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Abstract: It is shown how the computational scheme of Lauritzen and Spiegelhalter (1988) tan be 
exploited to perform the E-Step of the EM algorithm when applied to finding maximum likelihood 
estimates or penalized maximum likelihood estimates in hierarchical log-linear models and 
recursive models for contingency tables with missing data. The generalization to mixed association 
models introduced in Lauritzen and Wermuth (1989) and Edwards (1990) is indicated. 
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1. Introduction 

The EM algorithm has been Object of considerable interest since the Paper of 
Dempster et UZ. (1977). It has proved a flexible tool for calculating maximum 
likelihood estimates in a variety of Problems involving missing data or incom- 
plete information in some sense. 

In models with latent structure (Lazarsfeld and Henry, 1968) data are missing 
systematically. The algorithm was used in a special case of this by Dawid and 
Skene (1979). 

In connection with log-linear models for contingency tables, the algorithm 
was studied by Fuchs (1982) extending work of Chen and Fienberg (1974, 1976) 
and Hocking and Oxspring (1974). Fuchs (1982) seems to consider the E-Step of 
the algorithm as uninteresting, writing on p. 272 that “Similar formulas tan be 
easily written for any log-linear model . . . “. However, even though this is correct 
in principle, the computational effort involved in the E-Step tan be considerable, 
and efficient methods are needed, since this computation must be repeated 
many times. Some gain of efficiency is obtained by exploiting collapsibility 
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(Geng and Asano, 1988). In the present note it is shown how to exploit the 
computational scheme of Lauritzen and Spiegelhalter (1988) to perform the 
E-Step of the algorithm in log-linear models. Later we show how this extends to 
recursive models for contingency tables. The methods extend and complement 
some of those developed by Lander and Green (1987) in a genetical context. 

Section 2 reviews notation and basic estimation theory for log-linear models. 
Section 3 describes the EM algorithm as it appears in this Problem. Section 4 
gives a brief description of the computational procedure of Lauritzen and 
Spiegelhalter, and how it tan be exploited. Section 5 discusses the algorithm 
applied to recursive models. Finally Section 6 indicates how the computations 
tan be performed in the case of mixed graphical interaction models with both 
discrete and continuous variables. 

2. Hierarchical log-linear models 

We consider log-linear models for contingency tables in the case of multinomial 
sampling and use the notation from Darroch et al. (1980) or Lauritzen (1989). 

Hence A is a finite set of criteria or variables with possible level sets 16, 6 E A. 
The set of cells of the table is the product I= X,,,I,. In the case of complete 
Observation, the basic data are the set (n(i)),, I of counts which follow a 
multinomial distribution: 

PIN(i) =n(i), i EI} = (.(i~NEI) ~p(i)“? 
9 

This is a consequence of the counts being obtained by adding up over iV 
independent cases il, . . . , iN such that 

n(i) = t x”(i), where 
v=l 

x”(i) = 1 if i”=i 
0 otherwise. 

A hierarchical log-linear model is specified by a generating class A of subsets 
of A, representing’the restriction that 

log&= CF,, (1) 
lZEA 

where F, are the factor subspaces of functions that only depend on coordinates 
in a 

x E F, =x(i,) =x(j,) whenever i, =j,. 

Here i, = (is)s Ea is an element of the set of a-marginal cells Ia = X, E,I,. See 
for example Darroch and Speed (1983) for further details. 

A hierarchical log-linear model is a regular exponential family in the sense of 
Barndorff-Nielsen (1978). Therefore the maximum likelihood estimates, in the 
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case of complete data, are obtained by equating the observed value of the 
sufficient statistic to its expectation, leading to the equations 

NP(&) = n(i,), a EA, i, EI,, (2) 
where n(i,> are the marginal counts, n(i,> = Cj: ja=iln(j), see, for example, 
Andersen (1974) or Haberman (1974a). 

