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Overview

• Introduction

• Conditional Independence Structures

• Estimating undirected graphs

• Estimating directed acyclic graphs

• Summary and perspectives
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Estimation of Structure

Advances in computing has set focus on estimation of
structure:

• Model selection (e.g. subset selection in
regression)

• System identification (engineering)

• Structural learning (AI or machine learning)

Graphical models describe conditional independence
structures, so good case for formal analysis.

Methods must scale well with data size, as many
structures and huge collections of data are to be
considered.
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Why estimation of structure?

• Parallel to e.g. density estimation

• Obtain quick overview of relations between
variables in complex systems

• Data mining

• Gene regulatory networks

• Reconstructing family trees from DNA information

• Methods exist, but need better understanding of
their statistical properties
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Markov mesh model
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PC algorithm

Crudest algorithm (HUGIN), 10000 simulated cases
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Bayesian GES

Crudest algorithm (WinMine), 10000 simulated cases
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Tree model

PC algorithm, 10000 cases, correct reconstruction
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Bayesian GES on tree
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Chest clinic
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PC algorithm

10000 simulated cases
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Bayesian GES
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Types of approach

• Methods for judging adequacy of structure such as

– Tests of significance

– Penalised likelihood scores

Iκ(M) = log L̂− κdim(M)

with κ = 1 for AIC Akaike (1974), or
κ = 1

2 logN for BIC (Schwarz 1978).

– Bayesian posterior probabilities

• Search strategies through space of possible
structures, more or less based on heuristics.
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Conditional independence structures

• Undirected structures (Markov networks)

• Directed structures (Bayesian networks)

• Structures based upon chain graphs

• Other conditional independence structures

• Context dependent independence structures (split
models)

Lecture will focus on ’exact’ results, pertaining only to
the first two of these.
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Conditional independence

X and Y are conditionally independent given Z if
L(X |Y, Z) = L(X |Z) and we write X ⊥⊥Y |Z. It holds

(C1) if X ⊥⊥Y |Z then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥U |Z;

(C3) if X ⊥⊥Y |Z and U = g(Y ), then X ⊥⊥Y | (Z,U);

(C4) if X ⊥⊥Y |Z and X ⊥⊥W | (Y, Z), then
X ⊥⊥ (Y,W ) |Z;
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Some notation

G = (V,E) is finite and simple undirected graph and
A⊥G B |S denotes that S separates A from B in G.

Density of X = (Xv, v ∈ V ) factorizes w.r.t. G if

f(x) =
∏
a∈A

ψa(x),

where A are complete subsets of G and ψa(x) depends
on xa only.

Then P satisfies the global Markov property:

A⊥G B |S =⇒ A⊥⊥B |S

Consider sample x(n) = (x1, . . . , xn) from P .
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Estimating trees

Assume P factorizes w.r.t. an unknown tree τ .

Chow and Liu (1968) showed MLE τ̂ of T has maximal
weight , where the weight of τ is

w(τ) =
∑

e∈E(τ)

Hn(e)

and Hn(e) is the empirical cross-entropy or mutual
information between endpoint variables of the edge
e = {u, v}:

Hn(e) =
∑ n(xu, xv)

n
log

n(xu, xv)/n
n(xu)n(xv)/n2

.
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More on trees

Fast algorithms (Kruskal Jr. 1956) compute maximal
weight spanning tree from weights W = (wuv, u, v ∈ V ).

Chow and Wagner (1978) show a.s. consistency in total
variation of P̂ : If P factorises w.r.t. τ , then

sup
x
|p(x)− p̂(x)| → 0 for n→∞,

so if τ is unique for P , τ̂ = τ for all n > N for some N .

If P does not factorize w.r.t. a tree, P̂ converges to
closest tree-approximation P̃ to P (Kullback-Leibler
distance).
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Gaussian Trees

If X = (Xv, v ∈ V ) is regular multivariate Gaussian, it
factorizes w.r.t. an undirected graph if and only if its
concentration matrix K = Σ−1 satisfies

kuv = 0 ⇐⇒ u 6∼ v.

