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We introduce the notion of LImited Memory Influence Diagram (LIMID) to describe
multistage decision problems in which the traditional assumption of no forgetting is

relaxed. This can be relevant in situations with multiple decision makers or when decisions
must be prescribed under memory constraints, such as in partially observed Markov deci-
sion processes (POMDPs). We give an algorithm for improving any given strategy by local
computation of single policy updates and investigate conditions for the resulting strategy to
be optimal.
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Process; Single Policy Updating )

1. Introduction
Influence diagrams (Howard and Matheson 1984) are
compact representations of decision problems under
uncertainty, and local computation algorithms for
solving these have been developed, for example, by
Olmsted (1983), Shachter (1986), Shenoy (1992) and
Jensen et al. (1994).
In the present article we relax the standard assump-

tion in an influence diagram of “no forgetting,” i.e.,
that values of observed variables and decisions that
have been taken are remembered at all later times.
We denote these more general diagrams by LIMIDs
(LImited Memory Influence Diagrams). Such dia-
grams have also been studied by Zhang et al. (1994)
with a similar motivation as ours under the name of
decision networks. We have chosen to use a less general
term.
Partially observed Markov decision processes, also

known as POMDPs, can be seen as special types
of influence diagrams that develop over time. As
opposed to fully observed Markov decision processes
(Howard 1960), the complexity of POMDP algorithms
grows quickly with time and the algorithms there-
fore fail to provide the optimal solutions desired;
see Lovejoy (1991) and White (1991) for surveys.

Formulating finite POMDPs as LIMIDs allows han-
dling explicit memory constraints, as described in the
example below.
Example 1 (Pigs). Although this example is ficti-

tious, more realistic variants have served as motiva-
tion for the theoretical developments in this paper.

A pig breeder is growing pigs for a period of four
months and subsequently selling them. During this
period the pig may or may not develop a certain dis-
ease. If the pig has the disease at the time it must
be sold, the pig must be sold for slaughtering, and
its expected market price is then 300 DKK (Danish
kroner). If it is disease free, its expected market price
as a breeding animal is 1000 DKK.

Once a month, a veterinary doctor sees the pig
and makes a test for presence of the disease. If the
pig is ill, the test will indicate this with probability
0.80, and if the pig is healthy, the test will indicate
this with probability 0.90. At each monthly visit, the
doctor may or may not treat the pig for the disease
by injecting a certain drug. The cost of an injection is
100 DKK.

A pig has the disease in the first month with
probability 0.10. A healthy pig develops the disease in
the subsequent month with probability 0.20 without
injection, whereas a healthy and treated pig devel-
ops the disease with probability 0.10, so the injection
has some preventive effect. An untreated pig that is
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unhealthy will remain so in the subsequent month
with probability 0.90, whereas the similar probability
is 0.50 for an unhealthy pig that is treated. Thus spon-
taneous cure is possible, but treatment is beneficial on
average.

The story now continues in two versions. (1) In
the traditional influence diagram (ID) version, the
pig breeder will at all times know whether the pig
has been treated earlier and also the previous test
results. This story corresponds to a (finite) POMDP.
If we extend the story to continue for many months
or to have weekly or daily examinations with poten-
tial injections associated, the complexity of finding an
optimal treatment strategy becomes forbidding. (2) In
the LIMID version of the story, the pig breeder does
not keep individual records for his pigs and has to
make his decision knowing only the test result for the
given month and the age of the pig. The memory has
been limited to the extreme of remembering only the
present.
Situations in which multiple decision makers coop-

erate lend themselves naturally to situations with
limited memory. One decision maker can communi-
cate only partially what has previously happened,
and therefore the decision makers may not have the
full history available when a given decision must be
taken. Also, multiple decision makers can sometimes
make their decisions in parallel, without fully sharing
information.
The LIMID representation of decision problems is

described in §2. The complexity of finding fully opti-
mal strategies within LIMIDs is in general prohibitive.
In §3 we describe the procedure of Single Policy Updat-
ing, which leads to strategies that are locally opti-
mal, in the sense that no single policy modification
can increase the expected utility of the strategy. We
also show how to calculate this strategy by message
passing in a suitable junction tree. In §4 we estab-
lish general conditions for local optimal strategies to
be globally optimal and provide algorithms for iden-
tifying such cases and reducing computational com-
plexity. These results extend and generalize those of
Zhang et al. (1994).

2. Describing LIMIDs
2.1. Diagrams
LIMIDs are represented by directed acyclic graphs
(DAGs) with three types of nodes. Chance nodes, dis-
played as circles, represent random variables. Decision
nodes, displayed as squares, correspond to alternative
choices available to the decision maker. Finally, value
nodes, displayed as diamonds, represent additive com-
ponents of the joint utility function. We assume that
the joint utility of a configuration of the chance and
decision variables can be represented as the sum of
the local utility functions associated with the value
nodes.
A node n2 is a child of node n1 if there is an arc

from n1 to n2. In this case n1 is a parent of n2. The set
of parents of n is denoted by pa�n�. The family of n is
fa�n�= pa�n�∪ �n� and for a subset A of nodes, we let
fa�A� = ∪�∈Afa���. If there is a directed path from n1

to n2, n2 is a descendant of n1 and n1 is an ancestor of
n2. The set of descendants and the set of ancestors of
n is denoted de�n� and an�n�, respectively.
The arcs in a LIMID have a different meaning

depending on the type of node they go into. If chance
node r1 (connoting random variable) is a parent of
chance node r2, it indicates that the distribution of (the
random variable) r2 is specified conditionally on the
value of r1. A decision node d is a parent of chance
node r if the distribution of r can depend on decision
d. A decision node d1 is a parent of decision node d2
if the choice of alternative for decision d1 is known
to the decision maker when decision d2 is taken and
may influence that decision. When chance node r is
a parent of a decision node d it indicates that the
value of r will be known when decision d is taken and
might influence that decision. Finally arcs into value
nodes represent the decision maker’s (expected) util-
ity given the states of its parents. Value nodes cannot
have children.
Example 2 (Diagrams for Pigs). To represent the

ID version of Pigs by a LIMID, we let hi� �i= 1� � � � �4�
denote the (chance) variables which indicate whether
the pig is healthy or unhealthy in the ith month and
ti� �i= 1�2�3� represent the corresponding test results,
which are said to be positive if they indicate presence
of the disease and otherwise are negative. The nodes
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Figure 1 LIMID Representation of the ID Version of Pigs

Note. The full previous treatment and test history is available when decisions
must be taken.

di� �i = 1�2�3� correspond to the decisions treat or
leave, the latter implying that no injection is made. The
utility nodes u1�u2�u3 represent the potential injec-
tion costs, whereas u4 is the (expected) market price
of the pig as determined by its health at the fourth
month. The diagram is displayed in Figure 1. The
assumption of “no forgetting” is made explicit by arcs
from predecessors of decision nodes. This is in con-
trast to the convention used by, e.g., Jensen et al.
(1994).
In the LIMID version of the story, the pig breeder

does not keep individual records for his pigs and has
to make his decision knowing the test result for only
the given month. The corresponding diagram is dis-
played in Figure 2.