The System of equations (2) does not always possess a Solution within the class 
of probabilities specified, but if the model is extended to include weak limits of 
probabilities satisfying (11, it does (Lauritzen, 1989). In general, iterative algo- 
rithms such as iterative proportional scaling (Darroch and Ratcliff, 1972) have to 
be used, but in the case where A is decomposable, (2) has the explicit Solution 

I-I 
a(i) = 

.E‘4aJ 
rI S,sn(i,)“‘“’ ’ 

(3) 

where S is the set of separators (sj, j = 2,. . . , n) obtained when organizing the 
elements of A in a sequence (a,, . . . , a,) having the running intersection property 

si=ajn(al U 0-e U aj_,) ca, for some i <j, 

each separator s appearing V(S) times in the sequence (Haberman, 1974a; 
Andersen, 1974; Darroch et UZ., 1980). 

3. The EM algorithm 

The EM algorithm in the form that we need it in the present Paper, is based on 
forming the conditional expectation of the log-likelihood function for complete 
data, given the observed data 

Q@‘N> =E,{log f(JmqIY}, (4) 
where X is the random variable corresponding to the complete (unobserved) 
data having density f, whereas y = g(x) is the observed data. When 13 is fixed, 
the process of determining this expectation as a function of 0’ is referred to as 
the E-Step. The algorithm then alternates between the E-Step and the M-Step, 
which maximizes Q in 8’. The algorithm has generalizations called GEM 
algorithms which appear by not necessarily maximizing Q but only finding a 
value of 8’ that makes Q(e’ 10) strictly increase over Q(8 (0). It is also possible 
to add a penalty to the log-likelihood function, calculating instead 

Q*(e’ 1 e) = Q(e’ 1 e) -.qe’), 

at the E-Step, where J(0) is a penalty, for example obtained from a Prior density 
proportional to exp{ -J(0)} (G reen, 1990). This leads to maximization of the 
penalized log-likelihood function log L(8) -J(e). In the case of a log-linear 
model, the log-likelihood function for the complete data is a linear function of 
the set of sufficient marginals 

n(iJ7 aEA,iaEI lz’ 
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Therefore the E-step is equivalent to calculating the expected marginal counts 

n* (i,) = EP{ N( i,) 1 observed data} . 

Similarly the M-Step tan be identified with solving 

np(i,> = n*k(i,>, a EA, i, EI,, (5) 

for p, which maximizes the likelihood function, assuming the expected counts 
were the true counts. The equation (5) was found in the exponential family case 
by Martin-Löf (19661, and established by Sundberg (1972, 19741. For the 
log-linear model it tan be found in Haberman (1974b) just in a somewhat 
different notation. Sundberg (1976) also exploited the results to construct the 
EM algorithm for exponential families and study its properties. 

The M-Step is computationally equivalent to solving the likelihood equations 
(2). Here we show how to perform the E-Step. 

Assume that we have N independent observations ibl, i$, . . . , i$, such that 
for case u we have only observed the value of variables in the set b”. Then we 
find 

n*(i,) = 5 E,{x”(i,) I ibl,. . .,i$} 
u=l 

= 5 E,(x’(i,) l i$} 
u=l 

= E p(i, l i&), 
u=l 

(6) 

where we have let 

x"(L) = 
1 ifi,U=i, 
0 otherwise. 

What remains to be observed is that the Lauritzen-Spiegelhalter procedure 
for probability propagation is an efficient method of calculating the individual 
terms in (6). We describe this in more detail in the next section. For computa- 
tional efficiency one would of course collect cases with identical observations in 
groups and only calculate p(i, ( i,) once for each of these identical terms. 

4. Probability propagation 

This section describes briefly the procedure of Lauritzen and Spiegelhalter 
(19881, essentially in the form given by Jensen et UZ. (1990) and implemented in 
the program HUGIN (Andersen et UL, 1989). The reader is referred to these 
references, Dawid (1992), or Spiegelhalter et al. (1993) for further details. Only 
the initialization differs since we begin with a log-linear representation instead 
of conditional probability tables. 
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First the 2-section graph of the generating class A is formed, being the 
undirected graph with the elements of A as vertices and edges between pairs 
{6,, 6,) CA having {Sr, SJ ca for some a EA. 

Then this graph has to be triangulated, i.e. edges are added until all cycles of 
length four or more possess chords. Kjaerulff (1990, 1992) investigates good 
heuristic algorithms for doing this. 

The set C of cliques (maximal complete subsets) of the triangulated graph is 
arranged in a junction tree of belief Universes having the property that the 
intersection c fl d of any two cliques (universes) are subsets of all cliques on the 
path between c and d in the tree. This is essentially equivalent to arranging the 
cliques in a sequence with running intersection property. 

