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Abstract Statistical analysis of DNA mixtures for foren-
sic identification is known to pose computational challenges
due to the enormous state space of possible DNA profiles.
We describe a general method for computing the expecta-
tion of a product of discrete random variables using aux-
iliary variables and probability propagation in a Bayesian
network. We propose a Bayesian network representation for
genotypes, allowing computations to be performed locally
involving only a few alleles at each step. Exploiting appro-
priate auxiliary variables in combination with this represen-
tation allows efficient computation of the likelihood function
and prediction of genotypes of unknown contributors. Impor-
tantly, we exploit the computational structure to introduce a
novel set of diagnostic tools for assessing the adequacy of
the model for describing a particular dataset.

Keywords Bayesian network · Deconvolution · Genotype
representation · Junction tree · Model diagnostics ·
Prequential monitor · Triangulation

1 DNA mixture analysis

The idea behind using DNA for forensic identification is that
a person may be identified by a DNA profile, describing spe-
cific features of the genome of that person. A sample from a
crime scene may contain DNA from more than one person,
in which case identifying the single contributors becomes a
challenge. DNA mixture analysis addresses the question of
identifying the contributors to such a mixed sample of DNA
and in this paper we develop methods for exact inference in
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statistical analysis of DNA mixtures. Using efficient com-
putational techniques we are able to perform the necessary
calculations for several unknown contributors without intro-
ducing heuristic approximations.

1.1 Identification through DNA profiles

The human nuclear DNA consists of 23 pairs of chromo-
somes, each with one chromosome inherited from the mother
and one inherited from the father. A chromosome can be
thought of as a sequence of the letters (bases) A, G, C, and
T, and the entire DNA as uniquely identifying the person;
an exception being the case of identical twins. For forensic
identification only 10–15 specific parts of the chromosome-
pairs are considered, the idea being that these markers exhibit
enough variation to discriminate between people with high
probability. The DNA sequence found on one of the two
chromosomes at a particular marker is called an allele, and
the unordered pair of alleles constitutes the genotype at that
marker. The set of genotypes across markers is the DNA pro-
file of a person.

Depending on the context in which the DNA sample is
analysed, the focus of an analysis could, for example, be to
compare two competing explanations of the composition of
the sample or to predict the DNA profiles of the contributors
to the sample.

1.2 The measurement process

The markers used for identification are short tandem repeat
(STR) markers, which are characterised by variation in terms
of the number of times that a certain motif of typically four
letters is repeated. The alleles at an STR marker are named
by the number of repeats.
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Fig. 1 Stylized electropherogram exhibiting peaks for the alleles at
one marker

The alleles present in the DNA sample are located and
copied in the polymerase chain reaction (PCR) process,
which is in essence a branching process that produces mul-
tiple copies of the isolated sequence constituting the allele,
all with a dye attached. The different alleles can then be
identified through the combination of dye and length; this
separation is done by electrophoresis. Alleles are detected as
they move through a capillary in batches of alleles of iden-
tical length and the fluorescent intensity is recorded in units
of RFU (relative fluorescence units). The resulting electro-
pherogram (EPG) displays a peak for each detected allele at
each marker.

Figure 1 represents a schematic illustration of an EPG
corresponding to a single marker.

The height of a peak is roughly proportional to the amount
of the allele in the mixture, and so the set of peak heights
reflects the allelic composition of the mixture. However, due
to imperfections in the PCR process known as artefacts, the
presence or absence of peaks may not give a true picture of
the allelic composition of the mixture. Usually a detection
threshold is applied, under which peaks are not registered. If
an allele is indeed present in the mixture, though not regis-
tered, it is said to have dropped out. Another common artefact
is stutter, which is a result of the PCR process occasionally
producing a copy one repeat shorter than the original; the
stutter-products from allele a will contribute to the peak for
allele a −1. Stutter-products more than one repeat shorter or
longer are also possible, but are sufficiently infrequent to be
ignored.

In summary, the individual contributions of DNA are
not observable, and furthermore the amounts of each allele
present in the mixture are only observable through the
peak heights. In this paper, we consider a joint model
for the DNA profiles of contributors to the sample and
the observed peak heights across all markers and
alleles.

1.3 Modelling DNA mixtures

We now turn to the problem of statistical analysis of a DNA
mixture in the context of a crime case. As evidence E we
consider the peak heights as observed in the EPG as well
as the DNA profiles of individuals associated with the case.
A model of the mixture naturally involves an explanation of
the sample in terms of a set of assumed contributors. In such
an explanation, we distinguish between known and unknown
contributors to the sample, depending on whether their DNA
profile is considered known or not. One part of the expla-
nation is a specification of the distribution of DNA profiles
of the unknown contributors. In addition we need a speci-
fication of the distribution of peak heights given the allelic
composition of the mixture.

A given explanation is referred to as a hypothesis. To
assess the weight of evidence against a specific person K
having contributed to the sample we may formulate two
hypotheses: the prosecution hypothesis Hp which specifies
that the DNA profile of K is present in the sample, i.e. K is
among the known contributors; and the defence hypothesis
Hd , typically replacing K with an unknown contributor U .
The DNA profile of an unknown contributor is considered to
be randomly selected from a suitable reference population.
We then report the weight of evidence against K (Lindley
1977; Balding 2005) as a likelihood ratio

L R = L(Hp)/L(Hd) = Pr(E | Hp)/Pr(E | Hd). (1)

For a hypothesis involving unknown contributors, it is also
of interest to predict their genotypes by finding the posterior
distribution of these given the evidence.

1.4 Computational issues

The size of the state space of possible DNA profiles for
unknown contributors severely restricts the complexity of
models that can be handled and demands development of
efficient computational methods.

In Sect. 3 we present a general approach for comput-
ing expectations of products of non-negative functions in
Bayesian networks using auxiliary variables.

In Sect. 4 we propose a Bayesian network representation
of a genotype that exhibits a Markovian structure. This rep-
resentation in combination with appropriate auxiliary vari-
ables constitute a Bayesian network representation of the
entire statistical model, and Sect. 5 illustrates how this repre-
sentation is flexible enough to provide a unified framework
for computation of various quantities relevant to a case analy-
sis: likelihood functions, posterior distributions of genotypes
given a set of observed peak heights, and predictive distri-
butions of peak heights. In particular, Sect. 5.2 presents the
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development of novel methods for systematic assessment of
the adequacy of the model to the specific case at hand.

The methodology described in this paper has been imple-
mented in the R-package DNAmixtures (Graversen 2013),
which interfaces the Hugin API (Hugin 2013) via RHugin
(Konis 2013).

2 A statistical model for DNA mixtures

The model for the distribution of DNA profiles and peak
heights in the EPG is composed of a model for the DNA
profiles for the contributors and a model for the conditional
distribution of peak heights given the composition of the mix-
ture. These two elements are further described below.

