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Abstract

In this paper we present the R package gRc for statistical inference in graphical
Gaussian models in which symmetry restrictions have been imposed on the concentration
or partial correlation matrix. The models are represented by coloured graphs where pa-
rameters associated with edges or vertices of same colour are restricted to being identical.
We describe algorithms for maximum likelihood estimation and discuss model selection
issues. The paper illustrates the practical use of the gRc package.
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1. Introduction

This paper describes an R package, (R Development Core Team 2007), for statistical inference1

in a class of graphical Gaussian models with edge and vertex symmetries as introduced by2

Højsgaard and Lauritzen (2007), see also Højsgaard and Lauritzen (2005). The models gen-3

eralise graphical Gaussian models (hereafter abbreviated GGMs) (Whittaker 1990; Lauritzen4

1996), also known as covariance selection models (Dempster 1972).5

There are two types of models available in gRc. In one type, denoted RCON models, selected6

elements of the concentration matrix (the inverse covariance matrix) are restricted to being7

identical. These models are all linear in the inverse covariance matrix and are therefore8

instances of models discussed by Anderson (1970). In the other class, denoted RCOR models,9

it is the partial correlations rather than the concentrations which are restricted to being equal.10

We use RCOX models as a generic term for both types. The gRc package is part of the gR11

initiative (Lauritzen 2002) aiming to make graphical models available in R.12

http://www.jstatsoft.org/


2 Graphical Gaussian Models with Edge and Vertex Symmetries

2. Preliminaries and notation

2.1. Graph colouring13

Consider an undirected graph G = (V,E). Colouring the vertices of G with R ≤ |V | different14

colours induces a partitioning of V into disjoint sets V1, . . . , VR called vertex colour classes15

where all vertices in Vr have the same colour. Here |V | denotes the number of elements in16

V . A similar colouring of the edges E with S ≤ |E| different colours yields a partitioning of17

E into disjoint sets E1, . . . , ES called edge colour classes where all edges in Es have the same18

colour. We say that V = {V1, . . . , VR} is a vertex colouring and E = {E1, . . . , ES} is an edge19

colouring.20

A colour class with only one element is said to be atomic. A colour class which is not atomic21

is composite. A set a ⊂ V is called neutral if its induced subgraph has only atomic colour22

classes.23

When drawing vertices/edges we make the convention that black and white are used for24

atomic colour classes. Thus two edges displayed in black will be in different (atomic) colour25

classes.26

Figure 1 illustrates a graph colouring. The edge between vertices 1 and 2 is written 1:2 etc.
The coloured graph in (a) is given by (V, E) where

V = [1, 4][2, 3], E = (1:2, 1:3)(2:4, 3:4)

whereas the graph in (b) is given by V = [1, 4][2][3] and E = (1:2, 1:3)(2:4)(3:4).27
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Figure 1: Coloured graphs. (a): The edges 1:2 and 1:3 are in the same (light blue) edge
colour class as also indicated by the “+”-sign. Likewise, 2:4 and 3:4 are in the same (green)
edge colour class, also indicated by “++”. The vertices 1 and 4 are in the red vertex colour
class (also indicated by“*”) while vertices 2 and 3 are in the blue vertex colour class (indicated
by “**”). (b): Illustration of atomic colour classes. The vertices 2 and 3 are drawn in black
and are atomic, so 2 and 3 are in different vertex colour classes. Likewise for edges 2:4 and
3:4.

2.2. Graphical Gaussian models28

Graphical Gaussian models are concerned with the distribution of a multivariate random29

vector Y = (Yα)α∈V following a Nd(µ,Σ) distribution where d = |V |. For simplicity we30

assume throughout that µ = 0. In the following we use Greek letters to refer to single31

variables and Latin letters to refer to sets of variables. We let K = Σ−1 denote the inverse32

covariance, also known as the concentration with elements (kαβ)α,β∈V . The partial correlation33

between Yα and Yβ given all other variables is then34

ραβ|V \{α,β} = −kαβ/
√
kααkββ. (1)
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Thus kαβ = 0 if and only if Yα and Yβ are conditionally independent given all other variables.35

A graphical Gaussian model (hereafter abbreviated GGM) is represented by an undirected36

graph G = (V,E) where V is a set of vertices representing the variables and E is a set of37

undirected edges. The graph represents the model with K being a positive definite matrix38

having kαβ = 0 whenever there is no edge between α and β in G.39

2.3. RCON models – Restricted CONcentration models40

An RCON model with vertex colour classes V and edge colour classes E is obtained by
restricting the elements of K = Σ−1 further as follows: 1) All partial variances (i.e. all
diagonal elements of K) corresponding to vertices in the same vertex colour class must be
identical. 2) All off–diagonal entries of K corresponding to edges in the same edge colour
class must be identical. Thus, the diagonal of K can be specified by an R dimensional vector
η while the off–diagonal elements are given by an S dimensional vector δ so we can write
K = K(η, δ). Figure 1 (a) thereby represents the concentration matrix

K =


η1 δ1 δ1 0
δ1 η2 0 δ2
δ1 0 η2 δ2
0 δ2 δ2 η1

 .

2.4. RCOR models – Restricted partial CORrelation models41

An RCOR model with vertex classes V and edge classes E is obtained by restricting the42

elements of K = Σ−1 as follows: 1) All partial variances corresponding to vertices in the same43

vertex colour class must be identical. 2) All partial correlations corresponding to edges in the44

same edge colour class must be identical.45

As an RCOR model, Figure 1 (b) represents a concentration matrix K written as

K(η, δ) = A(η)C(δ)A(η),

where

A =


η1 0 0 0
0 η2 0 0
0 0 η3 0
0 0 0 η1

 and C =


1 δ1 δ1 0
δ1 1 0 δ2
δ1 0 1 δ3
0 δ2 δ3 1

 .
Hence from (1), A contains the inverse partial standard errors on the diagonal while C contains46

minus the partial correlations on the off–diagonal. The vertex colour classes of an RCOR47

model is then restricting elements of A whereas the edge colour classes are restricting elements48

of C.49

3. Specifying and displaying models

3.1. Working data set: Mathematics marks50
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The gRc package will be illustrated on the basis of the following data set (taken from Mardia,51

Kent, and Bibby (1979), see also Edwards (2000)). Data contains the examination marks for52

88 students in 5 different mathematics subjects: Mechanics (me), Vectors (ve), Algebra (al),53

Analysis (an) and Statistics (st). Data is contained the data set math. A stepwise backward54

model selection yields the “butterfly”model shown in Figure 2, (a), see also Whittaker (1990),55

p. 4.56
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Figure 2: (a) The graphical Gaussian “butterfly” model selected for the mathmarks data.
All vertices and edges are neutral, i.e. the parameters are unrestricted. In the following this
model is called m0. (b) A representation of an RCON / RCOR model with restrictions on
both vertices and edges. This model is denoted m1 in the following.