Figure 2 LIMID Version of Pigs

Note. Only the current test result is available when decisions are taken.

A LIMID can be viewed as a special type of
Bayesian network, where the state of each decision
variable is to be imposed from the decision maker to
meet an optimization objective and the variables at
the value nodes are completely determined from its
parent configurations. A LIMID differs from a tradi-
tional ID representation of a decision problem in two
ways:
(1) The sequence in which decisions are to be taken

is not specified other than through it being compatible
with the partial order induced by the DAG, i.e., if d2
is a descendant of d1, the decision d1 must be taken
before d2.
(2) The parents of a decision node d represent

exactly the variables whose values are known and
taken into consideration when d is to be taken. In
traditional IDs, this relation is more complicated and
varies somewhat between authors.
Thus, LIMIDs allow for multiple or forgetful deci-

sion makers.

2.2. Specifications
For a given LIMID, we denote the sets of decision
and chance nodes by � and 	 , respectively, and let
V = �∪	 . The set of value nodes is denoted by 
 .
Each node n∈V is associated with a variable which

takes values in a finite set �n of states. Usually we
use the label n interchangeably with the variable asso-
ciated with n. For W ⊆ V we write �W = ×n∈W�n.
Typical elements in �W are called configurations and
denoted by xW = �xn�n∈W and so on.
For every chance node r there is a nonnegative real

function pr on �r ×�pa�r� such that for each configu-
ration of pa�r�, pr adds to 1 when summing over the
configurations in �r . The terms pr are not necessarily
conditional distributions but rather a family of distri-
butions parametrized by the states of pa�r�, because
the distribution of pa�r� is generally unspecified. If
node r has no parents, then pr represents the marginal
distribution of r .
Each value node u ∈ 
 has an associated real func-

tion Uu on �pa�u� that represents an additive compo-
nent of the joint utility function.

2.3. Policies and Strategies
A pure policy for d ∈ � prescribes an alternative in �d

for each possible configuration of its parents pa�d�.
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To allow for possible randomization we consider
more general policies represented by functions �d on
�d ×�pa�d�, which represent a probability distribution
over alternative choices of d for each possible config-
uration of pa�d�.
A strategy for a LIMID is a set q = ��d� d ∈ �� of

policies. A pure strategy is a set q = ��d� d ∈ �� of pure
policies. If a strategy is not pure it is called random.
A strategy q = ��d� d ∈ �� induces a joint distribu-

tion of all the variables in V as

fq =
∏
r∈	

pr
∏
d∈�

�d� (1)

For all such q�pr represents the appropriate condi-
tional distribution calculated with respect to fq . If U
is the joint utility, i.e., U =∑

u∈
 Uu, then the expected
utility of q is given by

EU�q� = Eq�U �=∑
x

fq�x�U�x�

= ∑
x

fq�x�

{∑
u∈


Uu�xpa�u��

}
�

and we are searching for a strategy q that maximizes
the expected joint utility.
Definition 1. A global maximum strategy q̂ is a

strategy that satisfies

EU�q̂�≥ EU�q� for all strategies q�

Given any strategy q = ��d� d ∈ �� and any d0 ∈ �,
we let q−d0

= ��d� d ∈ �\�d0�� be the partially specified
strategy obtained by retracting the policy at d0 and
for any policy �′

d0
we let

�′
d0
∗ q = ��′

d0
�∪ q−d0

�

So �′
d0
∗ q denotes the strategy obtained from q by

replacing �d0
with �′

d0
and leaving all other policies as

in q.
Definition 2. A local maximum policy for a strategy

q at d, is a policy �̃d that satisfies

EU��̃d ∗ q�= sup
�′d

EU��′
d ∗ q��

Definition 3. A strategy q̃ is said to be a local maxi-
mum strategy if all its policies are local maximum poli-
cies, i.e., if for all d ∈ � and all policies �d we have
EU�q̃�≥ EU��d ∗ q̃�.

In other words, a strategy is a local maximum
strategy if and only if the expected utility does not
increase by changing only one of its policies.
For later use, we establish the following lemma,

where fq−d
is defined through Equation (1) and the

partial strategy q−d. Note that fq−d
is not a joint prob-

ability distribution.

Lemma 1. A policy �̃d is a local maximum policy for
a strategy q at d if and only if for all xfa�d� with �̃d�xd �
xpa�d�� > 0 we have

xd = argmax
zd

∑
xV \fa�d�

fq−d
�xV \d� zd�U�xV \d� zd�� (2)

Proof. Let Û �xpa�d�� = maxzd
∑

xV \fa�d� fq−d
�xV \d� zd�×

U�xV \d� zd�. For all policies �d we have

EU��d ∗ q� =
∑
x

�d�x�fq−d
�x�U�x�

= ∑
xfa�d�

�d�xd � xpa�d��
∑

xV \fa�d�

fq−d
�x�U�x�

≤ ∑
xfa�d�

�d�xd � xpa�d��Û �xpa�d���

Because the inequality is sharp if and only if �d�xd �
xpa�d�� > 0 for some xfa�d� that does not satisfy (2), we
obtain the desired result. �

3. Single Policy Updating by
Message Passing

3.1. Single Policy Updating
This subsection describes an iterative procedure for
improving strategies within LIMIDs termed Single
Policy Updating (SPU). From an initial strategy q0 it
updates each policy in some order.
Assume that the current strategy is ql and that the

policy for d0 is to be updated. Then the next strategy
ql+1 only differs from ql on the policy for d0 and it is
generated by finding a local maximum policy �l+1

d0
for

ql at d0 and letting ql+1 = �l+1
d0

∗ ql.
When all the policies have been updated once, we

say that one cycle has been performed. The algorithm
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stops if the expected utility of strategies generated in
two successive cycles is unaltered. A few comments
are in place here.
• The initial strategy q0 may be random, and it is

typically advantageous to choose it as such.
• Section 3.6 develops an efficient algorithm that

finds a local maximum policy in each step.
• There is always a pure local maximum policy

�l+1
d0

; however, it may not be unique.
If we always choose a pure local maximum policy
in each step, the algorithm eventually reaches a local
maximum strategy at which no progress is made. This
holds because there is only a finite number of pure
strategies and the expected utility increases at each
cycle. These observations are stated formally below.
Iterative Improvement. SPU is an iterative

improvement algorithm: after each cycle, the expected
utility of the current strategy has increased or is unal-
tered. In the latter case, the algorithm has reached a
local maximum strategy.
Convergence. SPU converges to a local maximum

strategy if we always choose a pure policy in each
updating step. In this case the algorithm converges in
a finite number of cycles.
We shall later discuss how to choose initial strate-

gies, updating sequences, and give conditions ensur-
ing local maximum strategies to be global maximum
strategies.
SPU has a strong resemblance with the method of

“policy iteration” used in Markov decision processes
(MDP) (Howard 1960). Indeed, consider a stationary
MDP with infinite horizon and an initial stationary
strategy that uses policy � at all decisions d1�d2� � � � .
We apply SPU and first update the policy at d1 to a
local maximum policy �∗, say. We next repeat this at
d2, but because the MDP has infinite horizon, the deci-
sion problem associated with d2�d3� � � � is identical to
that of d1�d2� � � � , so �∗ must also be local maximum
for d2. Continuing ad infinitum, all policies become
updated to �∗. Hence, with this little “twist of infin-
ity,” one cycle of SPU specializes to one step of policy
iteration; see also the comments at the end of §3.6.