2.1 Statistical model for DNA profiles

We adopt the standard model for DNA profiles: genotypes
in DNA profiles are mutually independent and independent
across markers; DNA profiles of known contributors are
fixed; and the two alleles of an unknown person are con-
sidered sampled independently from a reference population,
i.e. the population is assumed to be in Hardy–Weinberg equi-
librium.

For a given marker, we represent the pair of alleles
that constitute a genotype by a vector of allele counts
(ni1, . . . , ni A) for alleles a = 1, . . . , A, where nia denotes
the number of alleles a that contributor i possesses. In the
following we shall use the terms genotype and allele counts
interchangeably. Also, the number A of possible alleles shall
be changing depending on the marker considered. We let n
denote the full set of genotypes for all individuals and na the
vector na = (nia, i ∈ I ) of allele counts for allele a across
individuals.

A consequence of the standard model is that a genotype
(ni1, . . . , ni A) for an unknown contributor follows a multino-
mial distribution with allele frequencies (q1, . . . , qA) and∑

a nia = 2. It is customary to assume population allele fre-
quencies qa to be known and equal to values obtained from
a database of individuals, possibly adjusted to correct for
potential relatedness in the population (Balding 2013).

2.2 Peak height distribution conditional on genotypes

Analysing DNA that contains alleles of type a may result
in a peak at position a, and possibly also a smaller peak at
position a −1 due to stutter during the PCR process; thus the
height of the peak Ha ≥ 0 for allele a naturally depends on
the presence of alleles a and a + 1.

Our model for the distribution of peak heights for fixed
composition follows Cowell et al. (2013). The key assump-
tion is that the peak heights Ha are mutually independent with

a distribution depending only on the numbers nia , ni,a+1 of
alleles a and a+1 that each unknown contributor i possesses,
as well as a set of model parameters. Further we assume that
a peak height Ha is gamma distributed with scale parameter
η and shape parameter

λa = ρ

k∑

i=1

{
(1 − ξ)nia + ξni,a+1

}
φi , (2)

where k denotes the number of individuals considered and
we have let ni,A+1 = 0. Further, φi denotes the fraction of
DNA from individual i , ξ is the mean stutter proportion, and
ρ is related to the general peak variability. If λa = 0 the
gamma distribution is considered degenerate at 0.

Using additivity properties of the gamma distribution, the
model may be interpreted in terms of a peak Ha being com-
posed partly by contributions from individuals i , each having
a mean proportional to (1 − ξ)φi nia , and partly by stutter
ξφi ni,a+1 received from the allele a + 1. Thus the mean
peak heights reflect the allelic composition of the mixture as
modified by stutter.

Peaks of height Ha below the applied detection threshold
C are not registered so the observed peak heights are Za =
Ha1{Ha≥C}. Thus the distribution of Za conditionally on the
genotypes depends only on the allele counts for alleles a and
a + 1 and is for a ≤ A a mixture with density

fψ
(
za
∣
∣na,na+1

) =
{

gψ
(
za
∣
∣na,na+1

)
za ≥ C

Gψ

(
C
∣
∣na,na+1

)
za = 0,

(3)

where g denotes the density and G the cumulative distri-
bution function for the gamma distribution as in (2), and
ψ = (φ, ξ, ρ, η) are the parameters described above. We
emphasise that our methodology can be used directly with
other choices of distribution for the peak heights, provided
that the conditional distribution of the peak height for allele
a given genotypes depends only on the genotypes through
the number of alleles of types a and a + 1.

2.3 Likelihood function

The likelihood function is determined by the observed peak
heights {zm

a , m = 1, . . . ,M; a = 1, . . . , Am} across all
markers m and the possible alleles a under each of these.
The observed peak heights are independent across markers
m = 1, . . . ,M , and thus the likelihood function factorises
accordingly. Using this fact in combination with (3) we find

�(ψ) =
M∏

m=1

fψ(z
m
1 , . . . , zm

Am
)
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=
M∏

m=1

E
{

fψ
(
zm

1 , . . . , zm
Am

∣
∣nm)}

=
M∏

m=1

E

{ Am∏

a=1

fψ
(
zm

a

∣
∣nm

a ,nm
a+1

)
}

, (4)

where the expectations are taken with respect to the distrib-
ution of genotypes nm,m = 1, . . . ,M of the unknown con-
tributors. The expectation in (4) involves summation over
all configurations of possible genotypes of potential con-
tributors. At a marker with Am possible alleles, there are
{Am(Am + 1)/2}k possible combinations of genotypes, and
thus there are this many terms in the sum, each being a prod-
uct of Am factors. Direct computation is typically infeasi-
ble when there are many alleles and many unknown con-
tributors. We attack this computational problem by appro-
priate use of Bayesian network techniques, as detailed in
Sect. 3 below. We note that it is also of specific inter-
est to find the conditional distribution of the genotypes
of unknown individuals—represented by the sets of allele
counts nm across markers—given the observed peak heights
{zm

a , m = 1, . . . ,M; a = 1, . . . , Am}. Our emphasis in this
paper is on exact computation but our methods are equally
useful in connection with potential Monte Carlo evaluation
of relevant integrals.

3 Computation by auxiliary variables

The computational task in DNA mixture analysis involves
repeated computation of the expectation E{h(X)} of non-
negative functions h of a set X = {Xv}v∈V of discrete random
variables. We describe our computational approach in this
general setting before returning to the specific DNA mixture
model in Sect. 4.

3.1 Auxiliary variables

We consider a collection X = {Xv}v∈V of discrete variables
with a distribution represented by a Bayesian network. For
B ⊆ V , X B denotes the collection of variables {Xv}v∈B .

Let h be a non-negative function which can be factorised
as

h(x) =
∏

B∈B

hB(xB),

for some set B of subsets of V and real-valued, non-negative
functions hB .

For each B ∈ B we introduce a binary random variable
Y B ∈ {0, 1}. These auxiliary variables are assumed to be
mutually conditionally independent given the network and
distributed as

P

(
Y B = 1

∣
∣X = x

)
= P

(
Y B =1

∣
∣X B = xB

)
= hB(xB)/kB .

(5)

Here, the constant kB is chosen such that hB(xB)/kB ∈ [0, 1]
over all states xB and so (5) defines a valid probability distri-
bution. A simple choice would be kB = maxxB hB(xB), i.e.
the largest value that hB attains over the state space of X B .
We use the state space {0, 1} for auxiliary variables, but note
that this choice is unimportant for the method itself.

The desired expectation E{∏B∈B hB(X B)} can now be
expressed in terms of the probability of a specific config-
uration of the auxiliary variables introduced. As Lemma 1
reveals, this is also the case for the expectation of a product
of any subset of the variables hB(X B).

Lemma 1 For all B′ ⊆ B it holds that

E

{ ∏

B∈B′
hB(X B)

}

= P

( ⋂

B∈B′
{Y B = 1}

) ∏

B∈B′
kB .