3.2. Specifying the butterfly model – a GGM57

Initially we specify the butterfly model for the mathmark data as a GGM which, by definition,58

is also an RCON and RCOR model. The engine for specifying and fitting the models is the59

rcox function which takes a type argument specifying the model type. The default model60

type is type=’rcon’.61

In the following we shall show different ways of specifying models. For a GGM, the edge and62

vertex colour classes can be specified indirectly by a generating class, e.g. the cliques of the63

independence graph. For example, the butterfly model m0 can be specified as:64

m0 <- rcox(~me:ve:al + al:an:st, data = math)

RCON model: logL= -1278.991 dimension= 11 method= scoring time= 0.05

vcc: ~me, ~ve, ~al, ~an, ~st

ecc: ~me:ve, ~al:me, ~al:ve, ~al:an, ~al:st, ~an:st

Alternatively one can specify the vertex and edge colour classes (which are all atomic because65

the model is a GGM) directly as:66

m0 <- rcox(vcc = list(~me, ~ve, ~al, ~an, ~st), ecc = list(~me:ve,
~me:al, ~ve:al, ~al:an, ~al:st, ~an:st), data = math)

3.3. Mixed representations of RCON / RCOR models67

In connection with model specification it is convenient to be able to work with a mixed68

representation of a model as a triple (C,V, E) where C is the generating class for a GGM. The69

convention in connection with such a triple specification is as follows: 1) C specifies vertices70
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and edges in the model. These are a priori unrestricted. 2) E also specifies edges. Some of71

these may already have been specified in C but in that case restrictions in E will be imposed.72

3) V also specifies vertices. Some of these may already have been specified in C but in that73

case restrictions in V will be imposed.74

3.4. Adding symmetry restrictions to the butterfly model75

To illustrate RCON models which are not standard GGMs we impose the following restrictions76

on m0 to obtain m1 (which is illustrated in Figure 2, (b)):77

1. Vertices me and st are in the same vertex colour class and so are ve and an.78

2. Edges me:ve and me:al are in the same edge colour class and so are ve:al and al:st.79

The RCON model is fitted by80

m1 <- rcox(~al:an:st, vcc = list(~me + st, ~ve + an), ecc = list(~me:ve +
me:al, ~ve:al + al:st), data = math)

Note that here we have specified some of the edges through a generating class for a graphical81

model, i.e. ~al:an:st.82

Setting type=’rcor’ in rcox will similarly fit the corresponding RCOR model:83

m1c <- rcox(~al:an:st, vcc = list(~me + st, ~ve + an), ecc = list(~me:ve +
me:al, ~ve:al + al:st), data = math, type = "rcor")

RCOR model: logL= -118.8656 dimension= 7 method= scoring time= 0.06

vcc: ~al, ~me + st, ~ve + an

ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

Retrieving vertex and edge colour classes84

The colour classes can be retrieved using the getecc and getvcc functions, e.g.85

getecc(m1)

ecc1 ~al:an

ecc2 ~an:st

ecc3 ~me:ve + me:al

ecc4 ~ve:al + al:st

Model summaries etc.86

Different type of model summaries are available. The default summary type is type="coef"87

which gives a table with parameter estimates, standard errors etc:88
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summary(m1)

RCON model: logL= -1279.710 dimension= 7 method= scoring time= 0.03

vcc: ~al, ~me + st, ~ve + an

ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

cctype cc estimate stderr X2 p

vcc1 vcc vcc1 0.028096016 0.0036801167 58.286273 2.264855e-14

vcc2 vcc vcc2 0.005869607 0.0005849235 100.697789 0.000000e+00

vcc3 vcc vcc3 0.010044090 0.0009482858 112.187040 0.000000e+00

ecc1 ecc ecc1 -0.008025724 0.0015468068 26.921316 2.119089e-07

ecc2 ecc ecc2 -0.001763193 0.0007441495 5.614091 1.781662e-02

ecc3 ecc ecc3 -0.002957588 0.0004448611 44.200423 2.964173e-11

ecc4 ecc ecc4 -0.004738956 0.0008238733 33.086017 8.817053e-09

vcc1 ~al

vcc2 ~me + st

vcc3 ~ve + an

ecc1 ~al:an

ecc2 ~an:st

ecc3 ~me:ve + me:al

ecc4 ~ve:al + al:st

The reason for displaying the colour classes below the body of the table is that a colour class89

can consist of many edges/vertices thereby making the table very large.90

The tests in the table are Wald tests for the corresponding parameters being zero. These91

tests only make sense for edge colour classes, but the standard errors for vertex colour classes92

are still informative for how precisely the parameters are estimated.93

An alternative summary type is "KC" which when applied to the RCON model above gives94

summary(m1, type = "KC")

RCON model: logL= -1279.710 dimension= 7 method= scoring time= 0.03

vcc: ~al, ~me + st, ~ve + an

ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

me ve al an st

me 0.07661336 -0.002957588 -0.002957588 0.000000000 0.000000000

ve 0.38519248 0.100220207 -0.004738956 0.000000000 0.000000000

al 0.23030890 0.282101238 0.167618661 -0.008025724 -0.004738956

an 0.00000000 0.000000000 0.477756429 0.100220207 -0.001763193

st 0.00000000 0.000000000 0.369024986 0.229636063 0.076613361

The fitted concentrations for edge colour classes appear above the diagonal (some of these are95

restriced to being identical under the model). The diagonal contains the fitted concentrations96

for for vertex colour classes, i.e. the partial variances (some of these are restriced to being97

identical under the model). Below the diagonal are the corresponding partial correlations.98

When applied to the RCOR model above the summary type "KC" gives99

summary(m1c, type = "KC")
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RCOR model: logL= -118.8656 dimension= 7 method= scoring time= 0.06

vcc: ~al, ~me + st, ~ve + an

ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

me ve al an st

me 1.3185867 -0.5213360 -0.6737147 0.0000000 0.0000000

ve 0.2849471 1.3875378 -0.8754901 0.0000000 0.0000000

al 0.2849471 0.3518871 1.7930942 -1.0706683 -0.8319843

an 0.0000000 0.0000000 0.4303354 1.3875378 -0.4406480

st 0.0000000 0.0000000 0.3518871 0.2408454 1.3185867

As before, the fitted concentrations for edge colour classes appear above the diagonal. The di-100

agonal contains the fitted concentrations for for vertex colour classes, i.e. the partial variances.101

Below the diagonal are the corresponding partial correlations (of which some are restricted102

to being identical under the model).103

Other types of summaries are "K" and "ACA".104

Standard methods like coef (for obtaining the parameter estimates) and vcov (for obtaining105

the asymptotic variance for the estimators) are available.106

The graph in Figure 3 is obtained by107

plot(m1)

al
an
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ve

Figure 3: The display of the model m1 produced by the plot() function.