From the log-linear representation of p, a factorization of the type 

is obtained, where S is the list of separators, being identical to the intersections 
of pairs of neighbouring Universes in the junction tree. The ‘Same separator set 
may appear several times in S, but the functions I,!J~, may be different, compare 
with (3). 

The functions +,, u E C U S, are stored as potential tables associated with 
each universe/ separator. 

Evidente is entered to the belief Universes in the way that if i, has been 
observed for a given case, then for some c E C containing 6, the function I), is 
multiplied with the corresponding indicator function to obtain 1+5, where then 

if i, = ii 
otherwise. 

This is done for all variables S E b”, where b” is the set of variables observed at 
case v. 

The calculations are performed via a message passing scheme. The basic 
Operation is that a universe a absorbs information from a neighbour b as follows 

C 4,(jb> 

kznbkznb) + c @b(jb). 

jb: jbnacibna 

Thus the potential functions associated with the absorbing universe and the 
separator Change. The expression (7) clearly remains invariant under the opera- 
tion. 

The message passing scheme involves two Passes. First a universe r is Chosen 
as the root of the tree and r collects evidente by asking each of its neighbours for 
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a message. Before these neighbours send, they in turn ask their neighbours etc. 
until the requests resch the leaves of the tree. Messages are then sent towards 
the root r. 

When the root has received its messages it distributes evidente by sending to 
all its neighbours who again send to their neighbours and so on. When the 
distributed evidente reaches the leaves_of the tree, the process terminates and 
all Universes hold modified Potentials @, that satisfy 

&,(i,) ap(i, 1 ib”) for all u E CU S, 
i.e. these are proportional to the conditional probabilities given the evidente. 
The normalizing constant is equal to the probability of the evidente 

2” = C A(i,) =p(i$), (8) 
i,EI, 

independently of U. For a proof of these assertions see Jensen et al. (1990). 
Since all a EA are subsets of some c E C, the terms in (6) tan now be simply 

calculated as 

pp, ( ib”) = c 4m/~D7 
j,: j,=i 

Cl 

for a suitably Chosen c. 
From (8) it also follows that the log-likelihood function tan be obtained 

basically without computation through 

log L(p) = 2 log p(i&) = $J log 2”. (9) 
u=l’ v=l 

This is useful for monitoring the behaviour of the EM algorithm. 
In the case of a decomposable hierarchical model we have A = C and the 

M-Step is trivial since it follows from (3) that we as Potentials in the next 
iteration tan use 

$,(i,) =n*(i,)/N for 2.4 E CU S. 

In the general case, the next values of $u(i,) must be iteratively calculated 
from n*(i,>, u GA, using for example iterative proportional scaling as men- 
tioned in the previous section. Note that it is not necessary to do a full iterative 
proportional scaling. By only using one cycle of proportional scaling, the 
expected log-likelihood increases strictly, leading to a GEM algorithm. 

5. Recursive models 

It is tempting to use the technique to estimate conditional probabilities in the 
recursive graphical models of Wermuth and Lauritzen (1983), in particular since 
these are used for constructing probabilistic expert Systems (Pearl 1988; An- 
dreassen et al. 1989). In the expert System literature such Markov probabilities 
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are known as influence diagrams, Bayesian belief networks, causa1 probabilistic 
networks or similar terms (Oliver and Smith, 1990; Shafer and Pearl, 1990; 
Spiegelhalter et al., 1993). 

A recursiue graphical model is specified by the unknown probability distribu- 
tion p belonging to the set of distributions that obey the Markov property with 
respect to a directed acyclic graph (Kiiveri et al., 1984; Lauritzen et al., 1990). 
This is equivalent to assuming the existente of a factorization of p into 
conditional probabilities as 

p(i) = JJAP(id Iipa& 

where ps(S) denotes the set of parents of 6. 
If the recursive model has links between all parents that are common to a 

node, the model is equivalent to a decomposable log-linear model (Wermuth 
and Lauritzen, 1983), and the procedure previously described applies directly. A 
special case of this is when the directed graph is a causa1 tree. i.e. it contains no 
loops, in which case the calculations are particularly simple, as exploited in this 
context by Golmard and Mallet (1991). 

