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Summary

An object-oriented version of the computational scheme in Lauritzen and Spiegethalter (1958)
is presented and proof of its correctness is given. The approach was molivated by the need for
flexible programming and specification in the development of the HUGIN shell and the MUNIN
expert system. Experience from this work is reported.
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1 Introduction

In recent years the focus of expert system development has diverged from rule-based systems to
systems based on a representation of so-called deep knowledge of the domain in question.

For domains with inherent uncertainty statisticians have for decades been working with graphs
where variables are represented as nodes and statistical dependencies are represented as edges
(Wright 1921; Wold 1954; Darroch et al. 1980). When in particular the dependencies are causal
relations the graph becomes directed, and the causal relations are represented as conditional
probabilities. This knowledge representation scheme has been termed differently in the literature:
Recursive graphical model (Wermuth and Lauritzen 1983), Bayes belief network (Pearl 1986),
causal probabilistic network (Andreassen et al. 1987), causal network (Lauritzen and Spiegelhalter
1988), probabilistic causal network (Cooper 1984), influence diagram (Howard and Matheson
19381). We have in this paper chosen the term causal probabilistic network, or CPN for short.

CPNs have many virtues in connection with expert systems, mainly due to the transparency
of the knowledge embedded in a CPN and their ability to unify almost all domain knowledge
relevant for an expert system (Andersen et al. 1986; Jensen et al. 1987; Horvitz et al. 1988).

0723-712X/90/4/269-282 $2.50© Physica-Verlag, Heidelberg



270

However, the calculation of specific probabilities was for a long period intractable and there-
fore an obstacle for pursuing the virtues. In the early 80’s a first breakthrough was established
(Kim and Pear] 1983) giving efficient calculation methods when the CPN is a tree, and later
methods were constructed taking care of arbitrary CPNs without directed cycles (Lauritzen and
Spiegelhalter 1988; Andersen et al. 1987; Jensen 1988; Jensen et al. 1989).

Incidentally a similar development had taken place in genetics some years before (Cannings
et al. 1978) apparently unnoticed by the Al-community until recently (Thomas 1988), see also
Thompson (1986) and Spiegelhalter (1989).

In the MUNIN project (Andreassen et al. 1987, 1989; Olesen et al. 1989) CPNs are used for
knowledge representation. In the first small prototype (Jensen et al. 1987) the methods of Kim
and Pear] were used. However, the domain could not be represented as a causal probabilistic tree,
and it was therefore decided to use the methods developed by Lauritzen and Spiegelhalter.

When the methods were to be implemented they were met by several requests. The main
request was that an object-oriented style of specification (and programming) should be used as was
done in the first prototype of MUNIN. This request together with mere performance considerations
led to a series of simplifications and changes of the methods. These modifications led to a rather
different conceptual framework for the entire approach, which is now used in MUNIN (Jensen et
al. 1989, Olesen et al. 1989) and built into the expert system shell HUGIN (Andersen et al. 1989).
A development with many similarities to our approach has been made by Shafer and Shenoy (1988,
1989), see also Perez and Jirousek (1985) and Dempster and Almond (1988).

In this paper we give a self-contained presentation of this approach together with proofs of
the correctness of the methods. Section 2 describes the framework in terms of notation and basic
definitions. Through Sections 3 and 4 the methods are described in detail and proofs of correctness
are given. Section 5 outlines extensions to general state spaces, and in Section 6 we briefly describe
the expert system shell HUGIN and the application MUNIN.

2 Definitions and Notation

A causal probabilistic network (CPN) is constructed over a universe U, consisting of a set of nodes
each node having a finite set of states. The universe is organized as a directed acyclic graph, i.e.
the graph has no directed cycles. The set of parents of A is denoted by pa(A) and fm(A) denotes
the family pa(A) U {A}. To each node A € U is attached a conditional probability table for
P(A|pa(A)). Note that if pa(A) = 8 the table reduces to unconditional probabilities.

