models in the social sciences.
Seminar Press, New York.

Golumbic, M. C. (1980). Algorithmic graph theory and perfect graphs. Academic Press, London.

Goodman, L. A. (1970). The multivariate analysis of qualitative data: Interaction among multiple
classifications. J. Amer. Statist. Assoc. 65, 226-256.

Goodman, L. A. (1973). The lysis of multidi | contingency tables when some variables are
posterior to others,. A modified path analysis approach. Biometrika 60, 179-192,

Haberman, S. J. (1974). The analysis of frequency data. University of Chicago Press.

Holland, P. (1986). Statistics and causal inference. J. Amer. Statist. Assoc. 81, 945-960,

Joreskog, K. G. (1973). Analysis of covariance structures. Proc. 3rd. Symp. Mult. Anal., Dayton, Ohio,
1972 (ed. P. R. Krishnaiah), pp. 263-285. Academic Press, New York.

Joreskog, K. G. (1977). Structura! equation models in the social sciences: specification, estimation and

I theory (with discussion). J. Roy. Statist. Soc.

Scand J Statist 16

Mixed graphical association models

299

testing. In P. R. Krishnaiah (ed.), Applications of statistics, 267-287. North-Holland, Amsterdam.

Joreskog, K. G. (1981). Analysis of covariance structures. Scand. 1. Statist. 8, 65-92.

Kellerer, H. G. (1964a). MaBtheoretische Marginalprobleme. Math. Ann. 153, 168-198.

Kellerer, H. G. (1964b). Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Wahrsch.
Verw. Gebiete 3, 247-270.

Kiiveri, H. & Speed, T. P. (1982). Structural analysis of multivariate data: a review. In S. Leinhardt (ed.),
Sociological methodology. Jossey-Bass, San Francisco.

Kiiveri, H., Speed, T. P. & Carlin, J. B. (1984). Recursive causal models. J. Austral. Math. Soc. A 36, 30—
52.

Lauritzen, S. L. (1982). Lectures on contingency tables, 2nd edn. Aalborg University Press.

Lauritzen, S. L. (1985). Test of hypotheses in decomposable mixed interaction models. Res. Rep. R-85-
11, Inst. Elec. Sys., University of Aalborg.

Lauritzen, S. L., Dawid, A. P, Larsen, B. N. & Leimer, H.-G. (1989). Independence properties of
directed Markov fields. Networks (to appear).

Lauritzen, S. L., Speed, T. P. & Vijayan, K. (1984). Decomposable graphs and hypergraphs. J. Austral.
Math. Soc. A 36, 12-29.

Lauritzen, S. L. & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical
structures and their application to expert systems (with discussion). J. Roy. Statist. Soc. Ser. B 50,157~
224,

Lauritzen, S. L. & Wermuth, N. (1984). Mixed interaction models. Res. Rep. R-84-8. Inst. Elec. Sys.,
University of Aalborg.

Lauritzen, S. L. & Wermuth, N. (1989). Graphical models for associations between variables, some of
which are qualitative and some quantitative. Ann. Statist. 17, 31-57.

Leimer, H.-G. (1985). Strongly decomposable graphs and hypergraphs. Thesis. Ber. z. Stochastik u.
verw. Geb. 85-1, University of Mainz.

Leimer, H.-G. (19892). Triangulated graphs with marked vertices. In Graph theory in memory of G. A.
Dirac (eds L. D. Andersen ef al.). Ann. Discrete Math. 41, 311-324,

Leimer, H.-G. (1989b). Optimal decomposition by complete separators. Discrete Math. (to appear).

Olkin, I. & Tate, R. F. (1961). Multivariate correlation models with mixed discrete and continuous
variables. Ann. Math. Stat. 32, 448-465.

Parter, S. (1961). The user of linear graphs in Gauss elimination. SIAM Rev. 3, 119-130.

Pearl, J. (1986). A constraint propagation approach to probabilistic reasoning. In L. M. Kanal & J.
Lemmer (eds), Uncertainty in artificial intelligence, 357-370. North-Holland, Amsterdam.

Pearl, J. (1988). Probabilistic inference in intelligent systems. Morgan Kaufmann, San Mateo.

Pearl, J. & Paz, A. (1986). Graphoids: A graph-based logic for reasoning about relevancy relations. Proc.
European Conf. on Artificial Intelligence, Brighton, United Kingdom.