4. Maximum likelihood estimation

This section describes estimation in RCON and RCOR models. See Højsgaard and Lau-108

ritzen (2007) for discussion of problems concerning existence and uniqueness of estimators109

and convergence properties of the algorithms.110

4.1. Likelihood analysis of RCON models111

We consider a sample y1, . . . , yn of n observations of Y ∼ Nd(0,Σ) where d = |V | and112

Σ = K−1 and let W denote the matrix of sums of squares and products W =
∑n

ν=1 Y
ν(Y ν)>.113

The log-likelihood function based on the sample is114

logL =
f

2
log det(K)− 1

2
tr(KW ), (2)

where in this case f = n is the degrees of freedom in the Wishart distribution of W . Taking115

into account a possible unknown mean µ and calculating W based on residuals would yield116

degrees of freedom f = n− 1.117
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First we consider an RCON model (V, E). For each vertex colour class u ∈ V let T u be the118

d × d diagonal matrix with entries T u
αα = 1 if α ∈ u and 0 otherwise. For each edge colour119

class u ∈ E let T u be the d × d symmetrical matrix with entries T u
αβ = 1 if {α, β} ∈ u and120

0 otherwise. For convenience we shall identify a vertex α with a set {α, α} such that vertex121

classes and edge classes can be treated simultaneously in the following. Hence we can refer122

to a generator u for an RCON model (V, E) without specifying whether u is a vertex colour123

class or an edge colour class. Consequently, we can rewrite (η, δ) as θ which is an R + S124

dimensional vector.125

The concentration matrix K = K(θ) can be written K =
∑

u θuT
u. Letting tu = tr(T uW ) we126

have tr(KW ) =
∑

u θu tr(T uW ) =
∑

u θut
u. RCON models are thus linear exponential fami-127

lies where (−t1/2, . . . ,−tS+T /2) are canonical sufficient statistics and ψ(θ) = −f
2 log det(K) is128

the logarithm of the normalising constant. The maximum likelihood estimate is unique and is129

obtained by equating the canonical sufficient statistics to their expectation (Barndorff-Nielsen130

1978).131

Taking first and second derivatives of the logarithm of the normalising constant using that132

∂ det(M)
∂x

= det(M) tr(M−1∂M

∂x
) and

∂M−1

∂x
= −M−1∂M

∂x
M−1

gives133

E(−tu/2) =
∂ψ

∂θu
= −f

2
tr(T uΣ), Var(−tu/2) =

∂2ψ

∂θ2
u

=
f

2
tr(T uΣT uΣ),

so the system of likelihood equations is134

tr(T uW ) = f tr(T uΣ), u ∈ V ∪ E . (3)

4.2. Algorithms for estimation in RCON models135

This section describes algorithms for estimation in RCON models. Let Σ̂ = K̂−1 denote the136

current estimate of Σ at any time during the iteration.137

Scoring algorithm138

The likelihood equations for RCON models can be solved using Fisher scoring if good starting139

values can be found and if the Fisher information matrix is moderate in size. The algorithm,140

however, is not globally convergent in general.141

It is convenient to parametrise the model with λu = log ηu. With this parametrisation,142

differentiation of (2) yields the score function143

Su(λ, δ) =
f

2

{
(tr(T uΣ)− tr(T uW )/f)eλu for u ∈ V
(tr(T uΣ)− tr(T uW )/f) for u ∈ E (4)

Differentiating further and changing sign gives the Fisher information matrix144

I(λ, δ)uv =
f

2


tr(T uΣT vΣ)eλu+λv for u, v ∈ V
tr(T uΣT vΣ)eλu for u ∈ V, v ∈ E
tr(T uΣT vΣ) for u, v ∈ E .

(5)
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The Fisher scoring step becomes145

(λ, δ)← (λ, δ) + I(λ, δ)−1S(λ, δ) (6)

which we found to sometimes be unstable in practice for RCON models.146

Jensen, Johansen, and Lauritzen (1991) describe an estimation algorithm for linear expo-147

nential families, (see also Lauritzen (1996), p. 269), which applies Newton iteration to the148

reciprocal of the fth root of the likelihood function. This algorithm becomes149

(λ, δ)← (λ, δ) + [I(λ, δ) + S(λ, δ)S(λ, δ)>/f ]−1S(λ, δ). (7)

This algorithm is globally convergent in the one–parameter case (Jensen et al. 1991). In the150

multi–parameter case the global convergence properties are unknown but empirical evidence151

suggests that it is quite stable and may be globally convergent.152

Observe that omitting S(λ, δ)S(λ, δ)>/f from (7) will give Fisher scoring for (λ, δ). If we153

maximise the reciprocal likelihood itself instead of its fth root, the term S(λ, δ)S(λ, δ)>/f is154

replaced with S(λ, δ)S(λ, δ)>.155

We further define the discrepancy ∆(λ, δ) = 2S(λ, δ)/f where S is the score vector. Expressed156

in terms of ∆, (7) becomes157

(λ, δ)← (λ, δ) + [2I(λ, δ)/f + ∆(λ, δ)∆(λ, δ)>/2]−1∆(λ, δ). (8)

Using the default method=’scoring’ in gRc for RCON models invokes (7) which can be seen158

as a stabilised version of Fisher scoring (6).159

Iterative partial maximisation160

Jensen et al. (1991) show that (7) is globally convergent in an exponential family if applied161

to one parameter at the time while keeping all other parameters fixed at their current values.162

This iterative partial maximisation scheme works as follows for RCON models. Repeatedly163

loop through the elements of u ∈ V∪E until convergence doing the following: The discrepancy164

is ∆u = tr(T uΣ̂)− tr(T uW )/f = 2Su/f and (8) for a single parameter becomes in this case165

θn+1
u ← θn

u +Qu, where Qu =
∆u

tr(T uΣ̂T uΣ̂) + ∆2
u/2

. (9)

