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Abstract

We derive a simple inequality for the probability of observing a given DNA profile when assuming a fixed number of unknown

persons have contributed to the mixed stain. We then show how this inequality can be used to obtain an upper bound for the

number of unknown contributors needed to be considered.
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1. Introduction

Suppose that evidence in a given crime case is available in

the form of a DNA profile for a mixed stain, which suggests

that two or more persons may have contributed to the

mixture. The contributors to the mixture could possibly

be persons with known DNA profiles, such as the victim

and suspect, but possibly also unknown individuals. Further-

more, suppose there is uncertainty or dispute about the total

number of contributors involved.

As it is impossible to evaluate the strength of evidence for

all possible numbers of contributors, it is of interest to

identify an upper bound b on the unknown number of

contributors worth considering.

This issue has, for example, been discussed in [1–3]. It

can be argued that, usually, this upper bound can be set to be

equal to the minimal number of contributors necessary to

explain the number of different alleles observed in the

profile. However, the argument leading to this is inexact

and the bound is not universally true for small numbers of

contributors, as also pointed out in [2].

The purpose of this note is to derive exact bounds and

illustrate their potential use.

2. The inequality

A typical hypothesis H to be evaluated would specify

both a set of known individuals as contributors to the mixed

stain and a number x of unknown contributors. We assume

M markers are used and denote the observed evidence

profile by E ¼ ðE1; . . . ;EmÞ, with Em being the observed

set of alleles at marker m. Similarly K ¼ ðK1; . . . ;KmÞ are

the alleles carried by the known individuals, and

U ¼ ðU1; . . . ;UmÞ the alleles supplied by the unknown

individuals.

For a hypothesis H involving x unknown individuals, the

relevant likelihood is

PxðEjHÞ ¼ PðUm [ Km ¼ Em; m ¼ 1; :::;MjHÞ

This probability was denoted by Px(U|E) in [2].

Our bound relies on the simple fact that this probability

is necessarily smaller than the probability that none of

the alleles of the unknown contributors are outside those

in E, i.e.

PxðEjHÞ � PðUm � Em; m ¼ 1; :::;MjHÞ (1)

Suppose the M markers are independent and all the

unknown individuals are from the same population. Then

the latter probability is

PðUm � Em; m ¼ 1; :::;MjHÞ ¼
YM
m¼1

X
a2Em

pm
a

 !2x
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where pm
a denotes the frequency of allele a at marker m.

From (1) we thus have that for any x

PxðEjHÞ �
YM
m¼1

X
a2Em

pm
a

 !2x

(2)

If all the possible alleles for all markers are represented in

the evidence profile, the right-hand side of this inequality is

equal to one and therefore useless. And, indeed in this case,

the probability of observing the given evidence tends to one

as the number of unknown contributors tends to infinity.

However, if just some alleles are not represented, the

right-hand side of (2) will tend to zero at an exponential rate

and yield a useful bound for the probability on the left-hand

side. In fact, the right-hand side of (2) is the leading term in

the expansion of Px(E|H) given in [2].

To ensure that Px(E|H) is smaller than a specified number,

say y, x should thus satisfy

YM
m¼1

X
a2Em

pm
a

 !2x

< y

Taking logarithms and isolating x yields the bound

x > bðyÞ ¼ ln y

2
PM

m¼1ln
P

a2Em
pm

a

� �
where the inequality sign has been reversed because the

denominator is negative. Thus,

x > bðyÞ ) PxðEjHÞ � y (3)

The likelihood ratio L needed to evaluate the evidence in

favour of a hypothesis H0 against an alternative hypothesis

H1 has the form

L ¼ Px0ðEjH0Þ
Px1ðEjH1Þ

where xi denotes the number of unknown individuals involved

in the hypothesis Hi. As argued in [1] it is sufficient to give a

lower bound and thus consider a ‘worst case’ scenario in the

denominator. So assume that the probability of the evidence

for a given alternative H1 has been considered.

For y ¼ Px1ðEjH1Þ it now follows from (3) that if the

number of contributors for a given hypothesis x is greater

than b(y), this hypothesis is less likely than H1 and therefore

need not be considered.

3. An example

We illustrate the use of the bound in an example discussed

in [2] involving five DNA markers. The data and appropriate

gene frequencies are given in Table 1.

The hypothesis H0 of the prosecutor is that the evidence

profile consists of DNA from the victim and the suspect, and

under this hypothesis the probability of the evidence is equal

to one. A possible alternative hypothesis H1 is that the

evidence profile consists of DNA from the victim and a

single unknown contributor. The relevant probabilities for

each marker under this hypothesis were computed in [2], as

displayed in the last line of Table 1. Combining over all

markers we find

P1ðEjH1Þ ¼ 0:321 � 0:990 � 0:352 ¼ 0:11186:

The denominator of the bound b(y) is evaluated to be

2
XM
m¼1

ln
X
a2Em

pm
a

 !
¼ 2ðln 0:567 þ lnð0:566 þ 0:429ÞÞ

¼ �1:14748

and therefore alternative hypotheses H* with more than a

single unknown contributor need not be considered, at least

their likelihood will be smaller than that of H1.
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Table 1

Weir’s example

Profile LDLR GYPA HBGG D7S8 GC

Evidence B AB AB AB ABC

Victim B AB AB AB AC

Suspect B A A A B

pA 0.538 0.566 0.543 0.253

pB 0.567 0.462 0.429 0.457 0.195

pC 0.552

P1ðEjH1Þ 0.321 1.000 0.990 1.000 0.352
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