Proof Using (5) and the fact that Y B, B ∈ B are mutually
conditionally independent given X we get

E

{ ∏

B∈B′
hB(X B)

}

= E

{ ∏

B∈B′

(
P

(
Y B = 1

∣
∣X B

)
kB

)}

= E

{ ∏

B∈B′
P

(
Y B = 1

∣
∣X
)} ∏

B∈B′
kB

=E

{

P

⎛

⎝
⋂

B∈B′

{
Y B =1

} ∣
∣X

⎞

⎠
} ∏

B∈B′
kB

= P

( ⋂

B∈B′

{
Y B = 1

}) ∏

B∈B′
kB

as desired. ��

Lemma 1 allows the interpretation of the expectation of
interest as a scaled probability, which can be computed in
various ways; Proposition 1 below provides one such way.

The Bayesian network representing the distribution of
{Xv}v∈V can be extended to include the variables {Y B}B∈B

by for each B adding Y B as a child of {Xv}v∈B with con-
ditional distributions of Y B as given in (5). As the auxiliary
variables are added as children of existing network nodes, no
directed cycles are created and the extended network is a cor-
rect representation of the joint distribution of (X,Y ) since,
given X B , Y B is conditionally independent of all other vari-
ables in the extended network.

Figure 2 illustrates how the network is extended in case of
a function h factorising over two sets of variables (X2, X3)

and (X3, X4, X5).
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Fig. 2 Extending a network with two binary variables for computation
of E
(
h{2,3}(X2, X3)h{3,4,5}(X3, X4, X5)

)
. Here B = {{2, 3}, {3, 4, 5}}

3.2 Probability propagation

We now briefly describe probability propagation and explain
how to exploit the normalising constants arising as a by-
product of the propagation algorithm. We are largely follow-
ing the exposition of Dawid (1992) as described in Cowell
et al. (1999), Sect. 6.3 where also further details of Bayesian
networks and probability propagation can be found.

A computational structure is set up in the form of a so-
called junction tree of subsets of the variables involved: first
an undirected graph, the moralised graph, is constructed by
adding undirected edges between nodes that have a com-
mon child and removing directions for existing edges. Sub-
sequently edges are added to ensure that the resulting graph
is chordal, i.e. that in any cycle of four or more distinct nodes
there exist two non-consecutive nodes which are joined by an
edge. This process is known as triangulation and can gener-
ally be done in many ways; finding an optimal triangulation
for a given optimality criterion is an NP-hard problem (Yan-
nakakis 1981). Finally the (maximal) cliques, i.e. maximal
complete sets, in the triangulated graph are arranged in a
junction tree.

In the situation described above X B is the parent set of
Y B in the extended network and the node set X B will thus be
a complete set in the triangulated graph, hence contained in
some clique. The efficiency of the method depends crucially
on the size of cliques for the chosen triangulation, see further
discussion in Sect. 4.4.1 below.

A distribution p(x) is represented by an unnormalised
probability function

p(x) ∝ g(x) =
∏

C∈C ζC (xC )
∏

S∈S ζS(xS)

where C denotes the set of cliques and S denotes the set of
separators, i.e. intersections of pairs of neighbouring cliques
in the junction tree. The corresponding normalising constant
is

N1 =
∑

x

g(x).

The function g(x) is known as the charge and the functions
ζ as potentials.

A message passing operation referred to as propagation
brings the charge to a canonical form, where all potentials of
the charge are equal to the function g marginalised onto the
corresponding clique or separator, i.e.

ζD(xD) =
∑

y:yD=xD

g(y) for all D ∈ C ∪ S .

The normalising constant can then be computed efficiently
after propagation as

∑
xD
ζD(xD), for instance choosing D

as a separator S ∈ S with minimal state space.
The charge g can be modified by propagating likelihood

evidence �v(xv) on nodes v ∈ V , denoting the process of
multiplying the charge by non-negative functions �v(xv) fol-
lowed by a propagation to bring the modified charge to its
canonical form. The modified charge is

g̃(x) = g(x)
∏

v∈V

�v(xv)

with normalising constant

N2 =
∑

x

g(x)
∏

v∈V

�v(xv).

Taking the ratio of the normalising constants before and after
propagating likelihood evidence yields the expectation of the
product of the likelihood evidence with respect to the distri-
bution p(x):

N2

N1
=
∑

x g(x)
∏
v∈V �v(xv)∑

y g(y)

=
∑

x

g(x)
∑

y g(y)

∏

v∈V

�v(xv)

=
∑

x

p(x)
∏

v∈V

�v(xv)

= E

{∏

v∈V

�v(Xv)

}

. (6)

3.3 Calculation of expectations by propagation

As shown in Proposition 1 below, the property (6) ensures that
the expectation of interest can be calculated by propagating
likelihood evidence on the auxiliary variables.

Proposition 1 Let likelihood evidence for each node Y B,
B ∈ B′ ⊆ B be given as:

�B(Y
B) =

{
kB, Y B = 1

0, Y B = 0

and let N1 and N2 be the normalising constants before and
after propagation of likelihood evidence. Then we have

E

{ ∏

B∈B′
hB(X B)

}

= N2

N1
.
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Proof

N2

N1
= E

{ ∏

B∈B

�B

(
Y B
)}

= E

( ∏

B∈B′
kB1{Y B=1}

)

= P

( ⋂

B∈B′

{
Y B = 1

}) ∏

B∈B′
kB

which by Lemma 1 equals the desired expectation. ��

We note that in the special case where the original charge
is normalised so that N1 = 1 and the evidence functions �v
are indicator functions for nodes being in particular states, it
is well established that N2 yields the joint probability for the
specific configuration of states (Cowell et al. 1999, p. 36).

Proposition 1 leads to a practical way of computing the
desired expectation: for each auxiliary variable Y B we com-
pute the conditional probabilities P

(
Y B
∣
∣X B
)

for all con-
figurations of (Y B, X B) after which the expectation can be
obtained in a single propagation of the corresponding likeli-
hood evidence.

4 Bayesian networks for DNA mixtures

We describe here how our genotype representation in com-
bination with appropriate auxiliary variables yields a power-
ful and flexible Bayesian network representation of the joint
model for peak heights and genotypes. This representation
allows efficient evaluation of a wide range of quantities of
interest in a case analysis.

4.1 A Bayesian network representation of genotypes

The multinomial distribution of allele counts (ni1, . . . , ni A)

representing the genotype of an unknown contributor i for a
given marker does not in itself have Markovian properties.
However, if we define the partial sums

Sia =
a∑

b=1

nib

counting the number of alleles of type up to and including a
that person i possesses, we can represent the genotype in a
Bayesian network as displayed in Fig. 3.

If we imagine the two alleles in the genotype being allo-
cated sequentially, then the number of alleles that a person
has of type a+1 only depends on how many alleles of the total
two are left to allocate, and the allocation happens according
to a binomial distribution. In Proposition 2 we establish the
formal correctness of the network specification.