3.2. Potentials and Their Operations
In our local computation algorithms we represent the
quantitative elements of a LIMID through entities

called potentials. Each such potential has two parts,
as detailed below.
Definition 4. Let W ⊆V . A potential on W is a pair

W = �pW �uW � of real-valued functions on �W , where
pW is nonnegative.
The first part pW of the potential is called the proba-

bility part, and the second part uW is called the utility
part. We call the probability part vacuous if it is equal
to unity, and the utility part is vacuous if it is identi-
cally equal to zero.
We identify two potentials 1

W = �p1W�u1
W � and 2

W =
�p2W�u2

W � on W and write 1
W = 2

W if

p1W = p2W and u1
W �xW �= u2

W �xW � whenever

p1W �xW �= p2W �xW � > 0�

i.e., two potentials are considered equal if they have
identical probability parts and their utility parts agree
almost surely with respect to the probability parts.
To represent and evaluate the decision problem

in terms of potentials, we define combination and
marginalization and verify the axioms of Shenoy and
Shafer (1990).
Definition 5 (Combination). Let W1

= �pW1
�uW1

�

and W2
= �pW2

�uW2
� be two potentials on W1 and W2,

respectively. The combination W1
⊗W2

of W1
and W2

is the potential on W1∪W2 given by

W1
⊗W2

= �pW1
pW2

�uW1
+uW2

��

To define marginalization of potentials we first
introduce the sum-marginal

∑
W\W1

�W of a real-valued
function �W on �W for W1 ⊆ W . This is simply the
“usual” marginal( ∑

W\W1

�W

)
�xW1

�= ∑
yW �yW1

=xW1

�W�yW ��

Then we define marginalization of potentials as fol-
lows.
Definition 6 (Marginalization). Let W = �pW �

uW � be a potential on W , and let W1 ⊆ W . The
marginalization ↓W1

W of W onto W1 is the potential on
W1 given by

↓W1
W =

( ∑
W\W1

pW�

∑
W\W1

pWuW∑
W\W1

pW

)
�
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The division operation in the utility part is necessary
to preserve expected utilities. The convention 0/0= 0
has been used here and throughout.
The notion of potential and combinations are sim-

ilar to what is used in Shenoy (1992), Jensen et al.
(1994), and Cowell et al. (1999). Marginalization is
what these authors have termed sum-marginalization.
The first axiom amounts to combination satisfying

the properties of a commutative semigroup, i.e., being
associative and commutative.

Lemma 2 (Commutativity and Associativity of

Combination). Suppose W1
�W2

, and W3
are poten-

tials. Then

W1
⊗W2

= W2
⊗W1

and �W1
⊗W2

�⊗W3

= W1
⊗ �W2

⊗W3
��

Proof. Follows directly from the definitions. �

The fundamental properties of marginalization cor-
responding to the last two axioms are established in
the two following lemmas.

Lemma 3 (Consonance of Marginalization).

Suppose W is a potential on W , and suppose W ⊇W1 ⊇
W2. Then

�
↓W1
W �↓W2 = ↓W2

W �

Proof. Let W = �pW �uW �. The probability parts of
the two potentials �↓W1

W �↓W2 and ↓W2
W are clearly the

same. The utility part of �↓W1
W �↓W2 is given by

∑
W1\W2

{(∑
W\W1

pW
)(∑

W\W1
pW uW∑

W\W1
pW

)}
∑

W1\W2
�
∑

W\W1
pW �

�

Because �
∑

W\W1
pW ��xW1

� = 0 ⇒ �
∑

W\W1
pWuW ��xW1

� =
0, the above expression reduces to∑

W\W2
pWuW∑

W\W2
pW

�

which is the utility part of ↓W2
W . �

Lemma 4 (Distributivity and Marginalization

over Combination). Suppose W1
and W2

are potentials
on W1 and W2, respectively. Then

�W1
⊗W2

�↓W1 = W1
⊗

↓W1
W2

�

Proof. Let W1
= �pW1

�uW1
� and W2

= �pW2
�uW2

�.
The probability part for the potentials W1

⊗ ↓W1
W2

and �W1
⊗W2

�↓W1 are easily seen to agree and be
equal to

∑
W2\W1

pW1
pW2

. If �
∑

W2\W1
pW1

pW2
��xW1

� > 0, the
utility part of �W1

⊗W2
�↓W1 is∑

W2\W1
pW1

pW2
�uW1

+uW2
�∑

W2\W1
pW1

pW2
�

=
∑

W2\W1
pW1

pW2
uW1∑

W2\W1
pW1

pW2

+
∑

W2\W1
pW1

pW2
uW2∑

W2\W1
pW1

pW2

= uW1
+

∑
W2\W1

pW2
uW2∑

W2\W1
pW2

�

which is the utility part of W1
⊗↓W1

W2
. �

Lemmas 2–4 together say that combination and
marginalization satisfy the Shenoy-Shafer axioms,
establishing correctness of the propagation scheme
presented in §3.5.

3.3. From LIMID to Junction Trees
As mentioned, our algorithm proceeds by message
passing in a suitable computational structure known
as a junction tree. In the present subsection we
describe how to construct this junction tree.
As for similar local computation algorithms, the

construction involves first a moralization process in
which an undirected graph is constructed, then a tri-
angulation, where additional edges are added, and
finally the organization of the cliques of the triangu-
lated graph into a junction tree.
The transformation from the LIMID � to an undi-

rected graph is made by first adding undirected edges
between all nodes with a common child (including
children that are value nodes). Because value nodes
do not have children, only edges between chance or
decision nodes are added. Then we drop the direc-
tions on all arcs and finally remove all value nodes.
The resulting “moral” graph is denoted by �m.
Next, edges are added to the undirected graph

�m to form a triangulated graph �m. It is important
to note that, in contrast with the local computation
methods described by Jensen et al. (1994) and others,
the triangulation does not need to respect any specific
partial or total ordering of the nodes, but the trian-
gulation can simply be chosen to minimize the com-
putational costs, for example as described in Kjærulff
(1992).
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Figure 3 Junction Tree for the ID Version of Pigs from Figure 1

Finally the cliques � of �m are organized into a
junction tree � having the property that for any n ∈V ,
the collection of all cliques containing n correspond
to a connected subtree of � . This can be done in a
number of ways (Cowell et al. 1999).
Example 3 (Junction Trees for Pigs). The ID ver-

sion of Pigs leads to the junction tree displayed in
Figure 3. Note that the full set of decision variables
and test variables are contained in a single clique. If
the story is extended by more months, this clique will
grow correspondingly, and the complexity of finding
an optimal solution will become forbidding.
The LIMID version of Pigs has the moral graph dis-

played in Figure 4. This is triangulated and a junction
tree is displayed in Figure 5. The maximal clique size
does not increase with time. �

3.4. Initialization
Suppose we are given a LIMID � and an initial strat-
egy q = ��d� d ∈ ��. To initialize the junction tree �
one first associates a vacuous potential to each clique
C ∈�. Then for each chance node r in �� pr is multi-
plied onto the probability part of the potential of an
arbitrary clique containing fa�r�. When this has been
done, one takes each value node u ∈ 
 and adds Uu

to the utility part of the potential of any clique con-
taining pa�u�. The moralization process has ensured
the existence of such cliques.

