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TEACHING ARTICLES

Logistic Regression Analysis
and Reporting: A Primer

Chao-Ying Joanne Peng and Tak-Shing Harry So
Department of Counseling and Educational Psychology

Indiana University–Bloomington

Logistic regression, being well suited for analyzing dichotomous outcomes, has been
increasingly applied in social science research. That potential expanded usage de-
mands that researchers, editors, and readers be coached in terms of what to expect in
an article that used the logistic regression technique: What tables should be included?
What assumptions tested? What figures or charts should be expected? In this article
we seek to answer these questions with an illustration of logistic regression applied to
a real world data set. Results were evaluated and diagnosed in terms of the overall test
of the model, interpretability and statistical significance of each predictor, good-
ness-of-fit statistics, predictive power, accuracy of prediction, and identification of
potential outliers. Guidelines are offered for modeling strategies and reporting stan-
dards in logistic regression. Furthermore, 6 statistical packages were employed to
perform logistic regression. Their strengths and weaknesses were noted in terms of
flexibility, accuracy, completeness, and usefulness.

Keywords: logistic regression, categorical variables, binary outcome,
statistical packages, statistical computing

Logistic regression was first proposed in the 1970s as an alternative technique to
overcome limitations of ordinary least squares (OLS) regression in handling di-
chotomous outcomes. It became available in statistical packages in the early 1980s.
Logistic regression has been widely employed in epidemiological research, where
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often the outcome variable is presence or absence of some disease state (e.g.,
Yarandi & Simpson, 1991). Meanwhile, the use of logistic regression continues to
grow in social sciences (e.g., Chuang, 1997; Janik & Kravitz, 1994; Tolman &
Weisz, 1995) and educational research (e.g., Okun, Benin, & Brandt-Williams,
1996; St. John, Paulsen, & Starkey, 1996), especially in higher education (Austin,
Yaffee, & Hinkle, 1992; Cabrera, 1994; Peng & So, in press; Peng, So, Stage, & St.
John, in press).

Increasing volumes of literature written about logistic regression also contrib-
ute to the growing use of logistic regression in social sciences research. Logistic
regression textbooks by Hosmer and Lemeshow (2000), Kleinbaum (1994),
McCullagh and Nelder (1989), and Menard (1995) were published within the last
12 years. Other textbooks of multivariate statistics (e.g., Afifi & Clark, 1990;
Ryan, 1997; Tabachnick & Fidell, 1996, 2001) have begun to include chapters on
logistic regression in their recent editions. Because logistic regression does not re-
quire that data are drawn from a multivariate normal distribution with equal vari-
ances and covariances for all variables (Cleary & Angel, 1984; Efron, 1975; Lei &
Koehly, 2000; Press & Wilson, 1978), it is less restrictive than linear discriminant
function analysis for modeling categorical outcomes. Thus, social sciences re-
searchers have recognized logistic regression as a viable alternative method to lin-
ear discriminant function (Tabachnick & Fidell, 2001, p. 521).

Despite the popularity of logistic regression modeling and the ease with which
researchers are able to apply this technique using statistical software, confusion
continues to exist over terms, concepts, modeling approaches, and interpretations.
A recent review of 52 articles, published between 1988 and 1999 in three higher
education journals, revealed lack of standards in the practice and reporting of lo-
gistic regression (Peng et al., in press). Specifically, inconsistency was found in
the ratio of observations to predictors, modeling approaches, assessment of regres-
sion models, examinations of interactions among predictors, and presentations of
results. The level of completeness and accuracy of supplementary analyses was
uneven across studies. Logistic regression results have been reported in terms of
logit, odds, odds ratio, relative risk, predicted probability, marginal probability
(also called marginal effect, partial effect, or partial change), and change in pre-
dicted probability (also called delta-p). These terms are not equivalent; thus, their
meanings are not interchangeable.

With the wide availability of sophisticated statistical software installed on
high-speed computers, the anticipated use of this technique is increasing. That po-
tential expanded usage demands that researchers, editors, and readers be coached
in terms of what to expect in an article that used the logistic regression technique:
What tables should be included? What assumptions tested? What figures or charts
should be expected? This article seeks to answer these questions with an illustra-
tion of logistic regression applied to a real world data set. The remainder of this ar-
ticle is divided into seven sections: (a) Logistic Regression Models, (b) Illustration
of Logistic Regression Analysis, (c) Evaluations of A Logistic Regression Model,
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(d) Outliers and Diagnostic Statistics, (e) Modeling Strategy and Reporting, (f)
Evaluations of Six Logistic Regression Procedures, and (g) Summary. A glossary
of terms pertaining to logistic regression is found in Appendix A.

