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ESTIMATION OF MEANS IN GRAPHICAL GAUSSIAN MODELS
WITH SYMMETRIES

BY HELENE GEHRMANN AND STEFFEN L. LAURITZEN

University of Oxford

We study the problem of estimability of means in undirected graphical
Gaussian models with symmetry restrictions represented by a colored graph.
Following on from previous studies, we partition the variables into sets of ver-
tices whose corresponding means are restricted to being identical. We find a
necessary and sufficient condition on the partition to ensure equality between
the maximum likelihood and least-squares estimators of the mean.

1. Introduction. The elegant principles of symmetry and invariance appear
in many areas of statistical research [e.g., Dawid (1988), Diaconis (1988), Eaton
(1989), Viana (2008)]. Symmetry restrictions in the multivariate Gaussian dis-
tribution have a long history [Andersson (1975), Andersson, Brøns and Jensen
(1983), Jensen (1988), Olkin (1972), Olkin and Press (1969), Votaw (1948), Wilks
(1946)] and have recently been combined with conditional independence relations
[Andersen et al. (1995), Højsgaard and Lauritzen (2008), Hylleberg, Jensen and
Ørnbøl (1993), Madsen (2000)].

This article is concerned with graphical Gaussian models with symmetry con-
straints introduced by Højsgaard and Lauritzen (2008). The types of restrictions
are: equality between specified elements of the concentration matrix (RCON),
equality between specified partial correlations (RCOR) and restrictions generated
by permutation symmetry (RCOP), a special instance of the former two. The mod-
els can be represented by vertex and edge colored graphs, where parameters asso-
ciated with equally colored vertices or edges are restricted to being identical.

We consider maximum likelihood estimation of a nonzero mean μ subject to
specific equality constraints, assuming the covariance matrix � satisfies the re-
strictions of one of the above models. This could be relevant, for example, if treat-
ment effects are to be estimated in an experiment where the basic error structure
in the units exhibits conditional independencies in a symmetric pattern.

For the Gaussian distribution, maximum likelihood estimation of μ under an
unknown covariance structure is generally nontrivial, as the maximizer of the like-
lihood function in μ for fixed � may depend on �. The least-squares estimator
μ∗, however, is defined by minimizing the sum of squares so that in case of equal-
ity of μ̂ and μ∗, the former is independent of �. Kruskal (1968) showed that for
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FIG. 1. Graphical Gaussian symmetry model supported by Frets’s heads.

for fixed �, and μ in an affine space �, μ̂ and μ∗ agree if and only if � is stable
under �, or equivalently under K = �−1; see also Haberman (1975) and Eaton
(1983). Here we derive a necessary and sufficient condition on the graph coloring
representing a model and the symmetry constraints on the mean vector μ which
ensures this stability and hence equality of estimators.

We let G = (V ,E) denote the dependence graph of the model and let its colored
version be denoted by G = (V, E ), where V denotes a partition of V into vertex
color classes and E a partition of E into edge color classes. The symbol M is to
denote a partition of V such that whenever two vertices are in the same set of M,
the corresponding means are restricted to being equal. The necessary and sufficient
condition for equality of μ̂ and μ∗ in the symmetry model represented by (V, E )

is twofold: (i) the partition M must be finer than V ; and (ii) the partition must be
equitable with respect to every edge color class in E as defined by Sachs (1966).

For example, the graph in Figure 1 represents a graphical Gaussian symmetry
model for data concerning the head dimensions of first and second sons known as
Frets’s heads [Frets (1921), Mardia, Kent and Bibby (1979)]; here L1,B1 denotes
the length and breadth of the head of the first son, and similarly for L2,B2.

This model has previously been found to be well supported by the data
[Gehrmann (2011), Højsgaard and Lauritzen (2008), Whittaker (1990)] when no
constraints were considered on the means. We may, for example, be interested in
the hypothesis that the two lengths have the same mean, and the two breadths have
the same mean, indicating that head dimensions do not generally change with the
parity of the son. We shall demonstrate that this hypothesis is simple in the sense
that the maximum likelihood estimator, or MLE for short, of the mean under this
hypothesis can be found by a simple average. Also, we shall demonstrate that this
is not the case if we consider lengths and breadths separately.