Fig. 3 Network representation of a genotype at a marker with A = 6
allelic types

Proposition 2 The distributions of genotypes and partial
sums satisfy the following relations

Si1 = ni1,

ni1 ∼ bin (2, q1) ,

and for a ∈ {2, . . . , A}
Sia = Si,a−1 + nia,

nia | Si,a−1 ∼ bin

(

2 − Si,a−1, qa/

A∑

b=a

qb

)

. (7)

Finally, we have the conditional independence relations

nia ⊥⊥ (ni1, . . . , ni,a−1, Si1, . . . , Si,a−2) | Si,a−1 (8)

Sia ⊥⊥ (ni1, . . . , ni,a−1, Si1, . . . , Si,a−2) | (Si,a−1, nia).

Proof The unnumbered relations follow directly from the
definition of the quantities involved. We further have

p(nia | ni1, . . . , ni,a−1)

= p(ni1, . . . , ni,a−1, nia)

p(ni1, . . . , ni,a−1)

=
2!

(2−Si,a−1−nia )!∏a
b=1 nib !

(∑A
b=a+1 qb

)2−Si,a−1−nia ∏a
b=1 qnib

b

2!
(2−Si,a−1)!∏a−1

b=1 nib !
(∑A

b=a qb

)2−Si,a−1∏a−1
b=1 qnib

b

= (2 − Si,a−1)!
nia !(2 − Si,a−1 − nia)!

×
(

1 − qa
∑A

b=a qb

)2−Si,a−1−nia
(

qa
∑A

b=a qb

)nia

.

The conditional independence (8) follows from the fact that
the conditional distribution of nia given ni1, . . . , ni,a−1 only
depends on the condition through Si,a−1; inspection of the
expression for the conditional distribution yields (7). ��

4.2 Auxiliary variables for computing the likelihood
function

To compute the inner expectation in the expression (4) for
the likelihood function, we note that this is an expectation of
a product over alleles, where each factor is a function of the
variables na and na+1, and so we can compute this expecta-
tion using auxiliary variables as described in Sect. 3.1: For
each allele a, we add an auxiliary variable Oa with parents
nia and ni,a+1 for all unknown contributors i , except for OA

that is given only one parent ni A per contributor. Figure 4
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Fig. 4 Bayesian network modelling the genotypes of two unknown
contributors i and j for a marker with six possible allelic types

shows the network for modelling one marker of a mixture
with two contributors and six alleles.

The structure displayed in Fig. 4 can be seen as represent-
ing our model as parallel and coupled hidden Markov models;
indeed the probability propagation algorithm we use is one of
a variety of more general variants of the forward–backward or
BCJR algorithm used for inference in hidden Markov models
(Bahl et al. 1974). Cowell et al. (1999), Sect. 6.7 contains a
more detailed discussion of the relation between algorithms
of this type.

Note that Oa and its parents nia, ni,a+1, i ∈ {1, . . . , k}
are necessarily contained in the same clique, implying that
any valid junction tree will contain cliques with an asso-
ciated state space that is exponential in the number k of
unknown contributors. Unfortunately, as the moralised graph
is not chordal—for instance (Si1, ni1, n j2, ni3, Si2, Si1) is a
cycle—further edges need to be added, resulting in an addi-
tional increase in the size of the cliques. We shall return to
this issue in Sect. 4.4.1.

The distribution of an auxiliary variable Oa conditionally
on the allele counts is defined using the distribution (3) of
the peak height Za conditionally on the allele counts as fol-
lows:

If a peak for allele a has been observed above the detection
threshold C , i.e. za ≥ C , the distribution of Oa is defined as

P
(
Oa = 1

∣
∣na,na+1

) = gψ
(
za
∣
∣na,na+1

)
/kψa , (9)

noting the dependence of the scaling factor kψa on ψ . For an
undetected peak, i.e. zm

a = 0, the distribution of Oa is defined
as

P
(
Oa = 0

∣
∣na,na+1

) = Gψ

(
C
∣
∣na,na+1

)
. (10)

Now Proposition 1 can readily be used to evaluate the
contribution to the likelihood from marker m for a given
value of ψ by propagating likelihood evidence

�a(Oa) =
{

kψa 1{Oa=1}, if za ≥ C

1{Oa=0}, if za < C .
(11)

4.3 Posterior distribution of genotypes

The inclusion of auxiliary variables may serve other pur-
poses than merely as a device for calculating an expectation.
In DNA mixture analysis, we are interested in the condi-
tional distribution of the genotypes n for contributors given—
possibly only a subset of—the observed peak heights.

By propagating likelihood evidence (11) for a set of alleles
a ∈ A ⊆ {1, . . . , A}, we obtain a representation of the
conditional distribution of the full network given the relevant
state of the auxiliary variables Oa, a ∈ A . We have defined
the auxiliary variables so that for all alleles the event Oa = 1
corresponds to the event Za ≥ C that the peak at allele a is
above the threshold C . Therefore conditioning on auxiliary
variables Oa, a ∈ A yields the conditional distribution of
the nodes in the network given the peak height information
{za}a∈A as formalised in the following:

Proposition 3 For an arbitrary subset A of alleles we have

p
(
x
∣
∣{za}a∈A

) = p

⎛

⎜
⎜
⎝x

∣
∣
∣
∣
∣
∣
∣
∣

⋂

a∈A ,

za≥C

{Oa = 1}
⋂

a∈A ,

za<C

{Oa = 0}

⎞

⎟
⎟
⎠ .

(12)

Proof This follows from the following argument:

p(x)
∏

a∈A

�a(Oa)

∝ p

⎛

⎜
⎜
⎝x

∣
∣
∣
∣
∣
∣
∣
∣

⋂

a∈A ,

za≥C

{Oa = 1}
⋂

a∈A ,

za<C

{Oa = 0}

⎞

⎟
⎟
⎠

∝ p(x)P

⎛

⎜
⎜
⎝

⋂

a∈A ,

za≥C

{Oa = 1}
⋂

a∈A ,

za<C

{Oa = 0}

∣
∣
∣
∣
∣
∣
∣
∣

x

⎞

⎟
⎟
⎠

= p(x)
∏

a∈A
za≥C

P
(
Oa = 1

∣
∣x
) ∏

a∈A
za<C

P
(
Oa = 0

∣
∣x
)

= p(x)
∏

a∈A
za≥C

P
(
Oa =1

∣
∣na,na+1

) ∏

a∈A
za<C

P
(
Oa =0

∣
∣na,na+1

)

= p(x)
∏

a∈A
za≥C

{gψ
(
za
∣
∣na,na+1

)
/kψa }

∏

a∈A
za<C

Gψ

(
C
∣
∣na,na+1

)
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∝ p(x)
∏

a∈A

fψ
({za}a∈A

∣
∣x
)

∝ p
(
x
∣
∣{za}a∈A

)

as desired. ��

As a consequence, we can for example easily simu-
late from the conditional distribution of genotypes given
observed peak heights, which we shall exploit in Sects. 5.3
and 5.4 below.