Pearl, J. & Verma, T. (1987). The logic of representing dependencies by directed graphs. Proc. Amer.
Assoc. Art. Intell. Conf., Seattle, Washington, 1987,

Porteous, B, T. (1985a). Properties of log-linear and covariance selection models. Ph.D. thesis, Univer-
sity of Cambridge.

Porteous, B. T. (1985b). Improved likelihood ratio statistics for covariance selection models. Biometrika
72, 473-475.

Porteous, B. T. (1989). Stochastic inequalities relating a class of log-likelihood ratio statistics to their
asymptotic y*-distribution. Ann. Statist. 17 (10 appear).

Pregibon, D. (1981). Logistic regression diagnostics. Ann. Statist. 9, 705-724.

Rose, D. J. (1970). Triangulated graphs and the elimination process. J. Math. Anal. Appl. 32, 597-609.

Smith, J. Q. (1989). Influence diagrams for statistical modelling. Ann. Statist. 17, 654-672.

Speed, T. P. (1979). A note on nearest-neighbour Gibbs and Markov probabilities. Sankhya A 41, 184—
197.

Speed, T. P. & Kiiveri, H. (1986). Gaussian Markov distributions over finite graphs. Ann. Statist. 14, 138~
150.

Sundberg, R. (1975). Some results about decomposable (or Markov-type) models for multidimensionat
contingency tables: distribution of marginals and partitioning of tests. Scand. J. Statist. 2, 71-79.
Verma, T. (1988). Causal networks: semantics and expressiveness. Proc. 4th Workshop on Uncertainty in

Artificial Intelligence, Minneapolis, Minn., 352-359.

Vorob’ev, N. N. (1962). Consistent families of measures and their extensions. Theory Probab. Appl. 1,
147-163.

Vorob’ev, N. N. (1963). Markov measures and Markov extensions. Theory Probab. Appl. 8, 420-429.




300 S. L. Lauritzen Scand J Statist 16

Vorob’ev, N. N. (1967). Coalition games. Theory Probab. Appl. 12, 250-266.

Wagner, K. (1937). Uber cine Eigenschaft der ebenen Komplexe. Mazh. Ann. 114, 570-590.

Wermuth, N. (1976a). Analogics between muitiplicative models in contingency tables and covariance
selection. Biometrics 32, 95-108.

Wermuth, N. (1976b). Model scarch among multiplicative models. Biometrics 32, 253-263.

Wermuth, N. (1980). Linear recursive equations, covariance selection and path analysis. J. Amer. Stafist.
Assoc. 78, 963-972.

Wermuth, N. (1988). Block-r ive linear regr
sity of Mainz.

Wermuth, N. (1989). Introduction to the use of graphical chain models. Ber. z. Stoch. u. verw. Geb.,
University of Mainz. . .

Wermuth, N. & Lauritzen, S. L. (1983). Graphical and recursive models for contingency tables. Bio-
metrika 70, 537-552.

Wermuth, N. & Lauritzen, S. L. (1989). On sub i h hypoth conditional independence
graphs and graphical chain models (with discussion). J. Roy. Statist. Soc. Ser. B 51 (to appear).

Whittaker, J. (1982). GLIM syntax and simultaneous tests for graphical log-linear models. In R. Gilchrist
(ed.), GLIM 82. Lecture Notes in Statistics 14, 98—108. Springer Verlag, Berlin.

Whittaker, J. (1984). Fitting all possible decomposable and graphical models to multiway contingency
tables. In T. Havranek (ed.), COMPSTAT 84, 98-108. Physica Verlag, Vienna.

Williams, D. A. (1976). Improved likelihood ratio tests for complete contingency tables. Biometrika 63, .
33-37.

Wold, H. D. A. (1954). Causality and econometrics. Econometrica 22, 162-177.

Wold. H. D. A. (1960). A generalization of causal chain models. Econometrica 28, 443-463.

Wright, S. (1921). Correlation and causation. /. Agric. Res. 20, 557-585.

Wright, S. (1923). The theory of path coefficients: a reply to Niles’ criticism. Genetics 8, 239-255.

Wright, S. (1934). The method of path coefficients. Ann. Math. Statist. §, 161-215. '

equations. Ber. z. Stoch. u. verw. Geb., Univer-

Received June 1988, in final form May 1989

Steffen L. Lauritzen. Institute for Electronic Systems, University of Aalborg, Strandvejen 19, DK-9000
Aalborg, Denmark

DISCUSSION OF S. L. LAURITZEN'S PAPER

ANDERS HOLST ANDERSEN
University of Aarhus

I wili start these comments by expressing my thanks to Steffen Lauritzen for giving this review
of the theory of mixed graphical association models. These are important models for describ-
ing the association between a set of discrete and continuous variables because of their nice
mathematical and statistical properties, but I think other models should be included in the
analysis of association between variables.