2. Preliminaries and notation.

2.1. Graphical Gaussian models. Let G = (V ,E) be an undirected graph with
vertex set V and edge set E and let Y = (Yα)α∈V be a multivariate Gaussian ran-
dom vector. Then the graphical Gaussian model represented by G is the set of
Gaussian distributions for which Yα is conditionally independent of Yβ given the
remaining variables, denoted Yα ⊥⊥ Yβ | YV \{α,β}, whenever there is no edge be-
tween α and β in G.
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For a multivariate Gaussian N|V |(μ,�) distribution with concentration matrix
�−1 = K = (kαβ)α,β∈V , it holds that Yα ⊥⊥ Yβ | YV \{α,β} if and only if kαβ = 0.
Thus letting S +(G) denote the set of symmetric positive definite matrices indexed
by V whose αβ-entry is zero whenever αβ /∈ E, the graphical Gaussian model
represented by G assumes

Y ∼ N|V |(μ,�), μ ∈ � = R
V ,�−1 = K ∈ S +(G).

For further details, see, for example, Lauritzen (1996), Chapter 5.

2.2. Graph coloring. For general graph terminology we refer to Bollobás
(1998). Following Højsgaard and Lauritzen (2008) we define the following no-
tation for graph colorings. Let G = (V ,E) be an undirected graph. Then a vertex
coloring of G is a partition V = {V1, . . . , Vk} of V , where we refer to V1, . . . , Vk

as the vertex color classes. Similarly, an edge coloring of G is a partition E =
{E1, . . . ,El} of E into l edge color classes E1, . . . ,El . We call a color class con-
taining one element a singleton and a partition containing only singletons as ele-
ments a singleton partition.

Then G = (V, E ) denotes the colored graph with vertex coloring V and edge
coloring E ; we also say that (V, E ) is a graph coloring. We indicate the color class
of a vertex by the number of asterisks we place next to it. Similarly we indicate the
color class of an edge by dashes. color classes which are singletons are displayed
in black and without asterisks or dashes.

2.3. Further notation. As we shall be considering constraints on the mean
vector defined by partitions of the mean vector into groups of equal entries, we
introduce the following notation. For M a partition of V and α,β ∈ V , we write
α ≡ β(M) to denote that α and β lie in the same set in M and let �(M) be the
linear space of vectors which are constant on each set of the partition M:

�(M) = {(xα)α∈V ∈ R
V :xα = xβ whenever α ≡ β(M)}.(1)

For two partitions M1 and M2 of the same set, we shall say that M1 is finer
than M2, denoted by M1 ≤ M2, if every set in M2 can be expressed as a union
of sets in M1. We equivalently say that M2 is coarser than M1.

If A is a set of edges in a graph G, for α ∈ V we shall write neA(α) to denote
the set of vertices which are connected to α by an edge inside A.

We further adopt the following notation from Højsgaard and Lauritzen (2008).
For a colored graph G = (V, E ) and u ∈ V we let T u denote the |V |× |V | diagonal
matrix with T u

αα = 1 if α ∈ u and 0 otherwise. Similarly, for each edge color class
u ∈ E we let T u be the |V | × |V | symmetric matrix with T u

αβ = 1 if {α,β} ∈ u and
0 otherwise.
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3. Maximum likelihood and least-squares estimation. Letting K = �−1 as
above, the density of Y ∼ N|V |(μ,�) is given by

fμ,K(y) = detK1/2

(2π)|V |/2 exp{−(y − μ)T K(y − μ)/2}

so that the likelihood function based on a sample Y = (Y i)1≤i≤n where Y i are
independent, and Y i ∼ N|V |(μ,�) becomes

L(μ,K;y) ∝ detKn/2 exp
{
− ∑

1≤i≤n

(yi − μ)T K(yi − μ)/2
}
.(2)