4.4 Network complexity considerations

The main concerns when applying the methodology of Sect. 3
to a specific problem are that the junction tree representa-
tion of the network may not fit in the physical memory, and
that propagation and other network operations may take pro-
hibitively long. Both of these issues are directly related to
the total size of the network junction tree, defined as the sum
of the sizes of state spaces for all cliques and separators.
Once a junction tree has been created for a network, compu-
tation by auxiliary variables involves setting the conditional
probability tables for each auxiliary variable and propagating
evidence.

The total size determines how many numbers are needed
to store the clique and separator tables and the number of
elementary arithmetic operations for propagation is linear in
the total size. In the worst case, total size also determines
the number of cells that need updating when changing the
conditional probability tables for the auxiliary variables.

An additional concern lies in finding a good triangulation,
as this can be both time- and memory-consuming; we elimi-
nate this additional cost by specifying triangulations directly.

In the following we study the relation of the total sizes of
junction tree representations used for DNA mixture analysis
to the number A of possible alleles at a marker and the number
k of unknown contributors.

4.4.1 Junction tree sizes for DNA mixtures

We shall consider three different triangulations of networks
of the type discussed in Sect. 4.2 and investigate the behav-
iour of the total sizes of the corresponding junction trees. We
restrict attention to mixture networks where any allele a—
apart from the last allele A—can receive stutter from a + 1.

Any triangulation must necessarily have cliques that con-
tain an auxiliary variable together with its parent set, as these
are complete in the moralised graph. For all our junction trees
we avoid adding additional variables to all such sets and sim-
ply combine any auxiliary variable with its parent set to form
a clique. We can thus focus the discussion on triangulating
the part of the moralised graph that does not involve auxiliary
variables.

Fig. 5 Slice junction tree for k = 3 contributors, A = 4 alleles, and
N = 1 auxiliary variable per allele

If we have N binary auxiliary variables per allele, their
cliques and corresponding separators contribute to the total
size of the junction tree by

T Saux = 3N
{
(A − 1)32k + 3k

}
,

since there are N (A − 1) cliques containing an auxiliary
variable along with its 2k parents, and each is separated from
the remaining junction tree by a separator containing the 2k
parents. The N auxiliary variables for the last allele have only
k parents.

Bearing Fig. 3 in mind, the structure of the genotype net-
works requires upper triangle sets {Si,a−1, Sia, nia} to be in a
clique as they are complete sets. If allele a−1 receives stutter
from a, then the lower triangle set {ni,a−1, nia, Sia} is also
complete in the moralised graph and must be contained in
some clique.

The first triangulation method we shall consider, uses the
simple idea of slicing the network into cliques

{Sia, Si,a+1, nia, ni,a+1}k
i=1

for a = 1, . . . , A−1. The corresponding junction tree, which
we shall refer to as the slice tree, is displayed in Fig. 5.
We note that using the propagation algorithm on the slice
tree is effectively equivalent to using the forward–backward
algorithm on the hidden Markov chain with these cliques
representing the hidden states. In addition to the cliques and
separators arising from the auxiliary variables, the slice tree
has A − 1 cliques each consisting of 4k nodes, and A − 2
separators between them, each consisting of 2k nodes. Thus
the total size of the slice tree becomes

T Sslice = (A − 1)34k + (A − 2)32k + T Saux .

However, we can improve on this triangulation by splitting
each slice into two cliques as Fig. 6 illustrates. The resulting
triangle tree in Fig. 7 has 2(A − 1) cliques of each 3k nodes
and 2(A − 1) separators of each 2k nodes, and thus the total
size
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Fig. 6 Splitting each slice into two cliques consisting of lower and
upper for a reduction in total size

Fig. 7 Triangle junction tree for k = 3 contributors, A = 4 alleles,
and N = 1 auxiliary variable per allele

Fig. 8 Splitting upper triangle cliques for a further reduction in total
size

T Striangle = 2(A − 1)33k + {2(A − 1)− 1}32k + T Saux

grows less quickly with the number of unknown contributors
than the slice tree; see Fig. 10.

In the case of only one unknown contributor, the total size
of the triangle tree cannot be reduced (7). However, with
more than one unknown contributor, each clique containing
k upper triangles can be further split into k cliques as in Fig. 8.

Note that the cliques containing k lower triangle sets can-
not be split in a similar fashion. The resulting junction tree—
the split tree—then has A − 1 cliques of each 3k nodes, a
further k(A−1) of each 2k +1 nodes, and (k +1)(A−1)−1
separators of 2k nodes between them. The total size of the
tree is thus

T Ssplit = (A − 1)33k + {(4k + 1)(A − 1)− 1}32k + T Saux.

A further slight reduction of the total size can be obtained
by a small alteration in the cliques that cover nodes for the first
two and last three alleles; the resulting tree is seen in Fig. 9.
This is the best junction tree we have been able to construct.
We have investigated junction trees found by the algorithm
for minimizing total clique size (excluding separators) as

implemented in Hugin, but none have smaller total size than
our split tree.

The split tree can be generated by an elimination sequence
which first eliminates all the auxiliary variables and then
proceeds through the network nodes as

SA,SA−1,S1,n1, {na,Sa}A−2
a=2 ,nA−1,nA,

where Sa denotes {Sia}k
i=1 etc.

The exponential growth of the total size of the three types
of junction tree is illustrated in Fig. 10. Our numerical exam-
ples all include N = 3 auxiliary variables for each allele
to reflect the size of the networks used in the R-package
DNAmixtures. The choice of N makes little difference to
the total size as this in all cases grows linearly with N .

The network representations constructed for the geno-
types have a large number of configurations that are impossi-
ble, for example due to the constraint that

∑
a nia = 2 for all

i . In Hugin there is a facility to compress the domain, such
that only configurations of clique and separator states with
non-zero probability are stored, thus reducing the effective
size of the junction tree. There is a slight cost in terms of
book-keeping, but for our purposes this cost is negligible.

As is apparent from Fig. 10, the exponential growth pat-
tern prevails for the compressed domains. Note that after
compression all three junction trees are approximately of the
same size. Also, the reduction of total size obtained by com-
pression is itself growing exponentially; ignoring any slight
reduction in total size from compressing states with proba-
bility zero in the cliques with auxiliary variables, the total
size for the compressed slice tree is

T Scompr.slice =(A − 3)10k + {3N (A − 1)+ A} 6k + 3N3k .

To make a compression, one single propagation has to be
performed and therefore the uncompressed networks set the
limit for computational feasibility. When numbers are repre-
sented in single precision of each four bytes, the horizontal
band in Fig. 10 represents a range of capacities from 2 to 512
GB of memory.

Figure 10 indicates that using the split junction tree should
enable computation for up to k = 6 unknown contributors,
whereas using the slice tree restricts computation to around
k = 4.