LOGISTIC REGRESSION MODELS

Logistic regression is well suited for studying the relation between a categorical or
qualitative outcome variable and one or more predictor variables. In the simplest
case of one predictor X (say, IQ score) and one dichotomous outcome variable Y
(say, diagnosed to be learning disabled), the logistic model predicts the logit of Y
from X. The logit is the natural logarithm (ln) of odds of Y. The simple logistic
model has the form:

(1)

(2)

where π is the probability of the outcome of interest, or the “event”, under variable
Y, α is the Y intercept, and β is the slope parameter. X can be categorical or continu-
ous, whereas Y is always categorical. Although a categorical variable may yield two
or more possible categories, we focus on dichotomous outcomes only. Illustrations
presented in this article can be extended to polytomous variables with ordered or
unordered (i.e., nominal) outcomes.

Figure 1 presents two logistic functions for α = 0, β = 0.2 and α = 0, β = 0.4. It
illustrates four unique characteristics:

1. Unless β = 0, the binary logistic regression maps the regression line onto the
interval (0,1), which is compatible with the logical range of probabilities.

2. The regression line is monotonically increasing if β > 0 (and monotonically
decreasing if β < 0).

3. The function takes on the value of 0.5 at x = –α/β (the point of inflection)
and is symmetric to the point of (–α/β, 0.5).

4. While holding α as a constant, the logistic curve’s steepness is determined
by the absolute value of β. If β is held constant, the magnitude of α deter-
mines the median location of the curve (see number 3).

Within the inferential framework, the null hypothesis states that β equals zero
in the population. Rejecting such a null hypothesis implies that a relation exists
between X and Y. If a predictor is binary, such as gender, the exponentiated β (=
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eβ) is the odds ratio, namely, the ratio of two odds (see Appendix A). Consider
an example in which the distribution of a dichotomous outcome variable (an in-
fant is born with normal or low weight) is paired with a dichotomous predictor
variable (mother’s weight is normal or below normal). Example data are in-
cluded in Table 1. A test of independence using chi-square could be applied.
The results yield χ2(1, N = 122) = 3.4268. Alternatively, one might prefer to as-
sess a low-weight mother’s odds of giving birth to a low-weight baby versus a
normal-weight baby, relative to a normal-weight mother’s odds; the result is an
odds ratio of 2.328. The odds ratio suggests that mothers who are below normal
weight are 2.328 times more likely to deliver a low-weight baby than normal,
compared to mothers who weigh normally. The odds ratio is derived from two
odds (73/23 for normal-weight mothers and 15/11 for under-weight mothers); its
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FIGURE 1 Univariate logistic regression model based on α = 0 and β = 0.2 overlayed with α =
0, β = 0.4.

TABLE 1
Sample Data for Weight of Mothers and Weight

of New Born Infants

Weight of Mothers

Weight of Infants Low Normal

Low 73 15
Normal 23 11



natural logarithm, that is, ln (2.328), is a logit that equals 0.845. The value of
0.845 would be the regression coefficient (i.e., β) of the predictor (mother’s
weight), if logistic regression were used to model the outcome of an infant’s
weight.

If a predictor is continuous, such as mother’s weight in pounds, Peterson (1984)
suggested that delta-p (or change in the probability) be used in interpreting the lo-
gistic regression result. Using the previous example, delta-p would mean the in-
crease in probability of giving birth to low-weight babies if the mother’s weight
decreases from 120 pounds to 100 pounds, or from 140 pounds to 120 pounds.
These interpretations are easy to understand. Consequently, logistic regression has
become increasingly appealing to social sciences researchers.

Extending the logic of the simple logistic regression to multiple predictors, one
may construct a complex logistic regression as follows:

(3)

Therefore,

(4)

where π is once again the probability of the event, α is the Y intercept, βs are
slope parameters, and Xs are a set of predictors. α and βs are estimated by the
maximum likelihood method. This method is designed to maximize the likeli-
hood of obtaining the data given its parameter estimates. The interpretation of βs
is rendered using either the odds ratio (for categorical predictors) or the delta-p
(for continuous predictors). The null hypothesis states that all βs equal zero. A
rejection of this null hypothesis implies that at least one β does not equal zero in
the population. Unlike discriminant function analysis, logistic regression does
not assume that Xs are distributed as a multivariate normal distribution with
equal covariance matrix across all levels of Y. Instead, it assumes that the bino-
mial distribution describes the distribution of the errors = Y Y– �. The binomial
distribution is also the assumed distribution for the conditional mean of the di-
chotomous outcome with the probability given by Equations 2 and 4. This as-
sumption is satisfied as long as the same probability is maintained across the
range of predictor values.
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ILLUSTRATION OF LOGISTIC REGRESSION ANALYSIS

In this section, we describe a data set for which logistic regression analysis is suit-
able to predict dichotomous outcomes. Six logistic regression algorithms imple-
mented in statistical packages were employed to perform logistic regression. Two
analysis issues, data formats and specification of interactions in the model, are dis-
cussed and treated.