Let V C U. The space of V is the Cartesian product of the state sets of the nodes of V
and is denoted by Sp(V/). For later notational convenience we think of the probability tables as
functions, and- denote them by the greek letters ¢ and . If A € U then é4 = P(A|pa(A)) maps
Sp(fm(A)) into the unit interval [0,1]. Later it becomes convenient to consider functions that are
not normalized and therefore take on arbitrary non-negative values. So, in the sequel, ¢ and ¢
denote such functions. Exploiting these convention we define a number of basic operations.

2.1 Basic operations

2.1.1 Extension

Let V.CW C U and ¢: Sp(V) — Ry. The function ¢ is extended to W in the following way: Let
z € Sp(W). If y is the projection of z on Sp(V') then we let ¢(z) = ¢(y).
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When it is clear from the context we will not distinguish between a function and its various
extensions.

2.1.2 Restriction

Let W CV CUand ¢:5p(V)— Roand let z € Sp(W). The restriction ¢* of ¢ to Sp(V \ W) is
defined as

' (z) = ¢(z.2)
where z.z is the element in Sp(V') with projections z to Sp(W) and z to Sp(V \ W).

2.1.3 Multiplication

Multiplication is defined the obvious way, i.e. for ¢ and v defined on Sp(V') and Sp(W) respectively
we define ¢ = 3 on Sp(V U W) as

(¢ *v)(z) = ¢(z)¥(z)

where ¢ and i on the right-hand side first have been extended to the relevant space, cf. the remark
at the end of 2.1.1.

2.1.4 Addition

Addition is defined analogously.

2.1.5 Marginalization

Let W CV C U and ¢ : Sp{(V) — Ro. The expression Zv\w ¢ denotes the marginalization of ¢
to W and is defined as
Te- ¥ &

v\w 1€Sp(V\W)

2.1.6 Division

This is likewise defined in the obvious way, just that special care has to be taken when dividing
by zero
0 if#(z)=0
(6/¥)(z) = { (#(z)/9(z)) if Y(z) #0
undefined  otherwise
With these definitions we are now able to give a precise meaning to a causal probabilistic
network.

2.2 The joint probability function

Let U be the universe of nodes for a CPN. We define the (a priori) joint probability function &
as the product
oy = H 4.

AU
This definition makes ¢y satisfy the causal (or directed) Markov property (Kiiveri et al. 1984;
Lauritzen et al. 1989) thus conforming to the ‘causal’ interpretation of the network, see also Pearl

(1988).
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2.3 Evidence

CPNs are in expert systems used dynamically. Initially the CPN holds a set of causal relations
and prior probabilities, but when information on the universe is achieved, it is fed into the CPN
yielding new {posterior) probabilities.

Let V be a set of nodes. By evidence on V we mean a function

Ev :Sp(V) — R,.

Thus evidence is represented as a likelihood function, giving relative weights Lo elements in the
space of V.

In the particular case, where Ey is a function into {0,1} it represents a statement that some
elements of Sp(V') are impossible. In that case we call Ev a finding. Typically a finding is a
statement that a certain node is in one particular state.

If the prior joint probability function for the CPN is @ then the posterior joint probability
function is defined to be u(o + Ey) where jt is a normalizing constant.

Note: If Ev is a finding then the normalizing constant y is the reciprocal of Lhe prior probability
of Ev and the posterior joint probability function is the conditional Joint probability, given the
findings.

2.4 The calculation problem

Given a CPN with universe L. a set of (pieces of ) evidence, and let A € (7. What is (he probability
distribution for A given the evidence?

In principle it is possible to calculate ov. multiply it with the evidence functions. and then to
marginalize the resulting function to A. However, this calculation is linear in the cardinality of
Sp(l’) and in practice intractable even for small universes. We therefore have to exploit the local
structure of the network. which is the theme of the next sections.

3 Trees of Belief Universes

The aim of the implementation of efficient methods for solving the calculation problem is to have a
set of objects which can send messages to each other and can performi actions as results of received
messages.

In order to avoid a global control structure it is convenient to have the objects organized
in a tree such that messages only can be passed between neighbours in the tree. Then a global
operation can be started in any object and successive message passing to neighbouring objects will
spread the operation to the entire tree and stop by itself when this is done. Another effect would
be that the objects can perform their tasks in parallel and thus exploit computer architectures
with several processors.