If μ is unrestricted, so that μ ∈ � = R
V , the likelihood function L in (2) is

maximized over μ for fixed K by the least squares estimator μ∗ = ȳ, and inference
about K can be based on the profile likelihood function

L(μ̂,K;y) ∝ detKn/2 exp{− tr(KW)/2},(3)

where W = ∑n
i=1(y

i − μ∗)(yi − μ∗)T is the matrix of sums of squares and prod-
ucts of the residuals. However, inference about μ when K is unknown and needs
to be estimated is generally not possible, a classic example being known as the
Behrens–Fisher problem [see Scheffé (1944) and Drton (2008)], where � is bi-
variate and diagonal whereas the mean vector satisfies the restriction μ1 = μ2.

Kruskal (1968) found the following necessary and sufficient condition for the
two estimators to agree for fixed �:

THEOREM 1 (Kruskal). Let Y be a random vector in an inner product space
with unknown mean μ in a linear space � and known covariance matrix �. Then
the estimators μ∗ and μ̂ coincide if and only if � is invariant under K = �−1,
that is, if and only if

K� ⊆ �.(4)

Consequently, if (4) is satisfied by all K in a model, the likelihood function can
be maximized for fixed K by μ∗, and inference on K can be based on the profile
likelihood (3).

4. Model types.

4.1. Descriptions. As stated earlier, we consider three model types introduced
in Højsgaard and Lauritzen (2008), which can be represented by colored graphs.
These are discussed briefly here, and we refer to Højsgaard and Lauritzen (2008)
for further details.
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RCON models: Restrictions on concentrations. RCON models place equality
constraints on the concentration matrix K . They restrict off-diagonal elements of
K separately from those on the diagonal, so that the restrictions can be represented
by a graph coloring (V, E ) of G, with V representing the diagonal and E the off-
diagonal constraints. The corresponding set of positive definite matrices is denoted
by S +(V, E ).

RCOR models: Restrictions on partial correlations. RCOR models combine
equality restrictions on the diagonal of K with equality constraints on partial cor-
relations, given by

ραβ|V \{α,β} = − kαβ√
kααkββ

, α,β ∈ V,α 
= β.(5)

Constraints of RCOR models may also be represented by a graph coloring (V, E ),
and we denote the corresponding set of positive definite matrices by R+(V, E ).

RCOP models: Permutation symmetry. RCOP models are determined by dis-
tribution invariance under a group of permutations of the vertices which preserve
the edges of the graph, that is, a subgroup of Aut(G), the group of automor-
phisms of G. For σ ∈ Aut(G), let G(σ) be the permutation matrix representing
σ , with G(σ)αβ = 1 if and only if σ maps β to α, for α,β ∈ V . Then a Gaussian
N|V |(0,�) distribution is preserved by σ if and only if

G(σ)KG(σ)−1 = K.(6)

The RCOP model generated by a group 	 ⊆ Aut(G) assumes

K ∈ S +(G,	) = S +(G) ∩ S +(	),

where S +(	) denotes the set of positive definite matrices satisfying (6) for all
σ ∈ 	 [Højsgaard and Lauritzen (2008)].

4.2. Relations between model types. Under certain conditions on the coloring,
RCON and RCOR models, which are determined by the same colored graph, coin-
cide in their model restrictions. First we define edge regularity of a graph coloring.

DEFINITION 1. Let G = (V, E ) be a colored graph. We say that (V, E ) is edge
regular if any pair of edges in the same color class in E connects the same vertex
color classes.

The relevant result in Højsgaard and Lauritzen (2008) then becomes:

PROPOSITION 1. The RCON and RCOR models, that are determined by the
colored graph G = (V, E ), yield identical restrictions, that is,

S +(V, E ) = R+(V, E )

if and only if (V, E ) is edge regular.
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RCOP models fall into the class of models which satisfy the condition in Propo-
sition 1, as we show below:

PROPOSITION 2. If a colored graph G = (V, E ) represents an RCOP model,
then (V, E ) is edge regular.