Data

The “married women labor force participation” data (hereafter abbreviated as
MWLFP) were provided by Mroz (1987). The data set describes profiles of 752
married White women who were recruited in 1975 for the panel study of income
dynamics conducted at the University of Michigan. Logistic regression was ap-
plied to explain women’s decision to enter the paid labor force in 1975 with their
demographic information. The outcome variable (lfp) was coded 1 for women who
worked for pay in 1975 and 0 otherwise. The predictors were: women’s age (age),
number of children under the age of 5 (k5), number of children between ages 6 and
18 (k618), the household’s total income minus the wife’s income (inc), the wife’s
estimated wage rate (wg), and two dichotomous variables indicating, respectively,
whether the wife (wc) and the husband (hc) spent at least 1 year in college. Table 2
presents descriptive information of these eight variables.

Logistic Regression Modeling

A logistic regression model was fit to the MWLFP data to explain the predicted
odds of women entering the paid labor force (i.e., lfp = 1) in 1975. The model in-
cluded four main effects—k5, k618, hc, wc—plus one categorical variable
(newage) and its interaction with wc.

predicted logit (lfp = 1) = α + β1 × k5 + β2 × k618 + β3 × newage1
+ β4 × newage2 + β5 × newage3 + β6 × newage4 + β7 × newage5 +

β8 × hc+ β9 × wc + β10 × (wc*newage1) +
β11 × (wc*newage2) + β12 × (wc*newage3) + β13 × (wc*newage4)

+ β14 × (wc*newage5).

The variable newage was transformed from the continuous variable age according
to a 5-year increment (i.e., 30 to 34, 35 to 39, …, and 55 to 60). It was represented by
five dummy variables (newage1 through newage5) with the last category (women
above 54 years old) designated as the reference group.
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The logistic model was applied to the MWLFP data using algorithms imple-
mented in SAS®, SPSS®, SYSTAT®, BMDP®, MINITAB®, and STATA®.
These algorithms were:

1. The LOGISTIC procedure in SAS Release 8 (SAS Institute, 1999).
2. The LOGISTIC REGRESSION command in SPSS Release 10 (SPSS,

1999a).
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TABLE 2
Descriptive Statistics for the Married Women Labor Force Participation Data

Variable Name M SD Minimum Maximum

agea

Full sample 42.547 8.073 30 60
Working women 41.988 7.722 30 60
Non-working women 43.283 8.468 30 60

hcb

Full sample 0.392 0.489 0 1
Working women 0.415 0.493 0 1
Non-working women 0.363 0.482 0 1

incc

Full sample 20.156 11.619 1.120 96
Working women 18.981 10.564 1.120 91
Non-working women 21.698 12.728 1.500 96

k5d

Full sample 0.238 0.524 0 3
Working women 0.141 0.392 0 2
Non-working women 0.366 1.327 0 3

k618e

Full sample 1.352 1.321 0 8
Working women 1.349 1.317 0 8
Non-working women 1.357 1.327 0 7

lfpf

Full sample 0.567 0.496 0 1
wcg

Full sample 0.281 0.450 0 1
Working women 0.335 0.473 0 1
Non-working women 0.209 0.407 0 1

wgh

Full sample 3.56 2.64 0.13 25.00
Working women 4.17 3.31 0.13 25.00
Non-working women 2.76 0.81 0.99 5.80

Note. N = 752. Working women sample: n = 427. Non-working women sample: n = 325.
aWife’s age in years. bIf husband attended college 1, otherwise 0. cFamily income excluding wife’s

wages (by $1,000). dNumber of children ages 5 or younger. eNumber of children ages 6 to 18. fIf wife is in
the paid labor force, 1 otherwise 0. gIf wife attended college 1, otherwise 0. hWife’s estimated wage rate.



3. The LOGIT command in SYSTAT Release 9 (SPSS, 199b).
4. The LR command in BMDP Release 7.1 (BMDP Statistical Software,

1992).
5. The BLOGISTIC command in MINITAB Release 13 (Minitab, 2000).
6. The LOGISTIC command in STATA Release 6 (StataCorp, 1999).

For the purpose of discussion, “statistical package” refers to SAS, SPSS, SYSTAT,
BMDP, MINITAB, and STATA software. The term procedure refers to a proce-
dure or main command in a statistical package that performs logistic regression,
such as the LOGISTIC procedure in SAS, the LOGISTIC REGRESSION com-
mand in SPSS, and so forth.