3.1 Basic notions

A tree of belief universes consists of a collection C of sets of nodes organized in a tree. The union
of all the sets in the collection is called the total universe and denoted U/. We only consider trees
with finite total universe {.
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The intersections of neighbours iu the tree are called separators. The collection of separators
is called S. Both the universes and the separators have belief potentials ¢w attached to them,
where ¢gw maps Sp(W) to Ry. The joint system belief ¢y is defined as a function on Sp(!/) given
by

by = [vec ¢>v
[lses ¢s

A beliel potential ¢y is said to be normalized if Yy 6w = 1. A normalized tree of belief
universes is one where all belief potentials are normalized.

Note: If the tree is normalized, then so is the joint system belief ¢y.

3.2 Supportive trees
Let ¢y - Sp(V) — Ry. The support of ¢y is

Spt(dv) = {z € Sp(V) | év(z) # 0}.

When no confusion is possible we write Spt(V') instead of Spt(ov). If V and W are sets of nodes
with belicl potentials oy and ¢w then

Spt(V) € Spt(W)

denotes Lhe statement that if v and ¢w are extended to VUW then the support of ¢y is included
in the support of ow.

A tree of belief universes is said to be supportive if for any V and for any neighbouring separator
S to V we have Spt(V) C Spt(S).

3.3 Construction

With these definitions it is easy to construct tree structures representing the same joint probability
function as CPNs. Let N be a CPN with universe U/ and probability functions

da Sp(frn(A))—oRo, Ael.

Let further T be a tree of belief universes with collection C and separators S constructed such
that

i) to each A € U we assign a V € C with fm(A4) C V;
i1) for V. € C let A,..., B be the nodes to which V is assigned. Let
Sy =Pa*--- = dp;

iii) for all S € S let ¢5 be any constant positive function (this makes T supportive).

Note: To each A € U there might be several V € C such that fm(A4) C V but we only assign
one of them to A. The construction is illustrated in Figure 1.

From the definitions it is easy to see that the joint system belief for T is proportional to the
joint probability function for N and that the quotient between them is the product of the values
for the belief potentials of the separators.

Now the basic structure is established. The belief universes are the objects and the separators
are the communication channels. Next we define the basic operations for the objects.
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Figure 1: Construction of the tree of belief universes. The universe ABD is assigned to B and D,
ACD is assigned to A and C, CE to £ and CDF to F. Other assignments were possible.

3.4 Absorption

Let T be a tree of belief universes with collection ¢ and separators S. Let V € C and let
Wi, ..., W,, be neighbours of V with separators Si,..., 5, respectively. Suppose that Spt(V) C
Spt(Si)y i = 1....,m. The universe V is said to absorb from Wi, ..., W, if the belief potentials
#s, and ¢y are changed to ¢5, and ¢}, where

i

5, doow. i=l..,m

WAV

$v = dv(0/0s) - (85, [0s.,).
Note the following important points:
a) After an absorption the belief potential for S, is the marginal of W; with respect to S;.

b) We have that

Spt(ew,) C Spt ( > ¢w.> = Spt (¢5,) -

LAV

Hence the supportiveness of a tree T is invariant under absorption.

c) We also have that
¢V/(¢S, * ... tésm) = ¢IV/(¢IS1 e t¢'sm)

and hence the joint system belief is invariant under absorption.

d) f m =1 and ¢5 x Zv\w ¢v -~ where x means ‘proportional to’ - then

Y ohxds=Y dw.

VW w\v

In that case we say that V has calibrated to W. The reason is, that V has been forced to
take over the information that W holds on their common nodes.
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—— Direction of absorption

= Call of COLLECTEVIDENCE

Figure 2: The calls and message passing in COLLECTEVIDENCE.

e) In the actual implementation, the separators play a slightly more active role: first they
receive the marginal from W,, then they send the fraction ¢%5/és to V and finally they
update their own belief potential.