There is a simple way of compressing the slice tree in
that there are at most ten possible configurations of the states
in each of {Sia, Si,a+1, nia, ni,a+1}. So if the state space is
defined by these from the outset, it would in principle be
possible to handle up to k = 9 unknown contributors, as it the
compressed network would determine the maximal capacity;
however, the general flexibility of the representation would
be reduced.
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Fig. 9 Our best junction tree for a DNA mixture network with k = 3, A = 6, and N = 1

1 2 3 4 5 6 7 8 9 10

0
5

10
15

Unknown contributors

lo
g 1

0 
of

 to
ta

l s
iz

e

Allele pair
Slice tree
Triangle tree
Split tree

Fig. 10 Total sizes of junction trees as a function of the number k of
unknown contributors, in the case of A = 25 allelic types and N = 3
auxiliary variables per allele. Solid lines are uncompressed sizes and
dashed lines compressed sizes. The horizontal band indicates total sizes
ranging from 2GB to 512GB assuming numbers are represented in sin-
gle precision

4.4.2 Other representations of genotypes

Clearly, the network that represents the genotype of an
unknown contributor could be replaced by a different rep-
resentation than the one suggested here and connected to the
auxiliary variables in an appropriate way. We shall briefly
consider two alternative representations of a genotype. An
alternative possibility is to use a more algebraic represen-
tation of the formulae; however, again this would typically
reduce flexibility and we shall not discuss these possibilities
further here.

Allele pair representation More commonly, a genotype has
been represented directly as an unordered pair of alleles; this
representation has for example been used in Cowell et al.
(2011). For A alleles there are A(A+1)/2 possible unordered
pairs. If an allele pair is represented by a single node for
each of the k unknown contributors, the parent set for each
auxiliary variable in this network is the collection of these k
nodes, resulting in a junction tree where each clique and each
separator contains all k nodes. Adding N auxiliary variables
for each of A alleles yields the total size

T Sallele-pair = (3N A − 1) {A(A + 1)/2}k .

We note that this junction tree exhibits polynomial rather
than linear growth in A, rendering the representation less
efficient for markers with a large number of possible alleles.
For a fixed number of alleles, the growth in the number k
of unknown contributors is still exponential; see Fig. 10. For
junction trees based on the Markov representation of geno-
types, the number of alleles makes a negligible impact on
the total size. However, for the allele pair representation the
rate of growth depends heavily on the number of alleles: For
25 alleles as in Fig. 10 it is feasible to handle up to about
three unknown contributors, whereas if only 10 allelic types
are needed, then 4–5 unknown contributors can be handled.
For A ≥ 7, the Markov representation in combination with
optimal triangulation is superior to the allele pair represen-
tation regardless of the number of unknown contributors. As
the allele pair representation is compressed by construction,
there is no possibility of further compression of the junction
tree.

Single allele representation Another possibility, used for
example in Dawid et al. (2002) and Mortera et al. (2003),
is to model the genotype at the single allele level. A single
allele can be represented by the same Markovian network
structure as that in Fig. 3 used for a genotype, just that each
node nia or Sia has state space {0, 1} rather than {0, 1, 2}.
However, there is a cost in that two such networks are needed
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Table 1 Peak heights for marker D2S1338 above threshold in sample
MC15, and genotypes of associated individuals

Allele Peak height Allele count

a Za K1 K2 K3

16 64 0 0 1

17 96 0 0 1

23 507 1 0 0

24 524 1 2 0

per unknown contributor, resulting in a total size with growth
rate O(A × 23(2k)) compared to O(A × 33k) when using the
genotype representation. Thus, the single allele network will
always be inferior to the genotype network.

The total size of the split tree using the single allele rep-
resentation renders computation feasible for up to about five
unknown contributors. Compression of the slice tree with
single alleles yields a growth rate of O(A × 16k), which still
is considerably higher than O(A × 10k) for the correspond-
ing compressed slice tree using the genotype representation
introduced in Sect. 4.1. It would stay feasible if k ≤ 7. For
A ≥ 11, the single allele representation compares favourably
to the allele pair representation.

Although inefficient, the single allele network represen-
tation may be preferable for other reasons; for example in
cases where the two alleles might be selected from different
populations, if sensitivity to uncertainty or population struc-
ture should be investigated as in Green and Mortera (2009),
or if there is additional complexity involving family relations
etc. as in Mortera et al. (2003).

5 DNA mixture analysis

As a generic example we consider the DNA sample MC15
from Gill et al. (2008), also analysed in Cowell et al. (2013).
The sample is believed to contain DNA from at least three
contributors. The victim, who we shall denote K1, is assumed
present along with another contributor K2. We shall here deal
with the question of the identity of the third contributor. The
peak heights from one marker are given in Table 1 along with
the allele counts for each of three genotyped individuals.

5.1 Estimation

The model parameters ψ = (ρ, η, ξ, φ) are typically
unknown and need to be estimated. In particular, the pro-
portions φi of DNA from each contributor i are specific to
the case at hand.

Being able to evaluate the likelihood function as in
Sect. 4.2, estimation can be done by numerical maximisa-
tion. In DNAmixtures, likelihood functions are maximised

Table 2 Maximum likelihood estimates based on MC15

Defence hypothesis Prosecution hypothesis
Parameter Estimate Parameter Estimate

ρ 26.95 ρ 33.86

η 33.86 η 26.94

ξ 0.086 ξ 0.076

φK1 0.823 φK1 0.825

φK2 0.055 φK2 0.049

φU 0.122 φK3 0.126

log10 L(Ĥ) −130.21 log10 L(Ĥ) −118.09

numerically using Rsolnp (Ghalanos and Theussl 2012; Ye
1987). Approximate standard errors of estimates are based
on the inverse Hessian of the likelihood function found by
numerical derivation using numDeriv (Gilbert and Varad-
han 2012).

We wish to calculate the likelihood ratio for evidence
against K3 as in (1). We consider the prosecution hypothesis
Hp that the contributors to the trace are individuals K1, K2,
and the defendant K3, whereas the defence hypothesis Hd

replaces the defendant with an unknown contributor U . The
maximum likelihood estimates and standard errors obtained
under the two hypotheses are given in Table 2. From the
last line in the table we see that the likelihood ratio against
the suspect K3 having contributed to the mixture is of the
order 1012, giving overwhelming support for the prosecution
hypothesis Hp. As the estimates for the parameters are quite
similar under the two hypotheses, the large likelihood ratio is
reflecting that it is very improbable that a random individual
would have this particular genotype by chance.

5.2 Model diagnostics

In the assessment of forensic evidence, little attention has
been devoted to demonstrate the adequacy of a proposed
model used to analyse a specific case or, of equal impor-
tance, to assert that data have been correctly recorded for the
analysis. This may partly be due to the unavailability of use-
ful methods for the purpose. However, we believe this aspect
to be of utmost importance; in particular we find it reasonable
that one should not only compare the prosecution and defence
hypothesis, but there should also be an effort to demonstrate
that neither hypothesis represents an implausible explanation
of the sample under analysis.

Previously we have introduced auxiliary variables Oa , to
enable simple computation of the likelihood function (4) and
representation of evidence from observed peak heights (12).
We shall in the following introduce further auxiliary vari-
ables: binary variables Da which indicate whether a peak is
below threshold at allele a, and variables Qa which indicate
whether a peak observed at allele a is less than a specified
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value. Both of these sets of auxiliary variables are useful for
model validation; in addition, the variables Da can be used
in an analysis which is based only on peak presence; see
Sect. 5.5 below.