Six statistical packages yielded very similar estimates for parameters and stan-
dard errors. All predictors reached the significance level of 0.05, except for k618,
hc, and the interactions of wc with newage1 through newage5 (Table 3). The result
implied that the odds for married women to enter the paid labor force in 1975 were
related to the number of young children (5 years old or under), their age groups,
and whether the women had some college education.

Data Formats

Three data formats are acceptable for logistic regression. They are (a) the raw data
format, (b) the frequency data format, and (c) the covariate pattern (or event/trial)
format. These formats are illustrated in Tables 4, 5, and 6 using 10 cases and the
first six variables from Table 2. The raw data format in Table 4 records each case
(i.e., woman) as a row and her scores on the outcome and predictors as columns.
Data stored in this format contain the richest information. McCullagh and Nelder
(1989) suggested using this format for logistic regression if the serial order of ob-
servations is relevant.

The frequency data format uses a single row to represent multiple observations
that share identical outcomes and predictors, whereas the frequency information is
stored in a separate variable, such as count in Table 5. Thus, the first row in Table 5
replacesCases1and4 inTable4.Withoneor twoadditional commands,most statis-
ticalpackagesacceptdatastored in this format (seeAppendixBDatarequirements).

The covariate pattern format records patterns of predictors by rows. It replaces
the outcome variable (lfp) with two new variables: trial and event. Trial keeps
track of observations that have identical predictor values, whereas event records
the number of observations having the event outcome; see Table 6. Five cases (2,
5, 7, 8, and 10) from Table 4 shared an identical predictor (covariate) pattern; they
form the second row in Table 6. Out of these five women, three were working in
1975. Hence, event = 3 and trial = 5. Unlike the raw or the frequency data format,
the covariate pattern format is not acceptable to either SPSS LOGISTIC
REGRESSION or SYSTAT LOGIT, but is acceptable to SPSS PROBIT (see Ap-
pendix B Data requirements).
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TABLE 3
Summary of the Logistic Regression Results by Six Packages

SAS LOGISTIC
SPSS LOGISTIC
REGRESSION SYSTAT LOGIT BMDP LR MINITAB BLOGISTIC STATA LOGISTIC

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

CONSTANT –0.5935a 0.3325 –0.5935a 0.3325 –0.593b 0.332 –0.5935c 0.332 –0.5935d 0.33250 –0.5934696d 0.3324873
k5 –1.3710a** 0.1955 –1.3709a** 0.1955 –1.371b** 0.196 –1.371c** 0.1960 –1.3710d** 0.19550 1.370959d** 0.1955443
k618 –0.1097a 0.0703 –0.1097a 0.0703 –0.110b 0.070 –0.1097c 0.0703 –0.10971d 0.07026 –0.1097122d 0.0702560
Age

Newage1 1.8425a** 0.4271 1.8425a** 0.4271 1.843b** 0.427 1.843c** 0.4270 1.8425d** 0.42700 1.84252d** 0.4270950
Newage2 1.6956a** 0.4331 1.6956a** 0.4331 1.696b** 0.433 1.696c** 0.4330 1.6956d** 0.43310 1.695584d** 0.4331121
Newage3 1.1662a** 0.4175 1.1662a** 0.4175 1.166b** 0.417 1.166c** 0.4170 1.1662d** 0.41750 1.166183d** 0.4174900
Newage4 0.9405a* 0.3854 0.9405a* 0.3854 0.940b* 0.385 0.9405c* 0.3850 0.9405d* 0.38540 0.9404907d* 0.3854029
Newage5 0.4613a 0.3999 0.4613a 0.3999 0.461b 0.400 0.4613c 0.4000 0.4613d 0.39990 0.4613459d 0.3999121

Hc –0.1205a 0.1938 –0.1205a 0.1938 –0.120b 0.194 –0.1205c 0.1940 –0.1205d 0.19380 –0.1204579d 0.1938383
Wc 1.3834a* 0.6541 1.3834a* 0.6541 1.383b* 0.654 1.383c* 0.6540 1.3834d* 0.65410 1.383379d* 0.6541175
wc × age

wc × newage1 –0.5837a 0.7544 –0.5838a 0.7544 –0.584b 0.754 –0.584c 0.7540 –0.5837d 0.75440 –0.5837369d 0.7544270
wc × newage2 –0.7515a 0.7788 –0.7515a 0.7788 –0.752b 0.779 –0.7515c 0.7790 –0.7515d 0.77880 –0.7515159d 0.7787781
wc × newage3 –0.9163a 0.7637 –0.9163a 0.7637 –0.916b 0.764 –0.9163c 0.7640 –0.9163d 0.76370 –0.9162765d 0.7636721
wc × newage4 –0.0448a 0.7769 –0.0448a 0.7769 –0.045b 0.777 0.04478c 0.7770 –0.0448d 0.77690 –0.447769d 0.7769299
wc × newage5 –0.4655a 0.7934 –0.4665a 0.7934 –0.465b 0.793 –0.4655c 0.7930 –0.4655d 0.79340 –0.4654552d 0.7933746