3.5 Entering evidence

Let T be a tree of belief universes and V C U. Let Ey be an evidence function. This can be
entered to T if there is a W € C such that V € W. This is done simply by multiplying éw by
Ev.
Note: I T is constructed from a causal probabilistic network N as in Section 3.3 then the
posterior joint system belief for T is proportional to the posterior joint probability function for N.
If there is no W with V C W, then the entering of evidence is more subtle. We will not deal
with that problem in this paper.

3.6 Collecting evidence

Based on the local operation of absorption we can now construct the propagation operations.
Each V € C is given the action COLLECTEVIDENCE: When COLLECTEVIDENCE in V is called
from a neighbour W then V calls COLLECTEVIDENCE in all its other neighbours and when they
have finished their COLLECTEVIDENCE, V absorbs from them (see Figure 2).
Note the following points:

a) Since COLLECTEVIDENCE is composed of absorptions only, supportiveness and the joint
system belief is invariant under COLLECTEVIDENCE (see notes b) and c) in Section 3.4).

b) Suppose COLLECTEVIDENCE is envoked in V from the outside. Let W and W* be neighbours
with separator S such that W is closer in the tree to V than W" is and such that they are
not on the branch from which COLLECTEVIDENCE is envoked, see Figure 2. Then the
COLLECTEVIDENCE from V will cause W to absorb from W*. From note a) in Section 3.4
we have that after COLLECTEVIDENCE from V/, the belief potential for S is the marginal of
W with respect to S.
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3.7 Distributing evidence

Each V € C is given the action DISTRIBUTEEVIDENCE: When DISTRIBUTEEVIDENCE is called in
V from a neighbour W then V absorbs from W and calls DISTRIBUTEEVIDENCE in all its other
neighbours.

Note: The joint system belief and supportiveness is invariant under DISTRIBUTEEVIDENCE .

3.8 Local consistency

A tree of belief universes is said to be locally consistent if whenever V and W are neighbours with

Zd)vcxos-:x Zow.

V\S w\s

separator S then

Au important prerequisite for the methods is the following

Theorem 1 Let V be any belief universe in a supportive tree of belief universes. If first Col.-
LECTEVIDENGE is evoked from V' and then DISTRIBUTEEVIDENCE is cvoked from V', the resulling
tree of belief universes will be locally consistent .

Proof From note b) of Section 3.6 we have that after COLLECTEVIDENCE from V' cach of the
belief potentials on the separators is the marginalization of the belief potential in the neighbour
most distant from V. When DISTRIBUTEEVIDENCE is evoked from V', a scries of calibrations will
follow, see note d) of Section 3.4. and local consistency results. O

4 Junction Trees

4.1 Junction trees and consistency

What we aim for is a tree of belief universes such that the probability distributions can be directly
inferred from the belief potentials without having to calculate the joint system belicf. That is: If
W C V then Ty\w &v is proportional to the probability distribution for W. In order to ensure
this, local consistency is not sufficient. For example,if W C Vj and W C V), then local consistency
does not automatically ensure that

Z by, x Z oy,

mw\w )\W

unless V| and V; are neighbours in the tree. We therefore define a tree of belief universes to be
(globally) consistent if for each VW € C

thvazdiw

AW WiV

that is, ¢v and ¢w coincide on V NW. Clearly, a consistent tree will always be locally consistent
but the converse is false in general.

Call a tree of belief universes a junction tree if for any V,W € C and for any separator S on
the path between V and W we have VN W C S. The important fact is that the junction tree
property ensures the converse to hold. More precisely we have
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Proposition 1 A locally consistent junclion lree is consistent.

Proof Lct V and W be universes in a locally consistent junction tree. Using the local consistency
stepwise on the path from V to W we get the result. ]

This adds a constraint on the transformation of 2 CPN to a tree of belief universes: The
tree must be a junction tree. The main concept for establishing an appropriate junction tree is
triangulation {Jensen 1988), a topic on which a wide range of literature exists (Berge 1973; Rose
! al. 1976; Golumbic 1980: Yannakakis 1981; Lauritzen et al. 1984). A brief description of this
process is given in Section 6.