The substitution (9) is repeated until convergence for the set u before moving on to the next166

set in V ∪ E . Thus the algorithm consists of two nested loops: 1) An outer loop running over167

the elements u ∈ V ∪ E and 2) an inner loop maximising L with respect to θu while keeping168

all other parameters fixed.169

Contrary to scoring, iterative partial maximisation does not directly produce the asymptotic170

variance-covariance matrix of the parameter estimates. However, after convergence the inverse171

Fisher information may be calculated.172

To ensure global convergence, the substitution in (9) should only be effectuated if the new173

matrix K is positive definite. Otherwise the update should be made follows: Find the largest174

value of λ (where λ < 1) for which an update θn
u+λQu would yield a positive semidefinite value175

ofK, i.e. where the update would bring the parameter to the boundary of the parameter space.176
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The update should then be θn+1
u ← θn

u + λQu/2. Thereby the update moves half the distance177

towards the boundary of the parameter space. This refinement has not been implemented178

and seems unnecessary. (We have not shown that the Newton steps are guaranteed to keep179

K positive definite but empirical evidence suggests that it is so.)180

For some colour classes, the partial maximisation of the likelihood can be made explicitly181

using a single step of the iterative proportional scaling (IPS) algorithm for graphical Gaussian182

models, see e.g. Lauritzen (1996), p. 134. Thus for such colour classes the iterative scheme in183

(9) needs not to be applied.184

Consider a neutral set {α, β}. The parameters kαα, kββ and kαβ are not restricted other than185

through K being positive definite. In this case these parameters can be updated with a single186

IPS step, i.e. without using the Newton method. Let a = {α, β}, let b denote the complement187

to a, let Kaa be the 2× 2 submatrix of K comprising kαα, kββ and kαβ , and let Kab and Kbb188

be defined similarly. The likelihood equations are that (Kaa −Kab(Kbb)−1Kba)−1 = Waa/f189

which are solved by setting190

Kaa ← (Waa/f)−1 +Kab(Kbb)−1Kba. (10)

This IPS step maximises the likelihood over the particular section of the parameter space191

given by kαα, kββ and kαβ and thus no iteration is needed. This IPS step can be applied for192

any neutral set a ⊂ V . A special case is for a single parameter kαα (i.e. for an atomic vertex193

colour class).194

An IPS step can also be used for estimating a single parameter kαβ where α 6= β, i.e. for195

an atomic edge colour class: Following the notation above, let B = Kab(Kbb)−1Kba. The196

likelihood equations state that {(Kaa−B)−1}αβ = Wαβ/f where {A}αβ is the off-diagonal of197

a symmetric 2 × 2 matrix A with entries indexed by α and β. This yields the following 2nd198

degree equation in kαβ :199

−(kαβ −Bαβ)
(kαα −Bαα)(kββ −Bββ)− (kαβ −Bαβ)2

= Wαβ/f. (11)

By inspection of the equation it can be seen that only one of the solutions leads to a positive200

definite K, and the solution is201

kαβ ← Bαβ +
1−

√
1 + 4Wαβ(kαα −Bαα)(kββ −Bββ)

2Wαβ/f
. (12)

The IPM algorithm is illustrated in an example below. In this connection it is convenient to202

work with a mixed representation of an RCON model which is a 3–tuple, (V, E ,N ) where N203

is a set of neutral sets.204

Example 1 The graph in Figure 4 has vertex and edge colour classes

V = [1][2, 3][4][5] E = (1:2, 2:3)(3:4)(4:5),

and specifies a RCON model with restrictions k22 = k33 and k12 = k23. The vertex colour
classes [4] and [5] are both atomic and so is the edge colour class (4, 5) so {4, 5} is a neutral
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Figure 4: Representation of the RCON model with the restrictions that k22 = k33 and k12 =
k23.

set. Algorithmically, we add {4, 5} to N , remove (4:5) from E , and remove [4] and [5] from
V. This yields the mixed representation

V = [1][2, 3], E = (1:2, 2:3)(3:4), N = {4, 5}.

One full cycle of the outer loop of the IPM algorithm goes as follows:205

1. [1] is an atomic vertex colour class so k11 can be updated with a single IPS step (10) on a206

1× 1 matrix.207

2. [2, 3] is a composite vertex colour class and (1:2, 2:3) is a composite edge colour class.208

Hence k22 = k33 and k12 = k23 must be updated separately with the Newton sequence209

(9). So this step is computationally demanding.210

3. (3:4) is a atomic edge colour class so k34 can be updated with a single IPS step (12) on211

the off–diagonal of a 2× 2 matrix.212

4. {4, 5} is a neutral set so all three parameters k44, k55 and k45 can be updated in a single213

IPS step (10) on a 2× 2 matrix.214

To avoid complex book keeping we have not exploited that {4, 5} is a neutral set and can be215

fitted as such in the current version of gRc. Instead 4. above is replaced with216

4a. Update in turn k44, k55 and k45 with a single IPS step (10).217

The method=’ipm’ for RCON models is used for the scheme where IPS is applied whenever218

possible (i.e. for atomic colour classes) and where (9) is applied for all composite colour classes.219

Computational savings220

The following considerations lead to additional substantial computational savings:221

1. The matrices T u are symmetrical matrices consisting of zeros and ones. It is not nec-222

essary (and becomes prohibitive in terms of space requirements for high dimensional223

models) to actually create these matrices. When calculating traces like e.g. tr(T uΣ̂T uΣ̂)224

and related quantities it is sufficient to identify relevant entries of Σ̂ etc. to be added225

up.226

2. After updating entries of K, it is not necessary to find Σ = K−1. The relevant part of227

Σaa is (Kaa−Kab(Kbb)−1Kba)−1. Note here 1) that Kab(Kbb)−1Kba is fixed throughout228

the whole Newton sequence and 2) that the dimension of Σaa is often much smaller than229

the dimension of Σ.230
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Starting values231

A starting value for K for both the scoring and iterative partial maximisation methods is232

found on the basis of the method of score matching (Hyvärinen 2005). The score matching233

estimate Ǩ is obtained by solving a linear system of R + S equations with R + S unknowns234

where R+S is the number of parameters in K. Hence Ǩ can be calculated very easily. While235

the score matching estimate is asymptotically unbiased, is not guaranteed to be positive236

definite. Moreover, we have not shown that diagonal elements of Ǩ are indeed positive.237