Likelihood ratio
testg 92.538** 92.538** 92.538** — 92.538** 92.54**

Score testg 87.547** 87.547** — — — —
Wald testg 76.8380** — — — — —
AIC 966.078
SC 1035.238
Somers’s Dxy 0.397 — — — 0.40
Goodman–

Kruskal Gamma 0.405 — — — 0.41
Kendall’s Tau-a 0.195 — — — 0.19 —
c statistic 0.698 — — 0.6987 — 0.6982

(continued)



TABLE 3 (Continued)

SAS LOGISTIC
SPSS LOGISTIC
REGRESSION SYSTAT LOGIT BMDP LR MINITAB BLOGISTIC STATA LOGISTIC

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Parameter
Estimate SE

Pearson
goodness-of-fit
statistic

173.9h 751.250f,j 751.255i — 173.876h —

Deviance
goodness-of-fit
statistic

206.9**h 936.078g,j** 936.078i** 206.885b** 206.885b** —

Hosmer &
Lemeshow
goodness-of-fit
statisticj

6.63 7.5899 6.123 4.106 4.788 7.13

McFadden’s Rho2 — — 0.090 — — —
Cox & Snell R2 0.1158 0.116 — — — —
Nagelkerke R2

(max-rescaled
R2)

0.1553 0.155 — — — —

Pseudo R2 — — — — — 0.0900
Brown statistics

General — — — 0.797 0.797 —
Symmetrice — — — — 0.000 —

Note. SE = standard error of the parameter estimated. newage1 = age ≤ 34; newage2 = 34 < age ≤ 39; newage3 < 39 age ≤ 44; newage4 < age ≤ 49; newage5 = 49 < age ≤
54; AIC = Akaike Information Criterion; SC = Schwarz Criterion;

aThe test of the hypotheses of β = 0 are based on Wald chi-square. bThe test of the hypotheses of β = 0 are based on t ratio. cThe test of the hypotheses of β = 0 are based on
“APPROX. CHI-SQ. REMOVE.” dThe test of the hypotheses of β = 0 are based on z ratio. eThe df and p level are not reported by SPSS. We derived the df from N – k – 1, where
k = the number of predictors; the p level can therefore be obtained from a chi-square distribution with 737 degrees of freedom. fThe value is listed as “–2 log likelihood;” the df
and the p level are not reported by SPSS. We derived the df from N – k – 1, where k = the number of predictors; the p level was obtained from a chi-square distribution with 737
degrees of freedom. gdf = 14. hdf = 145. idf = 737. jdf = 8.

*p < .05. **p < .01.



TABLE 4
Data Listed in the Raw Data Format

Case lfp k5 k618 age hc wc

1 1 0 0 30 0 0
2 1 1 2 36 0 0
3 0 1 0 43 1 1
4 1 0 0 30 0 0
5 1 1 2 36 0 0
6 1 1 0 43 1 1
7 0 1 2 36 0 0
8 1 1 2 36 0 0
9 0 2 6 39 0 0

10 0 1 2 36 0 0

Note. This format is based on profiles of 10 women (or cases) extracted from the Married Women
Labor Force Participation data. lfp = outcome variable; k5 = number of children under the age of 5; k618
= number of children between ages 6 and 18; age = women’s age; hc = husband has at least 1 year of
college; wc = wife has at least 1 year of college.

TABLE 5
Data Listed in the Frequency Data Format

lfp k5 K618 age hc wc count

1 0 0 30 0 0 2
0 1 2 36 0 0 2
1 1 2 36 0 0 3
0 1 0 43 1 1 1
1 1 0 43 1 1 1
0 2 6 39 0 0 1

Note. This format is based on profiles of 10 women (or cases) extracted from the Married Women
Labor Force Participation data. lfp = outcome variable; k5 = number of children under the age of 5; k618
= number of children between ages 6 and 18; age = women’s age; hc = husband has at least 1 year of
college; wc = wife has at least 1 year of college.

TABLE 6
Data Listed in the Covariate Pattern (or Events/Trials) Format

k5 k618 age hc wc event trial

0 0 30 0 0 2 2
1 2 36 0 0 3 5
1 0 43 1 1 1 2
2 6 39 0 0 0 1

Note. This format is based on profiles of 10 women (or cases) extracted from the Married Women
Labor Force Participation data. k5 = number of children under the age of 5; k618 = number of children
between ages 6 and 18; age = women’s age; hc = husband has at least 1 year of college; wc = wife has at
least 1 year of college.