The key result of the method now follows:

Theorem 2 Let T be a consistent junction tree of belief universes with collection C. Let ¢y be
e joint system belief for T and let V € C. Then

Y dux ov. (1)

U\V

Proof By induction on n. the number of sets |C| in C. For n =1 the statement is clearly true
as L” = }". Assume then that for all consistent junction trees of belief universes with |C| < n. we
liave that (1) holds for all V € C.

(lousider a consistent junction tree of belief universes where [C] = n+1. Let V" € C be arbitrary
and let W # V be a leaf in T with separator S. Since T is a junction tree, only W contains nodes
i W\ 5. Hence

=3 [veecdv: _ ﬂv'ec\(W)?V' L ms dw
WS wis [res®r  Tlres\is) ¢r és

By local consistency the latter factor is constant so we further obtain

[Mviec\iwy dv-
> by x Vel = gy 2
w\S v nRES\(S) PR v ( )

where ¢y is the joint system belief for the consistent junction tree T on the total universe U’ =
U\ (W\S) with collection C\ {W}. Hence, by the induction hypothesis we can further marginalize
oy over U'\ 'V to obtain ¢v and the result follows. If T is normalized then Y5 ¢w = ¢s and
equality holds in (2). o

At this point we have overcome the calculation problem stated in Section 2.4. The theorem
shows that it is not necessary to calculate and marginalize ¢y in order to find the belief in a
particular node. When we have a consistent junction tree the joint probability function is for each
universe V proportional to the belief potential for V. We can now find the belief in any node
A € V by marginalizing ¢v to A and then normalizing the result.

When evidence arrives to the CPN, it is entered to the junction tree as described in Section 3.5.
Then the junction tree is made consistent by means of the operations COLLECTEVIDENCE and
DISTRIBUTEEVIDENCE and posterior probabilities can be found by the above procedure. If the
original tree was normalized the prior probability of the evidence entered can be obtained by
taking any belief universe and take the sum of values of its belief potential after propagation (see
the note in Section 3.5).
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4.2 Uniform junction trees

If we in the previous sections everywhere substitute ‘=’ for ‘x’, most results still hold true. In
particular, suppose V and W are neighbours with § = VNW, and ¢s = Sypwov. HV calibrates
to W then
T o =ds= T ow. 3)
viw WiV
Junction trees with the property (3) holding for all pairs of neighbours are of particular interest.
They are called uniform junction trees. By arguments completely analogous to those in the proof
of Theorem 2, we get

Proposition 2 IfT isa uniform junction iree over the universe U, then for all belief potentials

ox we have
ox = 3 du.
U\X

In particular, ©x éx = Suou.
As the next proposition shows, uniform junction trees are easy to construct:

Proposition 3 Whenever a junction tree is made consistent through by envoking COLLECTEV-
IDENCE followed by DISTRIBUTEEVIDENCE in the same belief universe, then the resulting tree is
uniform.

Proof As in Theorem 1. (8]

Note: If COLLECTEVIDENCE is called in a universe V, then the succeeding DisTRIBUTEEVIDENCE
does not change ¢v. Therefore, after the call of COLLECTEVIDENCE, we already have that
ov = Ly oU-

An important consequence is the following result, also noted by Lauritzen and Spiegelhalter
(1988) in their reply to the discussion.

Theoremn 3 Let T be a normalized junction tree and let Fy,..., Fa be a set of findings with prior
probability P(Fy,....F,). Let Fi,....Fy be entered to T and call COLLECTEVIDENCE in any
belief universe V. Let ¢% be the resulting belief table for V. Then

Y 6y = P(Fi.....Fa).
v

Proof Let ¢y be the prior joint system belief. Then the posterior joint system belief is given by
ou* Fyx---# Fn. Since T is normalized, oy is the joint probability function and therefore

P(Fl""'F")=Z(QU‘Fl“"“Fn)-
U

The result now follows from Proposition 3. ]
Theorem 3 can be used in a variety of ways. Most directly it gives an easy way of calculating the

prior joint probabilities for sets of findings. But if findings are hypothetical, it also gives a way of
calculating probabilities for complex hypotheses.
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5 Extension to General State Spaces