If Ǩ is positive definite then Ǩ is taken to be the initial value ofK. If Ǩ is not positive definite238

we make it so as follows: If the diagonal elements of Ǩ are not all positive we apply score239

matching to a model with the same vertex colour classes as the model under consideration240

but with no edge colour classes. This yields an estimate K̃, which is also the MLE under this241

hypothesis and is formed by taking simple averages over corresponding diagonal elements of242

W . Hence K̃ has positive diagonal elements. We then replace the diagonal elements of Ǩ by243

the corresponding elements of K̃.244

If the modified Ǩ is still not positive definite, let diag(Ǩ) be the diagonal matrix with diagonal245

entries being the diagonals of Ǩ. Starting from α = 0.95 and working downwards in steps of246

0.05 we search the largest 0 < α < 1 such that Kα = diag(Ǩ) + α(Ǩ − diag(Ǩ)) is positive247

definite. To obtain numerical stability we then set α ← 0.95α and calculate Kα again and248

take this as the initial value of K.249

Setting method=’matching’ means that we first find an initial estimate of K as described250

above and then perform one iteration of the the scoring algorithm (7). This yields a fast251

estimate of K which is efficient to the first order.252

Comparison of the estimation methods253

The scoring method is in general somewhat faster than iterative partial maximisation, but254

iterative partial maximisation will tend to be more economical in terms of space requirements.255

4.3. Likelihood analysis of RCOR models256

For an RCOR model (V, E) we write K(η, δ) = A(η)C(δ)A(η). Then A is diagonal and257

consists of the inverse partial standard deviations while C has ones on the diagonal and will258

contain minus the partial correlations on the off diagonals. The log likelihood is259

logL =
f

2
log det(C) + f log det(A)− 1

2
tr(ACAW ). (13)

4.4. Algorithms for estimation in RCOR models260

This section describes two iterative algorithms for estimation in RCOR models.261

Scoring algorithm262

As for RCON models, Fishers method of scoring can be applied for solving the likelihood263

equations. It is convenient to parametrise the model with λu = log ηu in which case the score264

becomes265

Su(λ, δ) =

{
f tr(T u)− tr(T uACAW ) for u ∈ V
f tr(T uC−1)/2− tr(T uAWA)/2 for u ∈ E . (14)
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Differentiating further and changing sign yields the observed information matrix266

J(λ, δ)uv =


2 tr(T uAWAT vC) for u, v ∈ V, u = v
tr(T uAWAT vC) for u, v ∈ V, u 6= v
tr(T uAWAT v) for u ∈ V, v ∈ E
f
2 tr(T uC−1T vC−1) for u, v ∈ E .

(15)

Taking expectations gives the Fisher information matrix,267

I(λ, δ)uv =


2f tr(T uC−1T vC) for u, v ∈ V, u = v
f tr(T uC−1T vC) for u, v ∈ V, u 6= v
f tr(T uC−1T v) for u ∈ V, v ∈ E
f
2 tr(T uC−1T vC−1) for u, v ∈ E .

(16)

Using method=’scoring’ for RCOR models invokes the iteration (7) with score and infor-268

mation given by (14) and (16). For RCOR models we have found that the iteration (7)269

can lead to a decrease of the log likelihood. When this occurs, the step size [I(λ, δ) +270

S(λ, δ)S(λ, δ)>/f ]−1S(λ, δ) is repeatedly halved until the log likelihood has increased.271

Iterative partial maximisation272

Contrary to RCON models, the restrictions on the concentration matrix are in general not273

linear in η and δ for RCOR models. However, for known η, the restrictions are linear in δ and274

for known δ, the restrictions are quadratic in η. This suggests to estimate the parameters by275

alternating between η and δ as follows:276

1. Suppose that C is known, i.e. that δ is known. Then we maximize logL over η. Max-277

imising logL over a given ηu keeping the other ηs fixed yields a 2nd order equation278

which has a unique positive root. Note that ηu depends on the remaining ηs. Therefore,279

we must iterate to solve for η. For the specific form of these equations we refer to280

Højsgaard and Lauritzen (2007).281

2. Suppose that A is known, i.e. that η is known and let Q = AWA. Then tr(ACAW ) =
tr(CQ) and logL can be maximized over δ by maximising

logL(δ) =
f

2
log |C| − 1

2
tr(CQ)

This maximisation can be made by applying the IPM algorithm for RCON models to the282

off–diagonal elements of C only, letting Q play the role as W in the likelihood equations283

for RCON models. That is, the diagonal elements of C remain constantly equal to one.284

Atomic edge colour classes are updated with an IPS step and composite edge colour285

classes are updated with the modified Newton algorithm.286

The method=’ipm’ in gRc for RCOR models is used for the scheme where IPS is applied287

whenever possible (i.e. for neutral sets and for atomic edge colour classes) and where (9) is288

applied for all composite colour classes.289
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Starting values290

Starting values for RCOR are obtained as follows: First rescale data to have unit variance291

and find an initial estimate Ǩ by score matching as if the model were an RCON model, see292

Section 4.2 for details.293

Next we force Ǩ to satisfy the RCOR model as follows: Let diag(Ǩ) be the diagonal matrix294

with diagonal entries being the diagonals of Ǩ. Since K = ACA we set Ǎ =
√

diag(K) and295

Č = Ǎ−1KǍ−1, i.e. we rescale Ǩ to have ones on the diagonal to obtain Č. Elements of Ǎ296

and Č which under the model are restricted to being identical are replaced by their average.297

Now Ǎ is necessarily positive definite. If also Č is positive definite then we take the starting298

value of K to be ǍČǍ.299

If Č is not positive definite then adopt the same strategy as for RCON models by rescaling300

the off-diagonals of Č towards zero until a positive definite matrix Cα is obtained. We then301

take the starting value of K to be ǍCαǍ.302

As for RCON models one can set method=’matching’ which means that we first find an initial303

estimate of K as described above and then perform one iteration of the scoring algorithm (7).304

Note that the estimated covariances of the parameter estimates may be misleading.305

Comparison of the estimation methods306

For RCOR models the scoring method tends to be slightly faster than iterative partial max-307

imisation.308

5. Model editing

Before discussing further statistical aspects of gRc we shall in this section describe methods309

for modifying RCOX models. The modification is made by the update function. The new310

model is fitted if the original model is fitted unless fit=FALSE is specified to the update311

function. To explicitly fit a model, use the fit() function.312

5.1. Joining and splitting colour classes313

Colour classes can be joined and split using the update function. For example, joining the314

edge colour classes an:st and me:ve + me:al can be achieved by:315

update(m1, joinecc = list(~an:st, ~me:ve + me:al))