In the analysis of a contingency table, not only graphical models but also hierarchical models
should be considered. First, among the hierarchical models fitting a set of data there is in
general a parsimonious one compared with the graphical models fitting the data. Secondly, the
hierarchical models are used to increase the power of the test of no association, especially in
case of only low order interactions present. As an example, consider a three-dimensional
contingency table with variables A, B and C. The test of no association between A and B given
C is performed in two steps. First, one tests the hypothesis of no ABC interaction and
secondly, under the model of no A BC interaction, one tests that no 4 B interaction is present.
The model with no ABC interaction is not graphical but hierarchical.

Scand J Statist 16 Mixed graphical association models

301

For the mixed case Edwards (1989b) defined the hierarchical mixed interaction models,
which are natural extensions of the hierarchical models in the pure discrete case. In compari-
son with the mixed association models the class of possible restrictions on the discrete, the
mixed linear and the mixed quadratic interactions is enlarged. For instance, in these models it
is possible to specify how the covariances of the continuous variables depend on the discrete
variables. An example of a mixed hierarchical interaction model, which is not graphical, is a
two-way analysis of variance model with a random number of observations in each cell,
specifying the full model for the two discrete variables and an additive model for the mean
value of the continuous variable given the discrete variables. The advantages of having the
hierarchical models in the discrete case are also present in the mixed case. The program MIM
(Edwards, 1987) can be used to estimate the parameters in the mixed hierarchical interaction
models.

DAVID EDWARDS
Novo Industry A/S, Copenhag

I would like to compliment Professor Lauritzen on a concise and thorough survey of most of
what is presently known about graphical models for mixed discrete and continuous variables.
It provides a very valuable summary of the current state of the subject.

The graphical interaction models described in section 4.2 can (Edwards, 1989) easily be
imbedded in a more general class, analogous to and including hierarchical log-linear models
for discrete variables. A simple example of a hierarchical, non-graphical model is that of “no
interaction” in a two-way layout. I would suggest that if emphasis were given to usefulness,
rather than mathematical nicety, then the hierarchical models would receive more attention
than they are given in the present account.

In a way the term graphical model is misleading: the conditional independence structure
that holds under a hierarchical model can be represented by a conditional independence
graph, just as with graphical models: the hierarchical models are in this sense just as graphical
as the graphical ones. One loses the unique correspondence between the model and the graph,
but not the ability of the graph to summarize fundamental properties of the model. It would be
unfortunate if the expression graphical modelling comes to be understood as applying graphi-
cal models rather than modelling using conditional independence graphs as a central tool.

One loose end as I see it concerns incomplete tables (incomplete factorial designs). The
theoretical development seems to require complete tables with positive cell probabilities but
surely some things carry through when this condition is relaxed. Perhaps Professor Lauritzen
could comment on this.

KARL G. JORESKOG
University of Uppsala

I congratulate Dr Lauritzen on his very impressive, lucid, and comprehensive paper. As a
theory for analysis of multivariate data, his approach in several ways resembles the LISREL
methodology which is widely used in the social and behavioural sciences (see Joreskog &



302 S. L. Lauritzen

Scand J Statist 16

Sérbom, 1988, and bibliogeaphy therein). It would therefore seem appropriate to focus my
discussion on the similarities and differences between these two approaches. There are
differences in scope and limitations, in the way graphs are used and interpreted, and in
distributional assumptions for estimation and testing.

Scope and limitations

LISREL is primarily designed for models with latent (unobserved or unobservable) variables
but can also handle the case when all variables are directly observed. Lauritzen does not deal
with latent variables.

LISREL makes a distinction between jointly independent (exogenous) and jointly depen-
dent (endogenouis) variables. Lauritzen appears to treat all variables symmetrically.

In LISREL one can have models with feedback loops or independent systems, often used in
econometrics. Such models are impossible in the Lauritzen approach because they cannot be
specified in terms of conditional independence statements.