For practical computations it is of interest to let some nodes in a universe correspond to real-

valued variables. Most of the developments carry through with only small changes when we let

cach node A in the universe U carry a more general state space X4, say a complete, metrisable

and separable space (Polish space, see e.g. Billingsley (1968)) or even more general than this.
Additionally we need to have a fixed o-finite measure p4 on X, for each node A € U and we

denote its products as py = @aevpa for VS U. The conditional probability tables ¢, shall then

for fixed parent configuration be (equivalence classes of) probability densities with respect to ua.
Marginalization of functions is given as:

Z o= /¢'#V\w(dl)

V\w

and requires integrability to be well-defined. The other operations are completely analogous to
the case of finite state spaces.

A supportive tree of belief universes is one. where the measures ¢y uy are absolutely continuous
with respect to ¢spy for all separators SC V.

The joint system belief has to be assumed integrable which automatically will be the case after
the initial construction as in Section 3.3. Only evidence functions preserving integrability are
allowed to be entered. Note that all finding functions will be permissible since they are indicators
of Borel sets and therefore bounded. Fubini's theorem ensures the marginalization integrals to be
well defined under absorption and thus allows the general scheme to proceed in the usual fashion.

6 Experience from HUGIN and MUNIN

The methods described in this paper formed the basis for a shell for building expert systems,
called HUGIN! (Andersen et al. 1989) which in turn is used for the MUNIN? expert system.

In HUGIN the user specifies a model of a domain as a causal probabilistic network. When the
model is completed, a junction tree T is automatically constructed. This involves a moralization
of the graph: for each node, links are added between all of its parents (if they are not connected
already) and directions are removed.

The moral graph is then triangulated: Links are added until every cycle of length more than
three has a chord. Based on this triangulation the junction tree is formed: The collection C is
the set of cliques in the triangulated graph (a clique is a maximal set of nodes all of which are
pairwise linked). Given the cliques the junction tree can be found through a maximal spanning
tree algorithm (Jensen 1988).

The size of the cliques determines the runtime behaviour of the system, so the triangulation is
the single most important step in the transformation. In order to optimize this, heuristic methods
"have been developed to obtain a small total clique size (Kjeerulff 1989).

The moralization of the graph ensures that for each node A a set V € C exists such that
fm(A) C V. Hence the construction in Section 3.3 can be used and the joint system belief for T
will be proportional to the joint probability function for the CPN.

'Handling Uncertainty in General Influence Networks
2MUscle and Nerve Inference Network



280

HUGIN will now maintain the joint belief for the CPN in the junction tree. Evidence can be
entered and whenever requested the tree is made consistent.

In the Esprit project P599: A Knowledge Based Assistant for Electromyography™ (Andreassen
et al. 1987, 1989; Olesen et al. 1989) a preliminary version of HUGIN has been used to construct
large nets in order to diagnose muscle and nerve diseases. These nets constitute the MUNIN
expert system.

In MUNIN we are dealing with nets of up to about one thousand nodes, having from 2 to
2] states. The largest net covers a total sample space of about 10%% states and updating in this
net is done in a few minutes. Further. an approximation with an absolute crror less than 0.1%
has been made. This has reduced response times to about 10-20 seconds (Jeusen and Andersen
1989). When handling networks on this scale new problems mainly concerning space arise. This
has lead to work on optimal triangulation and other modifications of the methods as mentioned
above. Current work indicates that even larger nets can be handled, a promising linc of rescarch

being the extension of the methodology to include continuous variables in the network.

7 Conclusion

[n the previous sections we have shown how an object-oriented specification of the evidence caleulus
allows a simple and self-contained description of the procedures involved.
This has enhanced efficient and flexible programming and couceptual clarification in the the-
oretical developments as well, thus preparing the road for future extensions of the methodology.
Experience with the shell HUGIN and the medical system MUNIN shows that large systems
can be built in a short time, resulting in systems with reasonably small response times.
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