Different data formats do not affect the estimation of parameters. However, di-
agnostic statistics are computed differently depending on the data format. Hosmer
and Lemeshow (2000) suggested that statistical tests performed on goodness-of-fit
chi-squares or diagnostic statistics be based on covariate patterns.

Interactions Between Predictors

Interactions between predictors, such as wc*newage1 in the logistic model, speak
to the multiplicative effect between two or more predictors. Determining if interac-
tions are present in the model is particularly important when one predictor is a risk
factor. In this case, the impact of the risk factor on the outcome needs to be esti-
mated accurately. Say a risk factor, for example, truancy, interacts with another
predictor, say age, then the slope coefficient of truancy is estimated at each level of
age. In this instance, age is referred to as an effect modifier because its presence in
the model modifies the impact of truancy on outcomes. Interactions are specified
by cross-products in logistic models. BMDP, MINITAB, and STATA impose a
model restriction that requires main effects (say, wc and newage1) be in the model
whenever their cross-product is also in the model. SAS imposes this restriction only
when a selection method is specified. This restriction may be removed in BMDP
and SAS, but not in MINITAB or STATA (see Appendix B specification of model).

EVALUATIONS OF A LOGISTIC REGRESSION MODEL

Evaluations of a logistic regression model include the overall model evaluations,
statistical tests of individual predictors, goodness-of-fit statistics, and validations
of predicted probabilities. Each is illustrated next for the logistic model.

Overall Model Evaluations

A logistic model is said to provide a better fit to the data if it demonstrates an im-
provement over the intercept-only model (also called the null model, which has no
predictors). Such an improvement is examined by inferential and descriptive statis-
tics. The inferential statistics include three tests: the likelihood ratio, Score, and
Wald tests.The likelihoodratio test is a testbasedon thedifference indeviancies: the
deviance without any predictor in the model (or the intercept-only model) minus the
deviance with all predictors in the model. The Score test is based on the distribution
of the k-derivatives of the fitted model’s likelihood function with regard to all pa-
rameters. The Wald test is obtained from a vector–matrix calculation that involves
the parameter vector, its transpose, and the inverse of its variance matrix (Hosmer &
Lemeshow,2000).All three test statisticsaredistributedaschi-squareswithdegrees
of freedom equal to the number of predictors. For these data, these test results are
similar as far as significance levels areconcerned (Table3).Among thesixpackages
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examined, BMDP computes none of these statistics, whereas SAS computes all
three (see Appendix B). Two descriptive statistics—the Akaike Information Crite-
rion and the Schwarz Criterion—may be used to compare different models derived
from the same sample (SAS, 1999), different models from different samples, and
nested or nonnested models (Long, 1997). A smaller value, including negative val-
ues, implies a better model fit. Only SAS computes these two indexes.

Statistical Tests of Individual Predictors

Individual parameter estimates are tested by the likelihood ratio test, the Wald sta-
tistic, or the Score test. The likelihood ratio test is a test based on the difference in
deviancies: the deviance without the predictor in the model minus the deviance
with the predictor in the model. The Wald statistic is formed from the ratio of the es-
timated slope parameter over its standard error. According to Jennings (1986),
Long (1997), and Tabachnick and Fidell (2001), the likelihood ratio test is more
powerful than the Wald test, whereas the Score test is a normal approximation to the
likelihood ratio test. BMDP is the only package that performs the likelihood ratio
test. The other five compute the Wald test, although SPSS LOGISTIC REGRES-
SION and STATA LOGISTIC carry out the likelihood ratio test during stepwise lo-
gistic modeling (see Appendix B Results). For categorical predictors, MINITAB,
SAS, and SPSS automatically perform an overall test of design variables trans-
formed from the same categorical predictor. In SYSTAT, the same test is requested
by the CONSTRAINT subcommand. This subcommand may also be applied to test
two or more slope parameters simultaneously against zero. Such a test is carried out
in SAS LOGISTIC by the TEST statement. Both CONSTRAINT and TEST work
also in stepwise modeling if the multiple predictors, to be tested simultaneously, are
already selected into the model.

If all observations could be perfectly or nearly perfectly separated by one or
several of the predictors via a linear combination, there is no need for the logistic
model. Hence, the maximum likelihood estimates become nonunique and infinite
in this rare, but special, condition. Complete or quasicomplete separation is most
likely to occur with small data sets. SAS is the only package that prints a warning
on the output when a complete or quasicomplete separation is detected. Other
packages render clues on this problem by producing unusually large parameter es-
timates or standard errors for predictors on which data are completely or
quasicompletely separated.