LISREL was originally designed for continuous variables having approximately normal
distributions but has recently been extended so that also ordinal variables and mixtures of
ordinal and continuous variables can be used (see Joreskog & Sérbom, 1986). LISREL deals
with ordinal variables by quantifying them in some way. For example, it may be assumed that
there is a standard normal variable underlying each ordinal variable. One can then estimate a
polychoric correlation for two ordinal variables and a polyserial correlation for an ordinal and
a continuous variable.. The main focus of Lauritzen’s paper is on the analysis of models
involving both discrete (nominal) and continuous variables. For such models, his approach is
very general in that higher-order interactions may be tested. LISREL can only handle first-
and second-order interactions. LISREL handies nominal variables by assuming independent
groups of observations for each category combination which is not feasible if there are many
categories. On the other hand, Lauritzen does not mention ordinal variables. Can his
approach be extended to handle ordinal variables?

1

Graphs

In Lauritzen’s paper, graphs and graph theory play a central role in presenting models. These
graphs are supposed to represent statements about conditional independence. At least in the
case when all variables are continuous, I fail to see why this is a useful approach in practice. By
contrast, in the LISREL methodology, graphs—so-called path diagrams—are used to repre-
sent actual postulated relationships. It seems to me that most researchers are interested in the
estimated relationship itself and the strength of the relationship, rather than whether or not
certain variables are conditionally independent given certain other variables.

Rules for path diagrams have been given by Jéreskog & Sérbom (1988). A typical LISREL
path diagram is shown in Fig. 1. This represents three linear relationships, one for each
y-variable:

Yi=yuXityek v+
Y=y +Buyi+&,
y=yuxtBuy+Bny+.

Here the lack of arrows from x, and x, to y, indicates that these variables are not included in the
relationship for y,. Note also that the random disturbance terms &1, &2, and & are included in
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the path diagram and the lack of connections between them indicates that they are mutually
uncorrelated (independent if normality is assumed).

Using Lauritzen’s terminology, the model expresses the two conditional independence
statements

(1) y. is conditionally independent of x, and x, for given x; and y,.
(2) ys is-conditionally independent of x, and x, for given x,, y; and y,.

A Lauritzen graph for this model will look quite similar to Fig. 1 but the disturbance terms will
not be included and the two-way arrows will be just lines.

There are models in which the two kinds of graphs are quite different. For example, Fig. 2,
which expresses that 2 and 3 are conditionally independent for given 1 and 4, would probably
be drawn as a path diagram as in Fig. 3. It is seen that the two graphs in Figs 2 and 3 are quite
different although they represent the same conditional independence statement.

There are also graphs which do not correspond to any LISREL model. Graph 2 in Fig. 17 is
such a graph. The two conditional independence statements implied by this graph correspond
to two conflicting LISREL models.
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Distributional assumptions

Lauritzen makes the assumption that the distribution of all continuous variables is multi-
variate normal for each category combination of the nominal variables. However, for the
model of Fig. 1, LISREL does not make any distributional assumptions about the x-variables.
Itis sufficient to assume normality of y for given x. In LISREL 7, it is also possible to deal with
various non-normal y-variables using asymptotically distribution-free methods developed by
Browne (1984). How does Lauritzen propose to deal with variables such as age, income, and
education, commonly used in the social sciences? These variables are neither nominal nor
normally distributed.
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SOREN JOHANSEN

University of Copenhagen

In econometrics one considers dynamic models, where arrows could be used to suggest a
dependence stretching one or more time periods ahead. Can the formulation presented in
your paper be extended to dynamic modelling?

It would be important to formulate concepts like weak and strong exogeneity, endogenous
and exogenous variables, aggregation, recursive systems, identification of structural equa-
tions. etc.. in terms of graphs and arrows (see for instance Hendry & Richard, 1983).

This would be interesting not only because it would extend the usefulness of the graph
formulation but also point at some new models that could be of interest to econometricians, in
particular the models that allow interaction between discrete as well as Gaussian variables.
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REPLY TO THE DISCUSSION

Let me first thank the discussants for their comments which both gives the reader a chance to
see some parts of the paper in a different light and also gives me the opportunity to expound a
few important points.

All discussants point directly or indirectly to the fact that the model class, such as I have here
described it. is limited and not flexible enough. I guess I have to agree on that although it
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certainly would have made exposition more difficult to cover more ground than what I already
did.