Results of Chow et al. are easily extended to Gaussian
trees, with the weight of a tree determined as

w(τ) =
∏

e∈E(τ)

(1− r2e)−1/2,

with r2e being the empirical correlation coeffient between
Xu and Xv.
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Special features of tree models

• Direct likelihood methods (ignoring penalty terms)
lead to sensible results.

• Sampling distribution of tree MLE can be simulated

• Penalty terms additive along branches, so highest
AIC or BIC scoring tree (forest) also available
using a MWST algorithm.

• Pairwise marginal counts are sufficient statistics
for the tree problem (empirical covariance matrix in
the Gaussian case).
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Bayesian analysis

For g in specified set of graphs, Θg is associated
parameter space so that P factorizes w.r.t. g if and only if
P = Pθ for some θ ∈ Θg.

πg is prior on Θg. Prior p(g) is uniform for simplicity.

Based on x(n), posterior distribution of G is

p∗(g) = p(g |x(n)) ∝ p(x(n) | g) =
∫

Θg

p(x(n) | g, θ)πg(dθ).

Bayesian analysis looks for MAP estimate g∗ maximizing
p∗(g) or attempts to sample from posterior , using e.g.
MCMC.
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Decomposable graphical models

For connected decomposable graphs and strong hyper
Markov priors Dawid and Lauritzen (1993) show

p(x(n) | g) =
∏

C∈C p(x
(n)
C )∏

S∈S p(x
(n)
S )

,

where each factor has explicit form. C are the cliques of
g and S the separators (mininal cutsets).

Trees are decomposable, so for trees we get

p(τ |x(n)) ∝
∏

e∈E(τ)

p(x(n)
e ).
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Bayesian analysis

MAP estimates of trees can be computed (also in
Gaussian case).

Good direct algorithms exist for generating random
spanning trees (Aldous 1990), so full posterior analysis
is possible for trees.

MCMC methods for exploring posteriors of undirected
graphs have been developed, e.g. (Giudici and Green
1999) and (Roverato 2002)

Only heuristics available for MAP estimators or
maximizing penalized likelihoods such as AIC or BIC, for
other than trees.
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Some challenges for undirected graphs

• Find feasible algorithm for (perfect) simulation from
a distribution over decomposable graphs as

p(g) ∝
∏

C∈C w(C)∏
S∈S w(S)

,

where w(A), A ⊆ V are a prescribed set of positive
weights.

• Find feasible algorithm for obtaining MAP in
decomposable case. This may not be universally
possible as problem most likely is NP-complete.
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Consistency

Haughton (1988) shows in some generality that BIC
structure estimation is consistent in the sense that,
asymptotically, BIC is maximized for the simplest
structure compatible with the sampling distribution.

Also that BIC under same assumptions as above is an
approximation to the Bayesian posterior, so the same is
true for the full posterior.

Direct to show consistency of BIC and Bayesian
posterior for trees, as in Chow and Wagner (1978).

Adapting martingale argument in Doob (1949) yields
rather general posterior consistency.
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Bayesian network

• Directed Acyclic Graph (DAG) D = (V,E).

• Nodes V represent (random) variables Xv, v ∈ V

• Specify conditional distributions of children given
parents: p(xv |xpa(v))

• Joint distribution is then

p(x) =
∏
v∈V

p(xv |xpa(v)) (1)

• Directed Markov properties identify conditional
independence relations which follow from (1)
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Example of Bayesian network
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Corresponds to the factorisation

p(x) = p(x1)p(x2 |x1)p(x3 |x1)p(x4 |x2)
× p(x5 |x2, x3)p(x6 |x3, x5)p(x7 |x4, x5, x6).
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Global Directed Markov Property

The factorization

p(x) =
∏
v∈V

p(xv |xpa(v))

is equivalent to:

A⊥⊥B | S, whenever A⊥D B | S

where A⊥D B | S denotes that A and B are d-separated
by S.
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Separation in DAGs

The d-separation A⊥D B | S can e.g. be checked as
follows:

1. Reduce to subgraph induced by ancestral set of
A ∪B ∪ S

2. Add undirected edges between unmarried parents
in this subgraph

3. Drop directions on all arrows

4. Then A⊥D B | S if and only if S separates A from
B in this undirected graph.
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Forming ancestral set
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The subgraph induced by all ancestors of nodes
involved in the query 4⊥⊥ 6 | 3, 5?
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Adding links between unmarried parents
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Adding an undirected edge between 2 and 3 with
common child 5 in subgraph induced by all ancestors of
nodes involved in the query 4⊥⊥ 6 | 3, 5?
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Dropping directions
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Since {3, 5} separates 4 from 6 in this graph, we
conclude that 4⊥⊥ 6 | 3, 5
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Markov equivalence

D and D′ are equivalent if and only if:

1. D and D′ have same skeleton (ignoring directions)

2. D and D′ have same unmarried parents

so

s - s
s
@

@R? s ≡ s - s s
s
?@
@I

but

s - s -

s
@

@R? s 6≡ s - s - s
s
6@

@R
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Constraint-based search

Step 1: Identify skeleton using that, for P faithful,

u 6∼ v ⇐⇒ ∃S ⊆ V \ {u, v} : Xu⊥⊥Xv | XS .

Begin with complete graph, check for S = ∅ and
remove edges when independence holds. Then
continue for increasing |S|.
PC-algorithm (Spirtes et al. 1993) exploits that only
S with S ⊆ ne(u) or S ⊆ ne(v) needs checking, ne
refers to current skeleton.

Step 2: Identify directions to be consistent with
independence relations found in Step 1.
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Faithfulness

A given distribution P is in general compatible with a
variety of structures, i.e. if P corresponds to complete
independence.

To identify a DAG structure something like the following
must hold

P is said to be faithful to D if

A⊥⊥B | XS ⇐⇒ A⊥D B | S.

Most distributions are faithful. More precisely, the
non-faithful distributions form a Lebesgue null-set in
parameter space associated with a DAG.
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Exact properties of PC-algorithm

If P is faithful to DAG D, PC-algorithm finds D′
equivalent to D.

It uses N independence checks where N is at most

N ≤ 2
(
|V |
2

) d∑
i=0

(
|V | − 1

i

)
≤ |V |d+1

(d− 1)!
,

where d is the maximal degree of any vertex in D.

So worst case complexity is exponential, but algorithm
fast for sparse graphs.

Sampling properties are less well understood although
consistency results exist.
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Equivalence class searches

Searches directly in equivalence classes of DAGS.

Define score function σ(D), with the property that

D ≡ D′ =⇒ σ(D) = σ(D′).

This holds e.g. if score function is AIC or BIC or full
Bayesian posterior with strong hyper Markov prior
(based upon Dirichlet or inverse Wishart distributions).

Equivalence class with maximal score is sought.
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Posterior distribution for DAG

For strong directed hyper Markov priors it holds that

p(x(n) | d) =
∏
v∈V

p(x(n)
v |x(n)

pa(v))

so
p(d |x(n)) ∝

∏
v∈V

p(x(n)
v |x(n)

pa(v)),

see e.g. Spiegelhalter and Lauritzen (1990),
Cooper and Herskovits (1992),
Heckerman et al. (1995)

Challenge: Find good algorithm for sampling from this
full posterior.
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Greedy equivalence class search

1. Initialize with empty DAG

2. Repeatedly search among equivalence classes
with a single additional edge and go to class with
highest score - until no improvement.

3. Repeatedly search among equivalence classes
with a single edge less and move to one with
highest score - until no improvement.

For BIC or fully Bayesian posterior score, this algorithm
yields consistent estimate of equivalence class for P .
(Chickering 2002)
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Some completely open questions

• What is the speed of convergence for consistent
graph estimators?

• What are natural neighbourhoods to form
confidence sets for graphs?

• Can some kind of asymptotic distributions be
achieved?

• What are adaptive properties of empirical Bayes
methods?
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Summary and further challenges

• Structure estimation is practically possible but in
need of a theory

• More exact results are needed , to guide heuristics.

• For complexity reasons, consider search algorithm
itself as part of estimator

• Conceptual clarification of properties of structure
estimators needed

• Structures with latent variables constitute
particularly challenging and important area.
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Some web addresses

HUGIN: www.hugin.com

WinMine: research.microsoft.com/
∼dmax/WinMine/Tooldoc.htm

These overheads:
www.stats.ox.ac.uk/ ∼steffen/barcelona.pdf

Thank you!
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