Goodness-of-Fit Statistics

Goodness-of-fit statistics assess the fit of a logistic model against the data. Four in-
ferential tests and four descriptive measures are provided by six packages we re-
viewed.
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Inferential tests. The four tests are the Brown chi-square test, the Pearson
chi-square test, the deviance-based test, and the Hosmer–Lemeshow (H–L) test. The
Brown test treats a model’s fit as a special case of Prentice’s family of generalized re-
sponse models (Brown, 1982; Prentice 1976). The generalized response model has
two parameters and can be used to model many of the possible relations between pre-
dictors, X, and the probability of a positive binary outcome, P(X). When both parame-
ters equal one, the generalized response model is a logistic model. The null hypothe-
sis for the Brown test states that both parameters equal one; this implies that the
logistic model is adequate. Thus, for this data, the nonsignificant Brown statistic (=
0.797, df = 2, p = 0.671) implied that the logistic model fit the data as well as the ex-
tended model. This result was obtained from BMDP and MINITAB. Furthermore,
MINITAB provides an additional test (with df = 1) for symmetric alternative models.
This test was also nonsignificant (df = 1, p = 0.984). Thus, it was concluded that the
logistic model sufficiently explained the data.

The Pearson chi-square and deviance-based goodness-of-fit statistics are com-
puted by most packages (see Appendix B results). For the logistic model, the two
statistics are reported in Table 3. Insignificant statistics imply a good fit of the
model. Only when these statistics are calculated from covariate patterns and the
number of observations in each covariate pattern is mostly greater than one, can
they be regarded as indexes of goodness-of-fit (Hosmer & Lemeshow, 2000;
McCullagh & Nelder, 1989). Unfortunately, SPSS and SYSTAT calculate both
statistics from the raw data. Because the chi-square distribution is an m-asymptotic
approximation to the true sampling distribution only when m (= number of obser-
vations per covariate pattern) is sufficiently large (Hosmer & Lemeshow, 2000,
pp. 145–147), researchers should not assess these two statistics computed from ei-
ther SPSS or SYSTAT against a chi-square distribution.

The H–L statistic is a Pearson chi-square statistic, calculated from a 2 × g table
of observed and estimated expected frequencies, where g is the number of groups
formed from the estimated probabilities. Ideally, each group should have an equal
number of observations. The H–L statistics for the logistic model, calculated by
different packages, range from 4.106 to 7.5899 (Table 3). None of these values
reached significance at α = 0.05 on a χ2 distribution with 8 degrees of freedom.
This indicates that the model fits the MWLFP data well. Differences in the H–L
statistic were attributable to the way ties on estimated probabilities were handled.
The H–L statistic is routinely reported by BMDP. It must be requested by re-
searchers in other packages. MINITAB, SYSTAT, and STATA permit researchers
to specify the number of groups used in the calculation. Hosmer and Lemeshow
(2000) suggested that no fewer than 6 groups be employed; 10 are commonly used.
SYSTAT further allows researchers to establish cutoff points on estimated proba-
bilities by which groups are formed.

There are limitations with the H–L test. First, the test is conservative, lacking
statistical power in certain cases to detect a model’s poor fit. Second, even when
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the test is significant, indicating that a model does not fit the data well, it does not
shed light on where and why data are not well fitted by the model. According to
Hosmer and Lemeshow (2000, pp. 150–151) and Ryan (1997, p. 279), the H–L
statistic is too conservative to reject the null hypothesis when groups are fewer
than six or expected cell frequencies are less than five.

Descriptive measures. Four descriptive measures of goodness-of-fit are
provided by all packages we examined. They are variations of the R2 concept de-
fined for the OLS regression model (Table 3). R2 has a clear definition in linear re-
gression, that is, the proportion of the variation in the dependent variable that can be
explained by predictors in the model. Numerous formulas have been devised to
yield an equivalent of this concept for the logistic model. None, however, renders
the meaning of variance explained (Long, 1997, pp. 104–109; Menard, 2000). Fur-
thermore, none corresponds to predictive efficiency and none can be tested in an in-
ferential framework (Menard, 2000).

Among the various R2 analogs proposed for logistic regression, Menard’s
(2000) empirical study seemed to suggest that McFadden’s (1973) Rho2 is pre-
ferred over others. It is implemented in SYSTAT only and defined as the differ-
ence between the initial and the model –2 log-likelihood statistics, divided by the
initial –2 log-likelihood. The McFadden Rho2 is conceptually similar to the OLS
R2, relatively independent from the base rate, and comparable across models that
comprise different predictors, yet the same outcome variable. It is not necessarily
linearly related to the percentage of correct classifications in empirical studies
(Menard, 2000). SAS and SPSS provide two R2 indexes defined by Cox and Snell
(1989) and Nagelkerke (1991), respectively. STATA computes a pseudo R2.