5.2.1 Assessing peak height distributions

First, we wish to investigate whether our model appropriately
predicts the observed peak heights. Given Za ≥ C , the peak
height follows a continuous distribution and thus the prob-
ability transform P(Za ≤ za | Za ≥ C) follows a uniform
distribution.

To express the probability in a way suitable for computa-
tion with auxiliary variables we first note that for z ≥ C we
have

P(Za ≤ z | Za ≥ C) = P(Za ≤ z)− P(Za < C)

P(Za ≥ C)
.

Thus all we need to evaluate is the distribution function in
the observed value za and at the threshold C . The distribution
function

P(Za ≤ z) = E

{
P(Za ≤ z | na,na+1)

}
(13)

is the expectation of a product with only one factor, so to
compute this we add an auxiliary variable Qa with the same
parents as for Oa and with conditional probability

P(Qa = 1 | na,na+1) = P(Za ≤ z | na,na+1).

Similarly, we add a binary variable Da allowing the evalua-
tion of both P(Za < C) and P(Za ≥ C) .

It can be of interest to consider the distribution of the
peak height in the light of other observed peaks, and not just
the marginal distribution of the peak itself. For instance, we
can condition on the peak heights at all other alleles to get
P
(
Za ≤ z

∣
∣Zb = zb, b 
= a, Za ≥ C

)
, or we could include

this information for only the preceding alleles in the ordering
to get P

(
Za ≤ z

∣
∣Zb = zb, b ≤ a, Za ≥ C

)
. Proposition 3

ensures that these distributions can all be obtained simply
through conditioning on relevant subsets of variables Oa .

In Fig. 11, quantile–quantile plots for the conditional dis-
tribution of a peak height given observed peak heights for all
other alleles are shown for Hp and Hd using sample MC15
and the associated maximum likelihood estimates in Table 2.

We note that in both diagrams the points are close to
the identity line and there is no indication that the peak
height distributions are inadequately modelled under either
hypothesis.

We can also take a closer look at the distribution of the
peak height at any single allele, for example to identify
unusual observations. This is illustrated in Fig. 12. Boxes
indicate quartiles and whiskers indicate 0.5 and 99.5 %
prediction limits for the conditional distributions of peak
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Fig. 11 Quantile–quantile plots for the prosecution and defence
hypotheses for MC15
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Fig. 12 Comparison of observed peak heights to their predictive dis-
tribution conditionally on all other observed peak heights for marker
D2S1338. The bar below each peak indicates the probabilities of
observing (grey) and not observing (black) a peak at this allele. (Colour
figure online)

heights P
(
Za ≤ z

∣
∣Zb = zb, b 
= a, Za ≥ C

)
. The quantiles

are found by numerical inversion of the distribution func-
tion (13).

We note that although the observed peak heights at alle-
les 23 and 24 are somewhat lower than expected, there are
no observations that are clear outliers, conforming with the
quantile-quantile plots in Fig. 11. Expectedly, the prosecu-
tion hypothesis predicts complete absence of peaks at alle-
les 18–21 and 25–27, since these alleles are not present in
either genotypes nor are they in a possible stutter position.
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In contrast, under the defence hypothesis peaks are a priori
possible at any allele.

5.2.2 Prequential monitoring of peak presence

Next, we wish to investigate whether our model correctly
predicts absence and presence of peaks in the EPG. We use
the prequential theory of Dawid (1984) with so-called pre-
quential monitors (Seillier-Moiseiwitsch and Dawid 1993).

Using any ordering, we consider the set of alleles across
all markers and the probability that a peak has been seen
for allele a given the peak heights observed on all preceding
alleles,

pa = P
(
Za ≥ C

∣
∣zi , i < a

) = P
(
Da = 0

∣
∣zi , i < a

)

which can be obtained by propagation as described in
Sect. 4.3. For each allele a, we then consider the logarith-
mic score

Ya =
{

− log pa, if za ≥ C

− log(1 − pa), if za < C

so that Ya is always non-negative and higher values of Ya

represent a large penalty for assigning a small probability
(pa or 1 − pa) to the event that actually happens.

The cumulative logarithmic score, adjusted for incremen-
tal expectations,

Ma =
a∑

i=1

{
Yi − E

(
Yi
∣
∣Zb, b < i

)}

is a martingale with respect to the sequence of peak heights.
As V

(
Ma − Ma−1

∣
∣Zb, b < a

) = V
(
Ya
∣
∣Zb, b < a

)
, the

distribution of the normalised cumulative score
∑a

i=1 Yi −∑a
i=1 E

(
Yi
∣
∣Zb, b < i

)

√∑a
i=1 V

(
Yi
∣
∣Zb, b < i

)

approaches a standard normal distribution as the denominator
becomes infinitely large (Seillier-Moiseiwitsch and Dawid
1993). Thus for q1−α being the 1−α quantile of the standard
normal distribution,

q1−α

√
√
√
√

a∑

i=1

V
(
Yi
∣
∣Zb, b < i

)

is an approximate pointwise 1 − α upper predictive limit for
the cumulative score at allele a.

The cumulative score can easily be calculated using that
if pa ∈ {0, 1} we have Ya = 0 and otherwise

E
(
Ya
∣
∣Zb, b < a

) = −pa log pa − (1 − pa) log(1 − pa),

V
(
Ya
∣
∣Zb, b < a

) = pa(1 − pa) {log pa − log(1 − pa)}2 .

Prequential monitor plots of the prosecution and defence
hypothesis for MC15 are displayed in Fig. 13.
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Fig. 13 Prequential monitor plots of the prosecution and defence
hypotheses for MC15. The dashed horizontal lines indicate upper 95
and 99 % pointwise predictive limits based on the approximating
normal distribution

A negative jump in the score means that we have observed
what the model predicts as most likely, whereas a positive
jump means that we have observed the opposite of what is
most likely according to the model. If it is equally likely
for a peak to fall above and below the threshold, or there is
only one possible outcome—i.e. if pa ∈ {0, 0.5, 1}—there
is no jump. The size of an upward jump indicates the level of
disagreement between model and observations. Note that for
the defence hypothesis, the monitor crosses the upper limits
towards the end of the plot, indicating that this hypothesis
may not adequately describe the pattern of observed peaks.
Further investigation may reveal whether upward jumps are
due to observation of rare alleles or, for example, due to
recording errors in the data.

5.3 Simulation

As stated in Proposition 3, introducing evidence on the aux-
iliary variables Oa yields a representation of the posterior
distribution of the genotypes of the unknown contributors.
This in turn enables simulation of a full set of DNA profiles
and corresponding peak heights, either marginally or con-
ditionally on relevant subsets of the observed peak heights.
More generally, we have for any event B that

fψ
({za}a∈A,n

∣
∣B
) = fψ

({za}a∈A
∣
∣n, B

)
p
(
n
∣
∣B
)
.