Figure 4 Moral Graph of the LIMID Version of Pigs from Figure 2

Note. The moral graph is triangulated so no additional edges are needed.

In principle, we now continue by multiplying initial
policies for each decision node d onto the probability
part of a clique containing fa�d�. However, as we later
want to retract and change these policies, we store
them separately from the probability part and only
perform the necessary multiplication during message
passing as described below in §3.5.
In a “lazy” version of the algorithm (Madsen and

Jensen 1998), the individual factors and terms in the
probability and utility parts would also be stored sep-
arately until needed for message passing.
Let C = �pC�uC� be the potential on clique C

after these operations have been performed. The joint
potential is equal to the combination of all the clique
potentials and satisfies

V = ⊗�C� C ∈��= �pV �uV �

=
( ∏

r∈	
pr

∏
d∈�

�d�
∑
u∈


Uu

)
= �fq�U�� (3)

3.5. Collect Propagation
Let �C� C ∈ �� be a collection of potentials on the
junction tree � . Let V = ⊗�C� C ∈ �� and suppose
we wish to find the marginal ↓R

V for some clique
R ∈�.
To achieve our purpose we direct all the edges in �

toward the “root-clique” R. Then each clique passes
a message to its child after having received messages
from all its other neighbours. The structure of a mes-
sage C1→C2

from clique C1 to its neighbour C2 is given
by

C1→C2
= �C1

⊗ �⊗C∈ne�C1�\�C2�
C→C1

��↓C2�

where ne�C1� are the neighbours of C1 in � and C→C1

is the message from C to C1.
In words, the message which C1 sends to its neigh-

bour is the combination of all the messages that C1

receives from its other neighbours together with its
own potential, suitably marginalized.

Management Science/Vol. 47, No. 9, September 2001 1241



LAURITZEN AND NILSSON
Decision Problems with Limited Information

Figure 5 Junction Tree for the LIMID Version of Pigs from Figure 2

The result below now follows from the fact that
the two mappings, combination �⊗� and marginaliza-
tion �↓� obey the Shafer-Shenoy axioms, as shown in
Lemmas 2–4.

Theorem 1. Consider a joint potential V on a junc-
tion tree � with cliques �, and pass messages towards
a “root-clique” R ∈ � as described above. When R has
received a message from each of its neighbours, the combi-
nation of all messages with its own potential is equal to the
R-marginal of the joint potential V � 

↓R
V = �⊗C∈�C�

↓R =
R⊗ �⊗C∈ne�R�C→R�.

3.6. Local Optimization
This section is concerned with showing how to find a
local maximum policy during SPU.
Definition 7. Let W = �pW �uW � be a potential.

The contraction of W , denoted cont�W �, is defined as
the real function on �W given as cont�W �= pWuW .
We shall need the following theorem.

Theorem 2. For a potential W = �pW �uW � on W and
W1 ⊆W we have

cont �↓W1
W �= ∑

W\W1

cont �W ��

Proof. By definition, the marginal ↓W1
W is given as


↓W1
W =

( ∑
W\W1

pW�

∑
W\W1

pWuW∑
W\W1

pW

)
�

In the utility part of ↓W1
W we have for all xW1

that the
numerator is zero whenever the denominator is zero.
This allows us to write

cont �↓W1
W �= ∑

W\W1

pWuW = ∑
W\W1

cont �W ��

which was to be proved. �

Recall from (1) that fq denotes the probability dis-
tribution obtained by effectuating the strategy q. Note
that with the joint potential V defined by (3) it
holds that fq�x�U�x�= cont�V �. We then further have
Corollary l.

Corollary 1. Let the joint potential V on the junc-
tion tree be given by

V =
(∏

r∈	
pr

∏
d∈�

�d�U

)
= �fq�U��

where q = ��d� d ∈ �� is a strategy. Then the expected
utility of q is EU�q�= cont�↓�

V �.

Proof. By definition

EU�q�=∑
x

fq�x�U�x�=∑
V

cont�V �= cont�↓�
V ��

where the last equality follows from Theorem 2. �

Suppose we wish to compute a local maximum
policy for q at d, and suppose the policy for d is
assigned to clique R. Let ̃R be the potential on R
obtained by retracting the policy for d from R. Then
by Theorem 2∑

xV \fa�d�

fq−d
�x�U�x� = ∑

V \fa�d�
cont �̃R⊗ �⊗C�C �=RC��

= cont
(
�̃R⊗ �⊗C�C �=RC��

↓fa�d�)�
Combining with Lemma 1, a local maximum policy
for strategy q at d can be found by carrying out the
following steps:
1. Retract: Retract the policy for d from the potential

on R to obtain ̃R.
2. Collect: Collect to R to obtain ∗

R = �̃R ⊗
�⊗C�C �=RC��

↓R as in Theorem 1.
3. Marginalize: Compute ∗

fa�d� = �∗
R�

↓fa�d�.
4. Contract: Compute the contraction cfa�d� of ∗

fa�d�.
5. Optimize: For each xpa�d�, find a point x∗

d satisfy-
ing x∗

d = argmaxxd cfa�d��xd� xpa�d�� and define �̃d�xpa�d��

as the distribution degenerate at x∗
d. Add �̃d to the

potential on R to get ̃∗
R.

Note that all the computations apart from the second
step are local in the root clique R. Furthermore, after
the above steps are carried out the joint potential on
the junction tree is equal to

̃∗
V = ̃∗

R⊗ �⊗C�C �=RC�= �f�̃d∗q �U ��
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where �̃d is a local maximum policy for q at d.
Steps l–4 of this procedure is the analogue of the

value determination step of Howard’s policy itera-
tion, and step 5 is the analogue of the policy improve-
ment step.