PROOF. Let G = (V, E ) represent an RCOP model, generated by permutation
group 	 ⊆ Aut(G), say, and let u ∈ E and e, f ∈ u. By definition, there exists σ ∈
	 mapping e to f while leaving (V, E ) invariant. This implies that the colorings
of the end vertices of e and f must be identical. �

Thus, if for a graph G = (V ,E) we let V and E denote the vertex orbits and
edge orbits of a group 	 ⊆ Aut(G), then S +(G,	) = S +(V, E ) = R+(V, E )

[Højsgaard and Lauritzen (2008)].
For example, since the coloring of the graph in Figure 1 is generated by the

group 	 = {I, σ } with σ simultaneously permuting B1 with B2 and L1 with L2,
the corresponding two sets S +(V, E ) and R+(V, E ) coincide.

5. Equality of maximum likelihood and least-squares estimator. By The-
orem 1, the maximum likelihood estimator μ̂ and least-squares estimator μ∗ agree
for μ in a linear subspace � ⊆ R

V if and only if � is stable under all K in the
model. Below we show that for RCON and RCOR models, and thus also for RCOP
models, invariance of � under K is equivalent to invariance under {T u}u∈V∪E .

PROPOSITION 3. Let G = (V, E ) be a colored graph representing the RCON
model with K ∈ S +(V, E ). Then for � ⊆ R

V ,

K� ⊆ � ∀K ∈ S +(V, E ) ⇐⇒ T u� ⊆ � ∀u ∈ V ∪ E .

PROOF. By definition of RCON models, all K ∈ S +(V, E ) can be written as

K = ∑
u∈V∪E

θuT
u, θu ∈ R for u ∈ V ∪ E(7)

with {θu}u∈V∪E such that the expression in (7) is positive definite. Suppose first
that we have

T u� ⊆ � ∀u ∈ V ∪ E .

Since � is a linear space this implies invariance under all K ∈ S +(V, E ).
Next suppose K� ⊆ � for all K ∈ S +(V, E ). S +(V, E ) is an open convex cone,

so that for all K ∈ S +(V, E ) and u ∈ V ∪ E there exists λu ∈ R \ {0} such that

Ku = K + λuT
u ∈ S +(V, E ).

By assumption, K� ⊆ � and Ku� ⊆ �, which gives

(Ku − K)� = λuT
u� ⊆ �
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and thus the desired result. �

Although the cone R+(V, E ) is not in general convex, the same holds for RCOR
models, as shown below.

PROPOSITION 4. Let G = (V, E ) be a colored graph. Then for � ⊆ R
V ,

K� ⊆ � ∀K ∈ R+(V, E ) ⇐⇒ T u� ⊆ � ∀u ∈ V ∪ E .

PROOF. Let A = (aαβ)α,β∈V denote the diagonal matrix with entries equal to
the inverse partial standard deviations, that is,

aαα = √
kαα for α ∈ V,

and let C = (cαβ)α,β∈V have all diagonal entries equal to 1 and all off-diagonal
entries be given by the negative partial correlations −ραβ|V \{α,β}. Then, by (5), all
K ∈ R+(V, E ) can be uniquely expressed as

K = ACA = ∑
v,w∈V

avawT vT w + ∑
v,w∈V,u∈E

cuavawT vT uT w,(8)

where for v ∈ V and u ∈ E , we let av and cu denote aαα , α ∈ v and cαβ , αβ ∈ u,
respectively. As for v,w ∈ V , T vT w is zero unless v = w, when it equals T v , and
equation (8) simplifies to

K = ∑
v∈V

a2
vT

v + ∑
v,w∈V,u∈E

cuavawT vT uT w.(9)

Suppose first that we have

T u� ⊆ � ∀u ∈ V ∪ E .