RCON model: logL= -1281.271 dimension= 6 method= scoring time= 0.03

vcc: ~al, ~me + st, ~ve + an

ecc: ~al:an, ~ve:al + al:st, ~an:st + me:ve + me:al

These colour classes are number 2 and 3 in the list of edge colour classes, cfr. Section 3.4.316

They can hence also be joined by317

update(m1, joinecc = getecc(m1)[c("ecc2", "ecc3")])
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This approach is more convenient if e.g. programming a model selection strategy. Likewise a318

vertex colour class can be split by319

update(m1, splitvcc = ~ve + an)

or by320

update(m1, splitvcc = getvcc(m1)["vcc3"])

5.2. Adding and dropping edge colour classes321

Adding an edge colour class corresponds to adding a set of edges to the graph and forcing322

these to be in the same colour class. Dropping an edge colour class corresponds to deleting323

a set of edges from the graph. (Corresponding operations on vertex colour classes make no324

sense.) For example:325

update(m1, addecc = ~me:an + ve:st)
update(m1, dropecc = ~me:ve + me:al)

6. Methods for comparison of colour classes

This section describes methods for investigating model reductions. That is 1) investigate if326

the parameters for two colour classes u and v in a model are significantly different (so that u327

and v can be joined) and 2) investigate if the parameter for an edge colour class u in a model328

is significantly different from zero (so that u can be dropped). We also described methods329

investigating model expansions. That is 1) investigate if a composite colour class can be split330

into atomic colour classes and 2) investigate if an atomic edge colour class can be added to331

the model.332

The output of these methods is a list with two components: 1) a data frame with the results333

of the tests and 2) a list of the colour classes.334

6.1. Model comparison335

Model reductions Consider a modelM0 and two colour classes u and v (of the same type)
inM0. The feasibility of joining u and v can be judged by the likelihood ratio statistic. This
requires fitting a new modelM1 ⊂M0 in which u and v are joined. ThenM1 can be tested
againstM0 with a deviance (likelihood ratio) test statistic

D = −2 logLR10 = −2 log
L1

L0
.

To avoid fitting the modelM1, one can instead use the Wald statistic

W =
(θ̂u − θ̂v)2

Var(θ̂u − θ̂v)
.
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The asymptotic variance of the difference is obtained from the inverse Fisher information336

matrix. Both statistics have under the hypothesis approximately a χ2
d distribution where337

d = df1 − df0. The same alternatives are available for testing if the parameter θu for an edge338

colour class is zero. This generalises immediately to cases where several colour classes are339

compared simultaneously.340

The comparisons can also be made using AIC (Akaike 1974) and BIC (Schwarz 1978). With
reference to the setup above,M1 is preferred toM0 (according to BIC) if

∆BIC = −D + (df0 − df1) log n > 0,

otherwiseM0 is preferred. If using AIC, log n is replaced by 2 above. Because the Wald and341

the deviance statistics are asymptotically equivalent we can calculate an approximation to342

AIC/BIC by replacing D with W .343

Functions for making model reductions accept a stat keyword. Default is stat=’wald’344

because it is the fastest to calculate.345

Model expansions Consider a model M0 and a composite colour class u in M0. The346

feasibility of splitting u can be judged by the likelihood ratio statistic. This requires fitting a347

new model M1 ⊃M0 in which u is split. The deviance becomes D = −2 log(L0/L1). When348

models are expanded, the Wald statistic is not available as the larger model has not been349

fitted to data. Apart from that everything else is as above.350

Consequently, functions for model expansion are all based on the deviance statistic and do351

therefore not accept a stat keyword.352

6.2. Model reductions353

Pairwise comparisons of edge/vertex colour classes can be made using the comparecc function.354

To compare two specific edge colour classes using the deviance statistic do:355

ctab <- comparecc(m1, cc1 = list(~me:ve + me:al, ~ve:al +
al:st), cc2 = list(~an:st, ~al:an), type = "ecc", stat = "dev")

Comparing colour classes of type: ecc using statistic: dev

cc1 cc2 X2 df p aic bic

1 ecc1 ecc1 3.122960 1 0.0771964605 -1.122960 1.3543773

2 ecc1 ecc2 11.989965 1 0.0005348778 -9.989965 -7.5126287

3 ecc2 ecc1 5.430822 1 0.0197843675 -3.430822 -0.9534849

4 ecc2 ecc2 4.798558 1 0.0284835737 -2.798558 -0.3212208

cc1:

ecc1 ~me:ve + me:al

ecc2 ~ve:al + al:st

cc2:

ecc1 ~an:st

ecc2 ~al:an

Available components: tab cc1 cc2

According to this table, the colour classes ecc1 from cc1 and ecc1 from cc2 are not signifi-356

cantly different according to a significance test and BIC.357
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In comparecc all colour classes specified in cc1 are compared with all those given in cc2358

(duplicate entries are not compared). If cc2=NULL (the default) then all colour classes specified359

in cc1 are compared with all colour classes in the model except those specified in cc1. If360

cc1=NULL (the default) and cc2=NULL then all pairwise comparisons are made.361

Joining colour classes Joining colour classes leads to a model reduction. The join1362

function is essentially a wrapper for comparecc. Based on the Wald statistic (the default)363

the pairwise comparisons of the colour classes of a specific type are made. The set of colour364

classes under consideration can be restricted using the scope argument (default is that all365

colour classes are considered) e.g.366

join1(m1, scope = list(~an:st, ~me:ve + me:al, ~ve:al + al:st),
type = "ecc")

Comparing colour classes of type: ecc using statistic: wald

cc1 cc2 X2 df p aic bic

1 ecc1 ecc2 3.011035 1 0.08269946 -1.011035 1.4663017

2 ecc1 ecc3 5.180254 1 0.02284499 -3.180254 -0.7029171

3 ecc2 ecc3 3.318470 1 0.06850555 -1.318470 1.1588667

cc1:

ecc1 ~an:st

ecc2 ~me:ve + me:al

ecc3 ~ve:al + al:st

cc2:

ecc1 ~an:st

ecc2 ~me:ve + me:al

ecc3 ~ve:al + al:st

Available components: tab cc1 cc2

Dropping edge colour class It is possible to test if the parameter for an edge colour367

class is zero. (Such a test makes no sense for vertex colour classes). The set of edge colour368

classes under consideration can be restricted using the scope argument (default is that all369

edge colour classes are considered) e.g.370

drop1(m1, scope = list(~al:an, ~an:st, ~me:ve + me:al))