3.7. Partial Collect Propagation
The message passing algorithm presented in §3.5 can
be used to update the policies during SPU. Sup-
pose we begin with a potential V on the junction
tree � and want to update the policies in the order
d1� � � � � dk. Assume the policy for di is assigned to
clique Ri. Thus Ri ⊇ fa�di�. As an initial step messages
are collected towards R1. Then we find a local maxi-
mum policy for d1, and the obtained policy replaces
the old policy for d1 in R1.
When the next policy needs to be updated we could

apply the same algorithm; however, each time a local
maximum policy is to be computed we must repeat
the algorithm using a new clique as root-clique. This
usually involves a great deal of duplication. The prop-
agation scheme presented below provides one way
to eliminate much of this duplication. In this scheme
messages are only passed from the previous root
toward the new root.
We now explain the partial propagation scheme in

detail. The messages are passed via a mailbox placed
on each edge of the junction tree. If the edge connects
C1 and C2, the mailbox can hold messages in the form
of potentials on C1∩C2.
Updating the policy for d1 is made exactly as in the

procedure described above. As new root we choose
the clique R2. However, instead of collecting messages
toward the new root as described above, we only pass
messages along the (unique) path from the old root
R1 to R2. This is done by first emptying the mailboxes
on the path and then passing the messages. After the

Figure 6 Flows of Messages in Pigs During One Cycle of SPU Using Partial Collect Propagation

passage of these messages, R2 has received messages
from all its neighbours. Then a local maximum pol-
icy at d2 can be computed and the potential on R2

is changed appropriately. Next we choose R3 as new
root and pass messages on the path from R2 to the
new root in a similar manner.
Proceeding in this way we eventually have updated

all the policies. When several cycles of SPU are to
be performed we only need to collect messages to R1

from the previous root Rk.
Example 4 (Improving Strategies in Pigs). To ill-

ustrate the computational procedure we again con-
sider Pigs, described in Example 1. We proceed by
SPU and choose to update the policies in the order
d3�d2�d1. The initial policy can be chosen in a variety
of ways. We choose the initial strategy as uniform, i.e.,
decisions to treat or not are made completely at ran-
dom, independently of the test result. Alternatively,
one may instead use an initial strategy chosen by
the pig breeder based upon experience and common
sense. Such strategies could for example be those of
never or always treating. Or it could be the direct strat-
egy, treating if and only if the test result is positive.
There are exactly four pure policies for each deci-

sion, denoted by never, always, direct, and reverse. The
strategies just described use the same policy for every
decision node. The reverse policy is the policy of treat-
ing if and only if the test result is negative. This policy
is clearly unattractive but is mentioned for complete-
ness.
Letting �l

i be short for �l
di
, the flow of messages in

one cycle of SPU using partial collect propagation are
illustrated in Figure 6. The corresponding policy mod-
ifications become:
1. The clique containing fa�d3� = �d3� t3� is

�h3� t3�d3�. Collecting to this clique reveals that the
expected utility of the uniform strategy is 644. The
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local maximum policy at d3 is �1
3 = direct, i.e., to treat

if and only if the test result is positive. The utility of
the improved strategy can be calculated locally in the
same clique, yielding an expected utility of 667.
2. To find the local maximum policy at d2, we send

messages to the clique �h2� t2�d2�. The local maximum
policy becomes �1

2 = direct with an expected utility
of 690.
3. The final step in the cycle is to send messages to

�h1� t1�d1�. The local maximum policy at d1 becomes
�1
1 = never. The expected utility has now increased

to 727.
4. Another cycle of SPU identifies the strategy as

local maximum and the iteration stops.
The example described is sufficiently small for all

pure LIMID strategies to be evaluated because there
are only 64 such strategies. In this specific example,
it turns out that �3 = direct is a local maximum pol-
icy for all these LIMID strategies so that only 16 pure
strategies need to be evaluated. The result of this eval-
uation is displayed in Table 1. The table shows that
the obtained LIMID strategy is indeed both local and
global maximum.
With the story covering only four months, the ID

version of pigs can still be solved exactly. The optimal
strategy has expected utility equal to 729 and is given
as follows:
1. Do not treat in the first month: �1 = never.
2. Treat in the second month if and only if test

results are positive in the first month and in the sec-
ond month.
3. Treat in the last month if and only if the test

results are positive in the third month or in both of
the first and second months.
Table 2 displays the expected utility of a number of

interesting strategies. Note how close the best LIMID
strategy is to the best ID strategy for the problem.

Table 1 Expected Utilities of Pure Strategies with �3 = Direct

Policy for d2

Policy for d1 Reverse Always Never Direct

Reverse 615 615 662 585
Always 605 603 655 653
Never 682 686 724 727
Direct 673 674 716 718

Table 2 Expected Utilities of Selected Strategies in Pigs

Always Uniform Never Direct Best LIMID Best ID
586 644 669 718 727 729

4. Optimal Strategies
within LIMIDs

This section is concerned with developing methods
for reducing LIMIDs to obtain lower complexity of
computations during SPU and identifying conditions
for LIMIDs that ensure local maximum strategies
obtained by SPU are also global maximum strategies.

4.1. Separation Within LIMIDs
The key to simplification of computational problems
for LIMIDs is the notion of irrelevance as expressed
through d-separation (Pearl 1986). See Verma and
Pearl (1990) for a formal treatment.
A trail � (a sequence of nodes that are connected

by arcs, not necessarily following the directions) from
node a to node b in a DAG � is said to be blocked
by S if it contains a node n ∈ � such that either n ∈ S

and arcs of � do not meet head-to-head at n, or n and
all its descendants are not in S, and arcs of � meet
head-to-head at n. A trail that is not blocked by S is
said to be active. Two subsets A and B of nodes are
d-separated by S if all trails from A to B are blocked
by S.
In the following we use the symbolic expression

A⊥� B � S to denote that A and B are d-separated by
S in the DAG formed by all nodes of the LIMID �,
i.e., including the utility nodes.
Verma and Pearl (1990) show that d-separation sat-

isfies the so-called graphoid axioms: For any disjoint
subsets A�B�C, and D of nodes of � we have
(C1) if A⊥� B � C then B ⊥� A � C;
(C2) if A⊥� B � C and D ⊆ B, then A⊥� D � C;
(C3) if A ⊥� B � C and D ⊆ B, then A ⊥� �B\D��

�C ∪D�;
(C4) if A ⊥� B � C and A ⊥� D � �B∪C�, then A ⊥�

�B∪D� � C;
(C5) if A ⊥� B � �C ∪D� and A ⊥� C � �B∪D� then

A⊥� �B∪C� �D.
Indeed (C1)–(C4) also hold for subsets that are not
necessarily disjoint, whereas B and C must be disjoint
for (C5) to hold.
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Any distribution P which factorizes over a DAG
satisfies the global directed Markov property

A⊥� B � S ⇒A⊥⊥B � S� (4)

where ⊥⊥ denotes probabilistic conditional indepen-
dence with respect to P. In particular, this holds for
the joint distribution fq associated with a given strat-
egy q for the LIMID �.