As before, since � is a linear space, (9) implies invariance under all K ∈
R+(V, E ). So suppose K� ⊆ � for all K ∈ R+(V, E ). Then, in particular, � is
invariant under all K of the form

K = ACA with A = σ 2I and C as specified above,

represented by the graph coloring ({V }, E ), which has the same edge coloring as
(V, E ), but with all vertices of the same color. This graph coloring is clearly edge
regular (as all edges connect the only vertex color class back to itself), which
gives that the represented model is also of type RCON. We may therefore apply
Proposition 3, giving

T u� ⊆ � ∀u ∈ E .

For the vertex coloring, consider the submodel

K = ACA with A as specified above and C = I .

This submodel is represented by the independence graph with no edges and vertex
coloring V , which is also edge regular, so that by Proposition 3,

T v� ⊆ � ∀v ∈ V,

completing the proof. �
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5.1. Equality restrictions in the means of RCON and RCOR models. Let M
be a partition of V and consider �(M) as in (1). In the following we derive a
necessary and sufficient condition on M and (V, E ) for �(M) to be invariant
under all K ∈ S +(V, E ) or all K ∈ R+(V, E ). By Propositions 3 and 4 we may
consider vertex and edge color classes of the colored graph representing the model
separately. We begin with the vertex coloring.

PROPOSITION 5. Let M and V be partitions of V . Then �(M) is invariant
under {T v}v∈V if and only if M ≤ V .

PROOF. The action of T v for v ∈ V on μ ∈ R
V is given as

T vμ =
{

μα if α ∈ v,
0 otherwise.

Let μ ∈ �(M), and suppose that T v�(M) ⊆ �(M) for all v ∈ V . In order for
T vμ ∈ �(M) for all v ∈ V , we must have α ≡ β(V) whenever α ≡ β(M), or
equivalently M ≤ V . Conversely, suppose M ≤ V . Then α ≡ β(V) whenever α ≡
β(M), which gives T vμ ∈ �(M) for all v ∈ V . �

Note that the above result implies that the likelihood cannot be maximized in μ

independently of the value of K in the Behrens–Fisher setting, which is the RCON
and RCOR model on two variables specified by V = {{1}, {2}}, E = ∅ together
with the restriction μ1 = μ2 on the means, as the mean partitioning is then coarser
than the vertex coloring.

Also, for the model of Frets’s heads in Figure 1, the MLE of the mean is not
simple if we, for example, wish to estimate the mean under the hypothesis that the
heads tend to be square-shaped, that is, if mean lengths are equal to mean breadths,
as this partition would not be finer than the vertex coloring.

For the edge coloring, we require the concept of an equitable partition, first
defined by Sachs (1966).

DEFINITION 2 (Sachs). Let G = (V ,E) be an undirected graph. Then a parti-
tion, or equivalent coloring, V of V is called equitable with respect to G if for all
v ∈ V , α,β ∈ v,

|neE(α) ∩ w| = |neE(β) ∩ w| ∀w ∈ V.

Chan and Godsil (1997) proved the following.

PROPOSITION 6 (Chan and Godsil). Let G = (V ,E) be an undirected graph
with adjacency matrix T , and let M be a partition of V . Then �(M) is invariant
under T if and only if M is equitable with respect to G.
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The notion of an equitable partition for vertex colored graphs can be naturally
extended to graphs with colored vertices and edges. We term the corresponding
graph colorings vertex regular, defined below.

DEFINITION 3. Let G = (V, E ) be a colored graph, and let the subgraph in-
duced by the edge color class u ∈ E be denoted by Gu = (V ,u). We say that (V, E )

is vertex regular if V is equitable with respect to Gu for all u ∈ E .

Combining Definition 3 with Proposition 6 yields vertex regularity to be a nec-
essary and sufficient condition for �(M) to be invariant under {T u}u∈E :

PROPOSITION 7. For G = (V, E ) a colored graph and M a partition of V ,
�(M) is invariant under {T u}u∈E if and only if (M, E ) is vertex regular.