Statistic: wald

cc X2 df p aic bic

1 ecc1 26.921316 1 2.119089e-07 -24.921316 -22.443979

2 ecc2 5.614091 1 1.781662e-02 -3.614091 -1.136754

3 ecc3 44.200423 1 2.964173e-11 -42.200423 -39.723086

cc:

ecc1 ~al:an

ecc2 ~an:st

ecc3 ~me:ve + me:al

Available components: tab cc

6.3. Model expansions371
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Splitting colour classes Splitting a (composite) colour class leads to a model expansion.372

To investigate if edge colour class in m1 can be split do:373

split1(m1, scope = list(~ve:al + al:st, ~me:ve + me:al),
type = "ecc")

cc X2 df p aic bic

1 ecc1 0.2306087 1 0.6310729 1.769391 4.246728

2 ecc2 0.1719902 1 0.6783491 1.828010 4.305347

cc:

ecc1 ~ve:al + al:st

ecc2 ~me:ve + me:al

Available components: tab cc

Thus there is no evidence that splitting either of the composite edge colour classes would374

significantly enhance the fit of the model. Note that splitting a composite colour class into375

atomic colour classes can lead to fairly large increase in the model complexity, i.e. in the376

number of parameters in the model.377

Adding edge colour class In the same spirit one can make a test for addition of (atomic)378

edge colour classes to the model:379

add1(m1)

cc X2 df p aic bic

1 ecc1 0.2475697 1 0.6187915 -1.752430 -4.229767

2 ecc2 0.1480575 1 0.7003987 -1.851943 -4.329279

3 ecc3 0.9819775 1 0.3217111 -1.018023 -3.495359

4 ecc4 0.2666198 1 0.6056083 -1.733380 -4.210717

cc:

ecc1 ~an:me

ecc2 ~me:st

ecc3 ~an:ve

ecc4 ~st:ve

Available components: tab cc

Hence there is no evidence that adding addtional (atomic) edge colour classes to the model380

would significantly enhance the fit of the model.381

7. Stepwise procedures

This section contains a description of functions for stepwise model selection. The output of382

these methods is either a new model object or NULL if no change was made. These functions383

are based on repeated applications of the functions described in Section 6, and therefore their384

arguments are similar. Default is that the selection criterion is AIC.385
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7.1. The need for selection strategies386

The number of different models which can be formed by colouring edges/vertices in a given387

graph is enormous. To illustrate the complexity, consider graphs with three vertices (for which388

there are 8 different graphs). A tedious enumeration shows that there are in total (over all 8389

graphs) 15 possible edge colour classes. There are 5 possible vertex colour classes which gives390

5 × 15 = 75 different models. Therefore, good model selection strategies become important.391

This section discusses methods which would be part of model selection strategies; however392

much additional work is required in this area.393

7.2. Nested versus non–nested models394

It should be noted that addition of an edge to a coloured graph can have different meanings:395

The model M0 in Figure 5 is given by [1][2][3](1:2, 2:3). Consider addition of the edge 2:3 in396

M0. If a new colour class is formed as in M1 then M1 will contain M0 and these two models397

can be tested e.g. with a deviance test. An alternative is to add the edge to the already398

existing colour class as in M2. In that case, M0 and M2 are not nested. Likewise dropping399

e.g. 1:2 from M0 does not lead to a model reduction. A model comparison can however be400

made in terms of AIC or BIC.401

The methods described in the following all act within nested models and hence AIC and BIC402

as well as significance testing can be used as selection criteria.403

.
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Figure 5: Illustration of addition of the edge 2:3 to a coloured graph. If the edge is added
to M0 by forming a new edge colour class as in M1, then M0 and M1 are nested and can
be tested. Alternatively, the edge can added to an existing edge colour class as in M2. The
models M0 and M2 are then not nested.

7.3. Aspects of stepwise procedures404

Stepwise joining of the two most homogeneous colour classes In RCOX models,405

model reductions can be achieved by joining colour classes. Suppose there are p colour classes406

of a given type, e.g. edge colour classes. The number of ways these can be combined for407

joining is enormous. Therefore we consider only to join pairs of colour classes and there are408

p(p− 1)/2 such pairs to consider. We say we join the two most homogeneous colour classes.409

The stepjoin1 function facilitates doing this in a stepwise fashion.410

Stepwise dropping of the least significant edge colour class Model reductions can411

also be achieved by dropping edge colour classes, which is the counterpart to dropping in-412

significant edges in GGMs. The stepdrop1 function facilitates doing this.413
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Stepwise splitting of the most heterogeneous composite colour class In RCOX414

models, model expansions can be achieved by splitting composite colour classes. Consider a415

composite colour class with p elements. The number of colour classes it can be split into is in416

general very large, so therefore we consider only the operation of splitting into atomic colour417

classes. This is done for each composite colour class of a given in turn. The colour class who,418

if split, gives the the largest improvement in model fit (i.e. the smallest p–values (smaller than419

the critical level) in terms of significance testing) is said to the most heterogeneous. This leads420

to splitting of the most heterogeneous colour class. If a colour class with p elements is split421

into atoms there dimension of the model will increase by p − 1. The stepsplit1 function422

facilitates doing this.423

Stepwise addition of the most significant atomic edge colour class Model expan-424

sions can also be achieved by adding edge colour classes to a model in a stepwise fashion.425

This is the counterpart to stepwise addition of edges in GGMs. If p edges missing from the426

graph the number of possible edge colour classes which can be formed becomes enormous –427

even for small p. Therefore we only consider adding the most significant atomic edge colour428

class. The stepadd1 function facilitates doing this.429

7.4. Stepwise model reductions430

Stepwise join of colour classes Starting from the butterfly model m0 we first join vertex431

colour classes and then join edge colour classes afterwards:432

m01 <- stepjoin1(m0, type = "vcc")

Stepwise joining of colour classes of type: vcc using statistic: wald ;criterion: aic alpha: 0

Joining: ~ve; ~an

X2: 0.059888 df: 1 p: 0.806673 aic: 1.940112 bic: 4.417449

Joining: ~me; ~st

X2: 0.954332 df: 1 p: 0.328619 aic: 1.045668 bic: 3.523005

RCON model: logL= -1279.506 dimension= 9 method= scoring time= 0.04

vcc: ~al, ~ve + an, ~me + st

ecc: ~me:ve, ~me:al, ~ve:al, ~al:an, ~al:st, ~an:st

m02 <- stepjoin1(m01, type = "ecc")

Stepwise joining of colour classes of type: ecc using statistic: wald ;criterion: aic alpha: 0

Joining: ~me:ve; ~me:al

X2: 0.175196 df: 1 p: 0.675534 aic: 1.824804 bic: 4.302140

Joining: ~ve:al; ~al:st

X2: 0.229890 df: 1 p: 0.631605 aic: 1.770110 bic: 4.247447

RCON model: logL= -1279.710 dimension= 7 method= scoring time= 0.03

vcc: ~al, ~ve + an, ~me + st

ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

The resulting model (which is identical to m2 in Section 3) is shown in Figure 6.433



Journal of Statistical Software 21

al
an

me

st

ve

Figure 6: The model obtained after 1) first successively joining vertex colour classes and 2)
then successively joining edge colour classes.