4.2. Requisite Information Within LIMIDs
In this subsection we determine and exploit requi-
site information for decision problems represented by
LIMIDs.
Definition 8. A node a ∈ pa�d� is said to be non-

requisite for the decision node d in � if

�
 ∩de�d��⊥� a � �fa�d�\�a��� (5)

We then also say that the arc from a to d is nonrequisite.
If (5) is not satisfied, then a is said to be requisite for d
and the arc from a to d is said to be requisite.
Intuitively, the condition expresses that a has no

influence on the utilities that d can affect, once the
states of the remaining parents are known.
For the special case of IDs with a single utility node,

our nonrequisiteness coincides with the similar con-
cept of Fagiuoli and Zaffalon (1998). The relation to
those of Nielsen and Jensen (1999) and Shachter (1999)
for more general IDs is more complex; see the end of
§4.3.
If we introduce the uniform policy at d as the policy

�̄d�xd � xpa�d��= 1/ ��d�, we have the following alterna-
tive version of Lemma 1:

Lemma 5. A policy �̃d is a local maximum policy for
a strategy q at d if and only if for all xfa�d� with �̃d�xd �
xpa�d�� > 0 we have

xd=argmax
zd

∑
u∈


∑
xpa�u�

f�̄d∗q �xpa�u��zd�xpa�d��Uu�xpa�u��� (6)

Proof. Lemma 1 states that �̃d is a local maximum
policy for q if and only if for all xfa�d� with �̃d�xd �
xpa�d�� > 0 we have xd = argmaxzd c̄�xpa�d�� zd�, where
c̄�xfa�d�� =

∑
xV \fa�d� fq−d

�x�U�x�. If we let f̄ = f�̄d∗q then
we clearly have f̄ �x�∝ fq−d

�x� and thus

c̄�xfa�d�� ∝
∑

xV \fa�d�

f̄ �x�U�x�= ∑
xV \fa�d�

f̄ �x�
∑
u∈


Uu

(
xpa�u�

)

= ∑
u∈


∑
xpa�u�

Uu

(
xpa�u�

) ∑
xV \�fa�d�∪pa�u��

f̄ �x�

= ∑
u∈


∑
xpa�u�

Uu

(
xpa�u�

)
f̄
(
xfa�d�

)
f̄
(
xpa�u� � xfa�d�

)
�

Because in fact f̄ �xfa�d�� = 1/��d�f̄ �xpa�d��, so when c̄

is to be maximized for fixed xpa�d�� f̄ �xfa�d�� is constant
and can be ignored. The lemma follows. �

The definition of nonrequisite nodes and arcs is
motivated by the following theorem, implying that
the computations during SPU can be performed with
reduced complexity.

Theorem 3. If a ∈ pa�d� is nonrequisite for decision
node d in LIMID �, then for all strategies q in � there
is a local maximum policy for q at d that does not depend
on a.

Proof. Suppose a is nonrequisite for d in �. Then
for any utility node u ∈ de�d� it must hold that
pa�u�⊥� a � �fa�d�\�a�� because if otherwise, an active
trail from a to pa�u� would induce an active trail from
a to u, implying that a would be requisite. From the
global directed Markov property (4) it thus follows
that for all u ∈ de�d�, where as before f̄ = f�̄d∗q , we
have

f̄
(
xpa�u� � zd�xpa�d�

)= f̄
(
xpa�u� � zd�xpa�d�\�a�

)
� (7)

For u � de�d� we clearly have d ⊥� pa�u� � pa�d�,
implying that

f̄
(
xpa�u� � zd�xpa�d�

)= f̄
(
xpa�u� � xpa�d�

)
� (8)

If we now let 
1 = 
 ∩de�d� and 
2 = 
\de�d� and
insert (7) and (8) into the expression to be maximized
in Lemma 5, we get∑

u∈


∑
xpa�u�

f̄
(
xpa�u� � zd�xpa�d�

)
Uu

(
xpa�u�

)
= ∑

u∈
1

∑
xpa�u�

f̄
(
xpa�u� � zd�xpa�d�\�a�

)
Uu

(
xpa�u�

)
+ ∑

u∈
2

∑
xpa�u�

f̄
(
xpa�u� � xpa�d�

)
Uu

(
xpa�u�

)
�

Because the first of these sums does not depend on
xa, and the second does not depend on zd, it follows
that �̃d can be chosen not to depend on xa. �
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4.3. Reduction of LIMIDs
The importance of the notion of nonrequisite arcs is
that these can be removed from a LIMID without loss
of utility but with reduction of computational com-
plexity.
Definition 9. A LIMID � ′ is said to be a (step-

wise) reduction of � if it is obtained by successive
removals of nonrequisite arcs.
Clearly, the reduction relation is transitive: If �2 is a

reduction of �1, and �3 is a reduction of �2, then �3

is a reduction of �1. From Theorem 3 we then obtain
the following corollary.

Corollary 2. If � ′ is a reduction of �, then any strat-
egy q′ which is local or global maximum for � ′, will also
be so for �.

We will need that d-separation is preserved under
arc-removal (and therefore under reduction).

Lemma 6. If � ′ is obtained from � by removing arcs,
then A⊥� B � S ⇒A⊥�′ B � S.
Proof. This holds because every trail in � ′ is a trail

in � and if trail is blocked by S in � ′ it is also blocked
by S in �. �

We further need to establish that nonrequisiteness
of arcs is preserved under reduction.

Lemma 7. If � ′ is a reduction of � and an arc in � ′

from a to d is nonrequisite in �, it is also nonrequisite
in � ′.

Proof. It is sufficient to consider the case where � ′

has one arc less than �. We assume that

�
 ∩de�d��⊥� a � �fa�d�\�a�� (9)

and need to show that �
 ∩de′�d��⊥�′ a � �fa′�d�\�a��,
where de′�d� and fa′�d� refer to the reduced LIMID � ′.

If fa′�d� = fa�d�, the result follows from Lemma 6
and (C2) of the graphoid axioms because de′�d� ⊆
de�d�. Next consider the case with fa′�d�= fa�d�\�a∗�.
Because a∗ is nonrequisite for d in � we have �
 ∩
de�d��⊥� a∗ � fa′�d�. Combining with Equation (9) we
now get from (C5) of the graphoid axioms that �
 ∩
de′�d�� ⊥� �a� a∗� � �fa′�d�\�a��, because in this case

de′�d�= de�d�. The conclusion now follows from (C2)
and Lemma 6. �

For any two LIMIDs �1 and �2 with identical node-
set, we let �1 ∩�2 denote the LIMID with the same
node-set and arc-set equal to the intersection of the
arc-sets of �1 and �2. We then have Lemma 8.

Lemma 8. If �1 and �2 are reductions of �, then �1∩
�2 is a reduction of both �1 and �2.

Proof. Let mi� i = 1�2 be the number of nonrequi-
site arcs removed from � to obtain �i. We will show
the result by induction after m=m1+m2.

For m= 2, the result follows directly from Lemma 7.
Suppose the result holds for m ≤ k, where k ≥ 2 and
consider the case m = k+ 1. So max�m1�m2� > 1, say
m2 > 1. Thus �2 is obtained by successively remov-
ing m2 nonrequisite arcs from �. Let � ′

2 be the LIMID
obtained by removing the first m2−1 of these. By the
induction assumption, �1 ∩� ′

2 is a reduction of � ′
2

obtained by removing at most m1 nonrequisite arcs
from � ′

2. Furthermore, �2 is also a reduction of � ′
2

obtained by removing exactly one nonrequisite arc.
Since ��1 ∩� ′

2� ∩�2 = �1 ∩�2 and m1 + 1 ≤ k, the
induction assumption yields that �1 ∩�2 is a reduc-
tion of �2.
Similarly, the induction assumption gives that �1∩

�2 is a reduction of �1∩� ′
2 and also that �1∩� ′

2 is a
reduction of �1. Transitivity of the reduction relation
now yields that �1 ∩�2 is a reduction of �1 and the
proof is complete. �

Corollary 3. If �1 and �2 are reductions of �, then
�1∩�2 is a reduction of �.