PROOF. For u ∈ E , T u is the adjacency matrix of Gu. By Proposition 6,
�(M) is stable under {T u}u∈E if and only if M is equitable with respect to Gu

for all u ∈ E , or equivalently if and only if (M, E ) is vertex regular. �

For the Frets’s heads model in Figure 1, this implies that restricting the mean
breadths and mean lengths on their own does not ensure μ̂ = μ∗, as the corre-
sponding partitions M = {{B1,B2}, {L1}, {L2}} and M = {{B1}, {B2}, {L1,L2}}
do not give rise to vertex regular colorings (M, E ).

Combining Proposition 5 and Proposition 7 establishes our main result:

THEOREM 2. Let G = (V, E ) be a colored graph, let M be a partition of V

and consider a sample from a multivariate Gaussian N|V |(μ,�) distribution with
μ ∈ �(M) and K = �−1 ∈ S +(V, E ), both unknown. It then holds that

μ̂ = μ∗ ⇐⇒ M ≤ V and (M, E ) is vertex regular.(10)

The same conclusion holds if S +(V, E ) is replaced by R+(V, E ).

In fact, for any colored graph G = (V, E ) there is always a coarsest partition M
satisfying the conditions in (10) [Gehrmann (2011)]. The finest variant of such a
coarsest equitable refinement M of V is given by the singleton partition. Clearly
it is finer than any vertex coloring, and further naturally gives a vertex regular
coloring (M, E ). Note that in this case �(M) corresponds to the unrestricted
case considered in Section 3, conforming with the fact that then μ̂ = μ∗.

5.2. Equality restrictions in the means in RCOP models. The coarsest possible
M for RCON and RCOR models, by (10), is V , for which μ̂ = μ∗ if and only if
(V, E ) is vertex regular. This always holds for RCOP models.

PROPOSITION 8. If a colored graph G = (V, E ) represents an RCOP model,
then (V, E ) is vertex regular.
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PROOF. Let G = (V, E ) represent an RCOP model, generated by a subgroup
	 ⊆ Aut(G), say. By Proposition 2, (V, E ) is edge regular. Thus whenever two
edges e, f ∈ E are of the same color, they connect the same vertex color classes.
Let α,β ∈ V be two equally colored vertices in V . Then, by definition of RCOP
models, there exists a permutation σ ∈ 	 which maps α to β leaving (V, E ) in-
variant. This implies that the degree in each edge color class of α and β must be
identical. The previous two statements imply

|neu(α) ∩ v| = |neu(β) ∩ v|
for all v ∈ V and all pairs α,β ∈ V with α ≡ β(V), which is precisely the criterion
of vertex regularity for the graph coloring (V, E ). �

We mention in passing that Proposition 2 and Proposition 8 combined establish
that colorings of graphs which represent RCOP models are regular in the termi-
nology of Siemons (1983). We conclude from Theorem 2 and Proposition 8:

COROLLARY 1. Let G = (V ,E) be an undirected graph, and let (V, E ) rep-
resent the constraints of an RCOP model generated by group 	 ⊆ Aut(G). Then
for a sample from a multivariate Gaussian N|V |(μ,�) distribution with μ ∈ �(V)

and K = �−1 ∈ S +(G,	), both unknown, we always have μ̂ = μ∗.

6. Examples. We first consider the example in Figure 1 on head dimensions
for first and second sons. Representing an RCOP model, by Proposition 8, the
graph in Figure 1 has a vertex regular coloring. It follows from Corollary 1 that
the maximum likelihood estimate of the mean under the hypothesis that the mean
length and mean breadth are equal for the two sons is simply the total average
of the head lengths and the head breadths, respectively. Similarly, it follows from
Theorem 2 that the only hypotheses about the mean that have a simple solution are
this one and the one where the means are completely unrestricted.

The empirical means of the dimensions (B1,B2,L1,L2) are equal to (151.12,

149.24,185.72,183.84), so that the MLE of the means under the hypothesis that
the mean lengths and breadths are independent of the parity of the son then be-
come (150.18,150.18,184.78,184.78). The likelihood ratio test is obtained by
comparing the maximized profile likelihoods (3) calculated with appropriate resid-
ual covariance matrices W under the two hypotheses. Using the R-package gRc
[Højsgaard and Lauritzen (2011)] this yields −2 log LR = 3.27 on 2 degrees of
freedom, so there is no evidence for the sizes depending on the parity of the son.