Stepwise drop of edge colour classes Dropping edge colour classes leads to a model434

reduction. The stepdrop1 function tests for deletion of each edge colour class in the model435

and deletes the least significant of these. Using 0.01 as significance level we can do:436

stepdrop1(m1, criterion = "test", alpha = 0.01)

In this case, the function returns NULL because it is not feasible to drop any of the edge colour437

classes.438

7.5. Stepwise model expansions439

Stepwise split of composite colour classes The split operation for colour classes can440

be applied in a stepwise fashion. The model in Figure 7, left is given by:441

m2 <- rcox(vcc = list(~al + me + st, ~ve + an), ecc = list(~me:ve +
me:al + ve:al, ~al:an + al:st + an:st), data = math)

Splitting first vertex colour classes gives the middle graph in Figure 7. Continuing and442

splitting edge colour classes gives the rightmost graph:443

m3 <- stepsplit1(m2, type = "vcc")

Stepwise splitting of colour classes, type: vcc

criterion: aic alpha: 0

Splitting: ~al + me + st

X2: 85.408451 df: 2 p: 0.000000 aic: -81.408451 bic: -76.453777

RCON model: logL= -1284.651 dimension= 6 method= scoring time= 0.03

vcc: ~ve + an, ~al, ~me, ~st

ecc: ~me:ve + me:al + ve:al, ~al:an + al:st + an:st

m4 <- stepsplit1(m3, type = "ecc")
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Stepwise splitting of colour classes, type: ecc

criterion: aic alpha: 0

Splitting: ~al:an + al:st + an:st

X2: 8.028886 df: 2 p: 0.018053 aic: -4.028886 bic: 0.925788

RCON model: logL= -1280.637 dimension= 8 method= scoring time= 0.05

vcc: ~ve + an, ~al, ~me, ~st

ecc: ~me:ve + me:al + ve:al, ~al:an, ~al:st, ~an:st

al
an

me

st

ve
al

an

me

st

ve
al

an

me

st

ve

Figure 7: Left: Starting model. Middle: Model after splitting vertex colour classes. Right:
Model after also splitting edge colour classes

Stepwise addition of (atomic) edge colour classes Adding an (atomic) edge colour444

class leads to a model expansion. The stepadd1 function will take any edge not in the model445

and try to add. The edge with the smallest p–value (not larger than α) will be added. The446

test made here is always a deviance test:447

stepadd1(m1, criterion = "test")

In this case, the function returns NULL because it is not feasible to add any edge colour classes.448

8. Discussion and perspectives

We have described an R package gRc for statistical inference in RCON and RCOR models.449

These models have been described in some detail, including a description of various algorithms450

for maximum likelihood estimation. For further details on the models and their properties451

we refer to Højsgaard and Lauritzen (2007).452

The facilities of this package cover model editing functions, functions for comparing colour453

classes and stepwise model selection functions. These facilities are described. We have also454

presented some examples of how to use the package.455

Improvements of gRc can be made in several directions of which we outline some here:456

i) The current implementation of gRc is made entirely in R. The computing time could be457

reduced by implementing larger parts of the algorithms, in particular the iterative partial458

maximisation, in a compiled language. Further, it would be desirable to develop faster faster459

estimation algorithms such that gRc can be applied to problems of higher dimension.460

ii) Additional model selection criteria and strategies in RCON and RCOR models must be461

investigated further and implemented.462
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Finally, gRc should be integrated more closely with other packages in created in the gR463

initiative; most importantly the gRbase package, Dethlefsen and Højsgaard (2005) and the464

ggm package, Marchetti and Drton (2006).465
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A. Additional aspects of the package

This section describes a few additional aspects of the package.469

A.1. Controlling the estimation methods470

The rcox function is controlled by the control argument which is a list with named entries.471

The details of this list is given in the documentation of the rcox function. Here we mention472

a few important issues.473

The iterations in the scoring and iterative partial maximisation methods are controlled as474

follows: With iterative partial maximisation there are an outer and an inner loop, cfr. Sec-475

tion 4.2.2 and the maximum number of iterations are controlled by setting e.g. maxouter=10476

and maxinner=5 in the control list. The number of iterations for the scoring method is477

controlled by maxouter.478

A colour class is essentially either a list of edges or a list of vertices. For high dimensional479

models these lists can be very long and displaying them on the screen can be confusing.480

Setting short=TRUE in the control list implies that the colour classes are not printed. Note481

that the colour classes can however be retrieved using the getvcc and getecc functions.482

The methods described in Sections 6 and 7 can all be given a details keyword. Default483

is details=1 which produces a reasonable amount of output. Increasing details produces484

more output while setting details=0 suppresses all output.485

A.2. Deferring model fitting486

Default for rcox as well as for all functions described later for editing models is that the model487

is fitted. To avoid fitting, one can supply rcox with the argument fit=FALSE. To explicitly488

fit a model use the function fit.489

A.3. Specification of colour classes in different forms490

Colour classes can be specified as a list of formulae, as well as a list of lists. For example,491

rcox(vcc = list(~me + ve + al, ~st), data = math)
rcox(vcc = list(list("me", "ve", "al"), list("st")), data = math)

both represent the same models with restrictions on the vertices. Likewise,492
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rcox(ecc = list(~me:ve + me:al, ~ve:al), data = math)
rcox(ecc = list(list(c("me", "ve"), c("me", "al")), list(c("ve",

"al"))), data = math)

specify the same models with restrictions on the edges. The representation as a list of lists is493

convenient in connection with programming an automatic model search strategy.494

Following these conventions the scope for the functions in Section 6 and 7 can be represented495

in two different ways. For example:496

add1(m1, scope = list(c("an", "me"), c("me", "st")))
add1(m1, scope = list(~an:me, ~me:st))
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