Proof. Follows directly from Lemma 8 and transi-
tivity of the reduction relation. �

It is clearly always advantageous to compute local
or global maximum strategies in a LIMID that is
reduced as much as possible.
Definition 10. A LIMID � is minimal if all arcs in

� are requisite.
We use the term minimal reduction for a reduction

which is minimal. Corollary 3 now yields Theorem 4.

Theorem 4. Any LIMID � has a unique minimal
reduction.
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The minimal reduction of the LIMID � is denoted
�min. In §4.5 we present a general algorithm for reduc-
ing an arbitrary LIMID � to �min.
In the special case of an ID, the arcs removed

from � to obtain �min are precisely those that orig-
inate from variables that are not required or requi-
site as defined by Nielsen and Jensen (1999) and
Shachter (1999), respectively.

4.4. Extremal Decision Nodes and Optimum
Policies

Sometimes a LIMID has a decision node d with a pol-
icy �̂d, which maximizes the expected utility among
all policies for d whatever the other policies in �
are. As we shall see, every extremal decision node, as
defined below, has such a policy.
Definition 11. A decision node d is extremal in �

if (
 ∩de�d��⊥� fa��\�d�� � fa�d�.
The notion of extremal decision node is slightly dif-
ferent from what Zhang et al. (1994) term stepwise-
decomposability candidate node (SDCN). Any SDCN
is extremal but not conversely.
Definition 12. An optimum policy for d in a LIMID

� is a policy that is a local maximum policy at d for
all strategies q in �.
To establish the connection between optimum poli-

cies and extremal decision nodes, we introduce the
uniform strategy as the strategy where all policies are
uniform. Then we have Theorem 5.

Theorem 5. If decision node d is extremal in a LIMID
�, then it has an optimum policy. In this case, any local
maximum policy at d for the uniform strategy is an opti-
mum policy for d in �.

Proof. Let q be an arbitrary strategy and let �̄d

denote the uniform policy for the extremal decision
node d. We will show that whenever a policy �̃d is a
local maximum policy for the uniform strategy q̄� �̃d

is also a local maximum policy for q.
First note that because pa�d� d-separates d from its

nondescendants, we have for every utility node u �
de�d� that

fq
(
xpa�u� � xd�xpa�d�

)= fq
(
xpa�u� � xpa�d�

)
� (10)

Next, note that for all x it holds that f�̄d∗q �x � xfa���� =
fq̄�x � xfa���� whenever f�̄d∗q �xfa���� > 0. Thus, if we let

Z = fa���\fa�d� we get for all utility nodes u and xfa�d�
with f�̄d∗q �xfa�d�� > 0

f�̄d∗q
(
xpa�u� � xfa�d�

)
=∑

xZ

f�̄d∗q
(
xpa�u� � xfa���

)
f�̄d∗q

(
xZ � xfa�d�

)
=∑

xZ

fq̄
(
xpa�u� � xfa���

)
f�̄d∗q

(
xZ � xfa�d�

)
� (11)

Because d is extremal, u⊥� Z � fa�d� for every util-
ity node u ∈ de�d�, so it must hold that pa�u� ⊥� Z �
fa�d� because otherwise an active trail from Z to pa�u�
would induce an active trail from Z to u. So Equa-
tion (11) becomes

f�̄d∗q
(
xpa�u� � xfa�d�

) = fq̄
(
xpa�u� � xfa�d�

)∑
xZ

f�̄d∗q
(
xZ � xfa�d�

)
= fq̄

(
xpa�u� � xfa�d�

)
� (12)

As in the proof of Theorem 3 we now let 
1 = 
 ∩
de�d�, and 
2 = 
\de�d�, insert (10) and (12) into the
expression to be maximized in Lemma 5, and get∑

u∈


∑
xpa�u�

f�̄d∗q
(
xpa�u� � zd�xpa�d�

)
Uu�xpa�u��

= ∑
u∈
1

∑
xpa�u�

fq̄
(
xpa�u� � zd�xpa�d�

)
Uu�xpa�u��

+ ∑
u∈
2

∑
xpa�u�

f�̄d∗q
(
xpa�u� � xpa�d�

)
Uu�xpa�u���

Because the terms in the second sum do not depend
on zd, the joint expression is maximized if and only
if the first sum is maximized, showing that a policy
which is local maximum for q̄ is local maximum for
any q. This completes the proof. �

The conclusion in Theorem 5 still holds if the uni-
form strategy is replaced by any strategy with every
policy giving positive probability to all decision alter-
natives. With deterministic policies in q, an extremal
decision node d may have a local maximum policy
that is not an optimum policy. This renders Prop-
osition 3.3 and Theorem 4.1 of Zhang et al. (1994)
inaccurate.
A special instance of the result in Theorem 5 is

an important element in the method described by
Cooper (1988) for solving IDs with a single utility
node.
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4.5. Soluble LIMIDs
Suppose d0 is extremal in the LIMID �. Theorem 5
ensures that we can find an optimum policy for d0
by SPU, starting from the uniform strategy q̄. When
this has been done, we can implement this policy
�̃d0

and convert � to �∗, where d0 now becomes a
chance node in �∗ with �̃d0

as the associated condi-
tional probability distribution. Clearly, every local or
global maximum strategy q∗ for �∗ then generates a
local or global maximum strategy for � as q = q∗ ∪
��̃d0

�. If �∗ again has an extremal decision node, we
can yet again find an optimum policy and convert �∗

as above. If the process can continue until all decision
nodes have become chance nodes, we have obtained
a global maximum strategy for �.
Definition 13. An exact solution ordering d1� � � � � dk

of the decision nodes in � is an ordering with the
property that for all i� di is extremal in � when
di+1� � � � � dk are converted into chance nodes.
Note that if d1� � � � � dk is an exact solution ordering

then optimum policies for the decisions are identified
in the reverse order, i.e. first dk, then dk−1 and so on.
Definition 14. A LIMID � is said to be soluble if it

admits an exact solution ordering.
Solubility is similar to stepwise decomposability in
Zhang et al. (1994) but stronger, because a LIMID can
be soluble without being stepwise decomposable, see
the remark after Definition 11.
Even if a LIMID � is not soluble, its minimal reduc-

tion �min may be. To show that the converse cannot
happen, we need to establish that extremality is pre-
served under reduction.

Lemma 9. If � ′ is a reduction of � and d∗ is extremal
in �, then d∗ is extremal in � ′.

Proof. Suppose d∗ is extremal in �. It suffices to
consider the case where � ′ is obtained by remov-
ing a single arc from a nonrequisite parent a into a
decision node d. We must show that �
 ∩de′�d∗��⊥�′

fa′��\�d∗�� � fa′�d∗�, where de′ and fa′ refer to � ′.
We consider two cases. If d �= d∗, the result fol-

lows directly from Lemma 6 and (C2) of the graphoid
axioms as fa′�d∗�= fa�d∗��
 ∩de′�d∗�⊆
 ∩de�d∗�, and
fa′��\�d��⊆ fa��\�d��.