Our second example is concerned with the examination marks of 88 students
in five mathematical subjects [Mardia, Kent and Bibby (1979)]. The RCOP model
represented by G = (V, E ) in Figure 2 was demonstrated to be an excellent fit in
Højsgaard and Lauritzen (2008).

The model is given by invariance of K under simultaneously permuting Me-
chanics with Statistics, and Vectors with Analysis. In their fit, Højsgaard and Lau-
ritzen (2008) implicitly assumed an unconstrained mean. The MLE μ̂ is then given
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FIG. 2. Mathematics marks example.

by the sample averages (μ̂al, μ̂an, μ̂me, μ̂st, μ̂ve) = (50.60,46.68,38.96,42.31,

50.59) in the obvious notation, which corresponds to M being the singleton parti-
tion. However, it could be natural to assume μ subject to the same invariance as K ,
meaning M = V , or in this case μan = μve and μme = μst. Then, by Corollary 1,
(μ̂al, μ̂an, μ̂me, μ̂st, μ̂ve) = (50.60,48.64,40.63,40.63,48.64). The likelihood ra-
tio statistic for this mean structure relative to the model in Figure 2 with uncon-
strained mean takes the value of 11.9 on 2 degrees of freedom, and the hypothesis
about symmetry in the means is therefore clearly rejected with p < 0.003.

Note that the sample averages for Vectors and Algebra are almost identical.
However, combining the constraints on K represented by the graph in Figure 2
with any hypothesis on the means implying μve = μal will require joint maximiza-
tion in μ and K of the likelihood function in (2) to obtain μ̂.

7. Discussion. The main result of this article is a necessary and sufficient con-
dition on the pattern of equality constraints on the mean vector μ in a graphical
Gaussian symmetry model with colored graph G = (V, E ) which ensures the iden-
tity of the least squares estimate μ∗ and the maximum likelihood estimate μ̂, given
in Theorem 2.

The derived necessary and sufficient condition is formulated in terms of vertex
and edge colored graphs and is easily testable, so that any set of equality constraints
on μ together with constraints on either K or the partial correlations can be verified
for estimability of μ by μ∗.

The result is, for example, useful if one set of constraints, either on the mean or
the independence structure, is assumed to be given and the other may be varied.
A setting which falls into this category is the design of experiments seeking to es-
timate mean treatment effects under the assumption of correlations with inherent
symmetries in the error structure at experimental sites. A systematic arrangement
of the sites may enforce a symmetry pattern in the concentrations or partial corre-
lations, and thus restrict the concentration matrix as in one of models considered
here. Allocation of treatments then effectively restricts the mean response at sites
with the same treatment to be identical, and the condition derived can be used
to find treatment allocations which ensure estimability of mean treatment effects
without knowledge of the value of �.
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An interesting question directly emerging from our work is concerned with the
exact distributions of likelihood ratio test statistics for hypotheses about the mean
in RCON, RCOR and RCOP models. In the examples discussed in this paper we
have relied on asymptotic theory to judge the significance of test statistics, but it
is likely that their distributions can be derived explicitly, for example when the
mean hypothesis is given by the natural symmetry of an RCOP model. Hylleberg,
Jensen and Ørnbøl (1993) developed explicit likelihood ratio tests for decompos-
able mean-zero RCOP models generated by compound symmetry [Votaw (1948)],
and it would be interesting to extend these results to models with nonzero means
and more general symmetry constraints.

We note that if our condition is not satisfied, we would expect phenomena sim-
ilar to those in the Behrens–Fisher problem implying the general nonuniqueness
of the MLE [Drton (2008)] and the nonexistence of an α-similar test of the mean
hypothesis [Scheffé (1944)].
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