If conditioning with B can be represented by propagation in
our Bayesian network, for example if B = {Zb = zb, b 
= a},
we can easily simulate from p

(
n
∣
∣B
)

by standard methods
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(Cowell et al. 1999, Sect. 6.4.3). Thus to sample the the peak
heights, we just further need a method for sampling from
fψ
({za}a∈A

∣
∣n, B

)
.

This method of simulation can for example be used in
a bootstrap analysis of the estimation uncertainty or in a
Monte-Carlo based fully Bayesian analysis as in Graversen
and Lauritzen (2013). Simulation could also be relevant for
assessing the discriminatory ability of the calculated like-
lihood ratio, for illustration of peak height variability, and
other forms of model validation. Below we are exploiting
simulation in the prediction of profiles of unknown contrib-
utors.

5.4 Prediction of unknown profiles

In a model involving unknown contributors it can be relevant
to investigate the distribution of genotypes for each of these
conditionally on the evidence. Focusing on a single or few
alleles, we can explore this distribution directly. For any com-
bination of genotypes we can compute its probability exactly
by probability propagation. We can identify those of high-
est probability by sampling genotypes until a proportion p
of the probability mass has been visited, as then each of the
remaining combinations of genotypes must have probabil-
ity at most 1 − p. Thus the r combinations with probability
strictly greater than 1 − p must be among those sampled.
They can then be ranked according to their probability and
constitute the list of the r most probable combinations. Here
the number r depends on the probability p chosen.

Considering the defence hypothesis of sample MC15, we
would like to identify the genotype of the unknown contrib-
utor U . If we consider the full DNA profile we often get a
very diffuse distribution, as for example reported in Cowell
et al. (2013).

One reason for this is that, due to dropout, there are gen-
erally many unseen alleles that could be present in the mix-
ture without giving rise to a peak. However, if we focus on
explaining the peaks actually seen in the EPG for a single
marker, we get a more concentrated distribution, as displayed
in Table 3, where the total probability of the six combinations
add up to one.

As the table shows, the probability that the unknown con-
tributor has at least one allele 17 is 0.9983, close to certainty.
There is some uncertainty concerning the second allele which
can be virtually anything although it is by far most probable
that the genotype is (16, 17); this genotype is that of the
defendant K3. The second most probable explanation of the
sample is that the other allele has dropped out.

5.5 Weight of evidence when ignoring peak heights

Another potential application of the auxiliary variables is to
calculate a likelihood ratio which only uses information about

Table 3 Probabilities of genotype at marker D2S1338 for the unknown
contributor U under the defence hypothesis

16 17 23 24 D Prob

1 1 0 0 0 0.5276

0 1 0 0 1 0.1861

0 2 0 0 0 0.1697

0 1 0 1 0 0.0640

0 1 1 0 0 0.0509

1 0 0 0 1 0.0017
Total probability 1.0000

The defendant K3 has genotype (16,17)

peak presence or absence. This can be done by specifying
evidence for the nodes Da introduced in Sect. 5.2 rather than
for nodes Oa .

It is still necessary to specify a set of model parameters,
which for example could be estimated using peak heights.
Using the parameter estimates in Table 2 we obtain a like-
lihood ratio of log10 L R = 9.85 which is weaker than the
evidence obtained with full peak height information but it
is still incriminating for the defendant. Such an analysis is
somewhat analogous to the one used in likeLTD as sug-
gested by Balding (2013), where peak heights are used only
to classify alleles as definitely absent, definitely present, or
possibly present in the mixture.

We have used peak heights to estimate the parameters of
the model. In principle parameters could also be estimated
solely on the peak presence information, possibly in combi-
nation with prior information on some of these, although such
estimates would be ill-determined and therefore not useful.

5.6 Multiple DNA mixtures

By adding more auxiliary variables to the model, we can
easily extend the model to handle multiple mixtures, either
with independent unknown contributors or where some or all
unknown contributors coincide.

We assume that the peak heights across mixtures are con-
ditionally independent given the genotypes of common con-
tributors. Peak height distributions are allowed to vary across
mixtures through the model parameters.

The network now models the set of all unknown contribu-
tors to the mixtures. Denote byφ j

i the proportion of DNA that

contributor i has made to sample j . Thenφ j
i = 0 corresponds

to contributor i not being present in mixture j . Therefore, the
case where some or all contributors are distinct to a particular
mixture is a sub-model corresponding to φ j

i = 0 for some
(i, j).

An advantage of this specification of the joint model is that
we do not need to make assumptions about possible common
unknown contributors to the mixtures, but we can let the
maximisation of the likelihood point to the relevant scenario.
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This has been used in Cowell et al. (2013) for a combined
analysis of MC15 with another DNA mixture pertaining to
the same case.

In the case where the samples have completely indepen-
dent unknown contributors, it is recommendable to represent
each sample as a separate network to limit the number of
unknown contributors in each network.

6 Discussion

Other authors have addressed statistical analysis of DNA
mixtures using various heuristics for limiting the number of
terms involved in the computation (Bill et al. 2005; Tvede-
brink et al. 2010; Puch-Solis et al. 2013) and have only con-
sidered two or three unknown contributors (Cowell et al.
2011).

We note that our computational methods are exact under
the model adopted, and that the only approximations relate to
the model representing an inevitable approximation to real-
ity, and possible imprecision of numerical methods. Never-
theless, using the efficient junction tree representations and
exact compression methods as described in Sect. 4.4.1, we
are able to handle more contributors than what has previously
been possible. Indeed, using the methodology presented here
and the corresponding implementation by Graversen (2013)
inDNAmixtures, Cowell et al. (2013) were able to perform
exact evaluation and subsequent numerical maximisation of
the likelihood function for up to six unknown contributors.

Methods used to calculate approximations to likelihood
ratios as in (1) are potentially unreliable, as they are ratios
of very small numbers; in particular, small changes in the
denominator of the ratio can have drastic effects on the
weight of evidence. For other types of calculation, approx-
imate methods could be very useful if they represent major
reductions in computational effort. However, it is hard to
see how the exponential growth in effort with the number
of unknown contributors can be avoided while maintaining
sufficient computational accuracy. The basic junction tree
representations of the model are equally useful for obtain-
ing Monte Carlo approximations to relevant quantities, for
example in the slightly more complex situation where para-
meters are treated by fully Bayesian methods and likelihood
functions should be integrated rather than maximised, see
also Graversen and Lauritzen (2013).

We conclude with noting that we have far from exhausted
the flexibility and the potential of the Bayesian network rep-
resentation of the model. Simple modifications or elabora-
tions of the basic network can readily be used to, say, incor-
porate the presence of silent alleles simply by including an
extra allele in the genotype representation, or to enable direct
computation of the probability that a specific peak is due to
stutter or an absent peak is due to dropout or allele absence;
see Cowell et al. (2013) for this and further examples.
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