To identify the E-Step, we obtain from (10) a factorization of the likelihood 
function for complete data as 

L( P> a c, ( jrIA P(i, 1 i,ad}n(‘) 

(11) 

where cl(6) = 6 U pa(6). We then take conditional expectation of the log-likeli- 
hood function and get, using (4) 

Thus the E-Step tan be performed exactly as before with the only differente 
that the junction tree is initialized with potential functions from the conditional 
probability tables as described by Jensen et al. (1990). 

To identify the M-Step, note that the expression for Q is identical to the 
log-likelihood just with observed data replaced by estimated. The factorization 
(11) displays the likelihood function as a product of likelihood functions L,. 

Since the model sets no further restrictions on the conditional probabilities, 
the joint likelihood function tan be maximized by maximizing each of the 
factors. We therefore obtain that the M-Step lets 

P( iU 1 &?w) = n* (kl(u))/n* (iIxi(U))’ (12) 
In this formula n(i,> = n. This will appear in the denominator whenever a 
variable S has no parents. As in the case of log-linear models, the likelihood 
function is monitored using (9). 
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Assuming the conditional probabilities p( * 1 ipacuj) to be independent and 
Dirichlet distributed with Parameters a(i,,,,,) leads to the penalty 

-J(P) = c c ‘y(~Ci(S)) log P(i, l&(S))’ 
6 ~4 i,l(,)%(S) 

The penalized likelihood has maximum in the posterior mode which tan be 
found iteratively by replacing (12) with 

P(i, 1 &(“)) = 
It* (kl(“)) + +cl(“)) - 1 

‘2”&m(“)) + c&(“)) - 14 1 ’ 
provided this remains positive. Here a(iclcuj) tan be interpreted as Prior counts. 
If these counts are less than 1, the posterior distribution may not have a mode in 
the interior and the above expression tan turn negative. Hence it seems more 
suitable to penalize the likelihood by interpreting the (Y values as counts, 
leading to the iteration 

The Prior distribution described above has also been used in Spiegelhalter 
and Lauritzen (1990) for an approximate Bayesian approach to sequential 
estimation in recursive models. A brief empirical comparison of this procedure 
to maximum penalized likelihood using the EM algorithm is given in Spiegelhal- 
ter et UZ. (1993). 

6. Miscellaneous 

It has been shown how the procedure of Lauritzen and Spiegelhalter (1988) tan 
be used to calculate the terms in the E-Step of the EM algorithm for hierarchi- 
cal log-linear models and recursive models. The present note does not throw any 
additional light on the convergence properties of the EM algorithm which are 
discussed in Wu (1983). Asymptotic properties of estimates obtained in this way 
is treated in Sundberg (1972, 1974). 

The algorithm has been implemented (Thiesson, 1991) using HUGIN for the 
propagation calculations and tested in several examples. Experience indicates 
that with data missing massively and systematically, the likelihood function has a 
number of local maxima and straight maximum likelihood gives results with 
unsuitably extreme probabilities. The penalized likelihood seems to perform 
much better. 

The EM algorithm is known to converge relatively slowly when it is getting 
close. It turns out that the gradient of the likelihood iünction tan be calculated 
with essentially the same amount of work as is involved in the E-Step of the EM 
algorithm. It is therefore conceivable that algorithms exploiting the gradient 
could be preferable. 
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As an alternative, the related computational scheme described in Shenoy and 
Shafer (1990) could be used for the probability propagation in the E-Step. 

Finally it deserves mention that the procedure tan be generalized to work for 
the mixed graphical association models of Lauritzen and Wermuth (1989) and 
the mixed hierarchical models of Edwards (1990) in cases where the joint 
distribution of the random variables involved is a CG-distribution. For these 
models the propagation scheme of Lauritzen (1992) tan be used to calculate the 
conditional moments in the E-Step. The explicit formulae in Frydenberg and 
Lauritzen (1989) may then be used for the M-Step in the decomposable case, 
whereas iteration using the algorithm of Frydenberg and Edwards (1989) - 
implemented in the program MIM (Edwards 1989) - must be used in general. 
We abstain from giving a further description of the mixed case here. The case is 
quite analogous, although with somewhat more complex detail. In the special 
case of a saturated and homogeneous model, the algorithm has been discussed 
by Little and Schluchter (1985). 
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