If d = d∗, then because d∗ is extremal in �� �
 ∩
de�d∗�� ⊥� fa��\�d∗�� � fa�d∗� and because a is non-
requisite for d∗� �
 ∩de�d∗�� ⊥� a � �fa�d∗�\�a��. Thus
(C4) of the graphoid axioms implies that �
 ∩
de�d∗��⊥� ��a�∪ fa��\�d∗��� � �fa�d∗�\�a��. By Lemma 6
this d-separation also holds in � ′ and because
de′�d∗�= de�d∗�� fa′�d∗�= fa�d∗�\�a�, and fa′��\�d∗��=
fa��\�d∗��, the desired conclusion follows from
(C2). �

Next we show that solubility is preserved under
reduction.

Theorem 6. If � ′ is a reduction of a soluble LIMID �,
then � ′ is soluble.

Proof. Suppose � is soluble with exact solution
ordering d1� � � � � dk. Let � ′ be a reduction of �
obtained by removing a nonrequisite arc into some
decision node dj . We want to show that � ′ is soluble
with exact solution ordering d1� � � � � dk, i.e., we will
show that di is extremal in � ′ where di+1� � � � � dk are
converted into chance nodes. We again consider two
cases. If i ≥ j, the result follows from Lemma 9. If
i < j, the result follows from Lemma 6 and the fact
that 
 ∩de′�di� ⊆ 
 ∩de�di�, where, as usual, de′�di�
refers to � ′. This completes the proof. �

As a consequence, if � is soluble, so is its minimal
reduction �min.
Requisiteness of arcs is not generally preserved

under reduction, but for arcs into extremal decision
nodes it is:

Lemma 10. If d0 is extremal in ��� ′ is a reduction of
�, and a is a requisite parent for d0 in �, then a is also
requisite for d0 in � ′.

Proof. It is sufficient to consider the case where
� ′ is obtained by removing an arc into d∗ from some
nonrequisite parent a∗. We verify the statement by
contraposition: We suppose that d0 is extremal in �
and a is nonrequisite for d0 in � ′, and show that a
must also be nonrequisite in �.
Because d0 is extremal in �, we have 
 ∩de�d0� =


 ∩de′�d0�, so we consider a utility node u ∈ de�d0�. If
d0 �= d∗, we have fa′�d0�= fa�d0� and nonrequisiteness
of a yields

a⊥�′ u � �fa�d0�\�a��� (13)
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Because d0 is extremal in � and d-separation is
preserved under arc-removal (Lemma 6), we have
�a∗�d∗� ⊥�′ u � fa�d0�. Using (C4) on this and (13)
yields �a� a∗�d∗� ⊥�′ u � �fa�d0�\�a��. This d-separation
also holds if we insert an arc from a∗ into d∗, i.e.
�a� a∗�d∗�⊥� u � �fa�d0�\�a��, whereby (C2) yields a⊥�

u � �fa�d0�\�a��, so a is nonrequisite in �.
Next we consider the case where d0 = d∗. Here we

have fa′�d0�= fa�d0�\�a∗� and thus

a⊥�′ u � �fa�d0�\�a� a∗��� (14)

As a∗ is nonrequisite in � and d-separation is pre-
served under arc-removal (Lemma 6), we have a∗ ⊥�′

u � �fa�d0�\�a∗�� and thus �a∗�d0� ⊥�′ u � �fa�d0�\�a∗��.
Using (C4) on this and (14) gives �a� a∗�d0� ⊥�′ u �
�fa�d0�\�a� a∗��. Again, this d-separation also holds in
�. Using (C3) gives �a�d0�⊥� u � �fa�d0�\�a�� and (C2)
yields that a is nonrequisite in �, as desired. �

The following algorithm thus finds the minimal
reduction �min of a LIMID � with decision nodes � �=
� and identifies whether �min is soluble.

Algorithm

1. D �= �;
2. Search for an extremal decision node d ∈ D; if

none exists, go to 3; else

(a) remove arcs from nonrequisite parents of d;
convert d into a chance node, and let D �=
D\�d�;

(b) if D =�, return “�min is soluble” and go to
5; else go to 2.

3. Visit each d ∈ D in any order, and remove arcs
from nonrequisite parents of d.

4. If no arcs are removed in 3, return “�min is not
soluble” and go to 5; else go to 2.

5. Return �min by reconverting all nodes in �\D
into decision nodes.

Example 5 (A Soluble Modification of Pigs).

As illustration we use the LIMID �∗ in Figure 7,
which is a modification of Pigs obtained by adding
arcs into each decision di from the previous states
�hi−1� ti−1�di−1�. The original LIMID � in Figure 2 is
not soluble, but we will show that �∗

min is soluble
with exact solution ordering d1�d2�d3. Although �∗

is not a realistic model since the his are unobserv-
able, this soluble modification can be used to give

Figure 7 A soluble Modification �∗ of Pigs with Exact Solution Order-
ing d1� d2� d3

an upper bound on the expected utility of the global
maximum strategy of �, because the soluble modifi-
cation uses more information and therefore must have
a strategy that performs at least as well. This can then
in turn be used to assess the strategy found by SPU
on �.
To reduce �∗ we apply the above algorithm,

and start by searching for an extremal decision
node in D = �d1�d2�d3�. Clearly d3 is the only
extremal decision node: u3 and u4 are the only util-
ity nodes that are descendants of d3, and these
are d-separated from fa��d1�d2��= �d1�d2� t1� t2�h1� by
fa�d3� = �d2�d3� t2� t3�h2�. Next we remove nonreq-
uisite arcs into d3: the arc from t2 into d3 is the
only nonrequisite arc and is thus removed. Then
d3 is converted into a chance node, and we let
D = �d1�d2�.
After this conversion, we search in D for an

extremal decision node: d2 is extremal, and because
the arc from t1 into d2 is the only nonrequisite arc
into d2, it is removed. As above, d2 is converted into
a chance node, and we let D = �d1�.
The resulting LIMID has only one decision node

d1, which trivially is extremal. There is only a sin-
gle arc into d1 and because it is requisite it cannot be
removed. Now we let D = �, and thus the obtained
minimal reduction �∗

min, shown in Figure 8, is soluble.
Note that �∗

min has exact solution ordering d1�d2�d3,
and it follows that SPU achieves a global maximum
strategy if it updates the policies, starting from the
uniform strategy, in the order d3�d2, and finally d1.
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Figure 8 The Minimal Reduction �∗
min of �

∗

The global maximum strategy in �∗
min has an

expected utility of 732, compared to an expected
utility of 727 of the local maximum strategy in the
original LIMID � found by SPU. Thus a decision
maker will know that the global maximum strategy
of � can at most increase the expected utility by
5 compared to the local maximum strategy found
by SPU.
In this case the LIMID �∗ was itself soluble. How-

ever, if the arc from t1 into d2 is replaced by an arc
from t1 into d3, the corresponding LIMID is not solu-
ble but its minimal reduction is. The reader may eas-
ily check that the above algorithm will indeed detect
this. �

We conclude by mentioning that all IDs are solu-
ble. Hence a combination of the reduction algorithm
and SPU yields an efficient algorithm for solving IDs
(Nilsson and Lauritzen 2000).
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