As emphasized by A. H. Andersen and D. Edwards, it is desirable to include in the model
class the hierarchical interaction models such as those introduced by Edwards (1989b). This
gives both greater flexibility and parsimony and higher power for testing model fit. Further, it
includes into the class of models some classical models that are well understood and that would
otherwise be excluded. It should, however, not be forgotten that hierarchical models in
general are more sophisticated and more difficult to interpret. In particular, the independence
graph (representing the smallest graphical model containing the given hierarchical model) is a
powerful tool in revealing part of that interpretation. I still think that in a preliminary,
exploratory phase of data analysis it would be appropriate to concentrate on graphical modeis
and then when analysing more closely, hierarchical models will play their natura! part. In
particular the class of hierarchical chain models needs to be properly described and its
statistical theory investigated.

Continuing the theme above it is clear that, as K. Jéreskog points out, it would be natural to
extend the models to deal also with ordinal variables which are so typical in many statistical
problems in the social sciences. This extension has recently been made for the LISREL
models. Here [ can only say that the graphical models described in the present paper are in
their infancy and far from being fully developed. A similar comment applies to wishes to deal
with other continuous distributions than the Gaussian and latent variables. However, the
latent variable problem is different since this is not a question of *missing models” but rathera
question of treating the statistical problems with missing data. I am sure that this will be
treated in the near future. I must say that I believe the graphical models to have a strong
potential, partly because of the clarity in their interpretation and partly because they rest on a
mathematical firm foundation.

It is an interesting challenge to apply the ideas of graphical modelling to the theory and
analysis of dynamic economic time series such as suggested by S. Johansen. Such a develop-
ment would certainly be worthy of its own full research paper, but let me try to indicate some
answers through a simple example.

® o0 ® o o Z

* o 0 e o oY

Fig. D1. Graph of a dynamic model of order one with one series of exogenous variables z, and one
endogenous y,.

Fig. D1 is supposed to represent a simple dynamic model of order one, where one would
normally think of the upper z-variables as exogenous and the y-variables as endogenous and
time moves from left to right. Typically a system like that would (omitting constant effects) be
represented by a system of structural equations as

y=ay,+fz+yz,_+el
N."ﬁv:r_.f{\NT_.?mﬁ

Here it is important to emphasize that the equations are not uniquely determined from the
distributional properties of the time series, and therefore not from the graph either. The
property of weak exogeneity is a property of the relation between the model and the equation
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and not of the model itself. It is, in this particular instance, equivalent to the independence of
the errors and can be formulated as something like “the parameters can meaningfully be
attached to the arrows in the picture”; see Wermuth (1988) for a discussion of the relation
between recursive systems, graphical models and structural equations.

Strong exogeneity is a combination of weak exogeneity and Granger non-causality. The
latter has a simple interpretation as all edges from bottom to top missing, such as in Fig. D2.

When this applies (and only then) one can substitute the arrows within ~-<~5m,.c_om and
within y-variables with lines without changing the conditional independence restrictions such
as to obtain Fig. D3. This means that the distinction between exogenous and endogenous
variables becomes the same as the distinction between chain components in the chain models.

[ 2N BN ) o e 02t

» 00 ® e oYy

Fig. D2. Graph of a dynamic model of order one showing Granger non-causality.

The interpretation of the pictures have to be supplemented with the assumption of station-
ary dynamics, i.¢. that the parameters in the conditional distribution of any variable given its
“past” are unchanged in time. It is no problem to make more complex dependence structures
and to include the possibility of both exogenous and endogenous discrete variables.

) -O ', o 0 02
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Fig. D3. Graph of a model equivalent to a dynamic model with Granger non-causality. Strong exogeneity
shows up as the entire series z, can be considered exogenous to y,.

Finally, let me turn to a few specific points raised by K. Joreskog. It is not true that I do not
distinguish between exogenous and endogenous variables. The chain components correspond
to several different levels of exogeneity and endogeneity rather than just two. Also I do not
necessarily have to assume a particular distribution for the exogenous variables. One can
analyse data conditionally on the exogenous variables, and this will indeed often be done. But
the chain models permit the exogenous variables to be analysed separately, and this is
sometimes of interest. On the relationship between the LISREL graphs and the graphs in the
present paper: yes, they can be different but also quite different graphs can describe the same
kind of data behaviour. Here it is important to distinguish between the graph describing
something in the subject-matter context and describing a particular statistical model (see
Wermuth & Lauritzen, 1989).

It is true that researchers are interested in relationships between variables, but whether or
not these relationships are well represented by structural equations is another matter. Tradi-
tion and training certainly plays a strong role here and graphical modelling could provide an
alternative.

Permit me in conclusion to express the hope that future research and experience with the
theory and application of the models described in this and related papers will enhance a better
understanding of the problems associated with structural multivariate analysis.

FEasy