Validations of Predicted Probabilities

As was explained earlier, binary logistic regression predicts the logit of an event
outcome by a set of predictors. Because the logit is the natural log of the odds, or
probability/(1 – probability), it can be transformed back to the probability scale and
become the predicted result of logistic regression. The predicted probabilities can
be revalidated with the actual outcome to determine if high probabilities are indeed
associated with events and low probabilities with nonevents. The degree to which
predicted probabilities match with actual outcomes is expressed either as a measure
of association or a classification table. There are altogether four measures of associ-
ation and three classification tables that are provided by the six packages.

Measures of association. The four measures are Tau-a, Gamma, Somers’s
D statistic, and the c statistic. The Tau-a statistic is Kendall’s rank-order correlation
coefficient without adjustments for ties. The Gamma statistic is based on Kendall’s
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coefficient but adjusts for ties. Gamma is more useful and appropriate than Tau-a
when there are ties on both outcomes and predicted probabilities, as was the case
with the MWLFP data. The Gamma statistic for the model is 0.405. It is interpreted
as 40.5% fewer errors made in predicting which of two women participated in the
labor force by utilizing the estimated probabilities than by chance alone
(Demaris,1992). There are two problems associated with the Gamma statistic: (a) It
has a tendency to overstate the strength of association between estimated probabili-
ties and outcomes (Demaris, 1992), and (b) a value of zero does not necessarily im-
ply independence when the data structure exceeds a 2 × 2 format (Siegel &
Castellan, 1988).

Somers’s D is an extension of Gamma—a better index too—whereby one vari-
able is designated as the dependent variable and the other the independent variable
(Siegel & Castellan, 1988). There are two asymmetric forms of Somers’s D statis-
tic: Dxy and Dyx. Only Dyx correctly represents the degree of association between
the outcome (y), designated as the dependent variable, and the estimated probabil-
ity (x), designated as the independent variable (Demaris, 1992). SAS and
MINITAB compute only Dxy, (Table 3), although this incorrect index can be cor-
rected to Dyx in SAS (Peng & So, 1998). For BMDP, SPSS, and SYSTAT, the D
statistics may be computed by the 4F, CROSSTAB, and XTAB procedures, re-
spectively. Both Dxy and Dyx may be used to compare the fit of different mod-
els—the greater the Somers’s D, the better the fit.

The c statistic is the proportion of observation pairs with different observed out-
comes for which the model correctly predicts a higher probability for observations
with the event outcome than the probability for nonevent observations. For this
model, the c statistic is 0.689. This means that for 68.9% of all pairs of women, one
worked in 1975 and the other did not, the model correctly assigned a higher proba-
bility to working women. The c statistic ranges from 0.5 to 1. A 0.5 value means
that the model is no better than assigning observations randomly into outcome cat-
egories. A value of 1 means the model assigns higher probabilities to all observa-
tions with the event outcome, compared to nonevent observations. SAS routinely
reports the c statistic; BMDP and STATA compute this index by request. It is ob-
tained in MINITAB, SPSS, and SYSTAT by dividing Somers’s Dxy with 2 and
adding 0.5 (SAS,1999; SPSS, 1999a).

Classification tables. There are three types of classification tables to show
the validity of predicted probabilities: (a) the prediction success table, (b) the histo-
gram of predicted probabilities, and (c) the two-way classification table. The pre-
diction success table, available only in SYSTAT, assigns each observation into an
outcome category according to its probability of belonging in that category. Hence,
entries in this table are probabilities of belonging, rather than frequencies. Even
though it is not feasible to count the number of observations correctly classified in a
prediction success table, the table can be used to evaluate the percentage of correct
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predictions for each possible outcome. The histogram of predicted probabilities is
based on predicted probabilities and outcomes (i.e., event vs. nonevent). It is avail-
able in SPSS LOGISTIC REGRESSION with the CLASSPLOT command, or
BMDP LR with the PRINT HISTOGRAM command. Researchers can inspect
such a histogram for overlapping probabilities between outcome categories. Dif-
ferent cutoffs on the predicted probability impact the percentage of false positive
and false negative classifications.

The third classification table is a 2 × 2 table in which rows represent the two
possible outcomes and columns are high and low probabilities, based on a cutoff
point. The cutoff point is specified by researchers or set at 0.5 by statistical pack-
ages. SAS prepares this classification table by using a reduced-bias algorithm,
whereas SPSS, SYSTAT, BMDP, and STATA do not. The algorithm minimizes
the bias of using same observations both for model fitting and for predicting proba-
bilities (SAS, 1995, 1999). Consequently, sensitivity, specificity, percentage of
correct classification, false positive, and false negative presented in SAS classifi-
cation tables are less biased than those computed from other packages. In case that
the event outcome is overrepresented in the sample, researchers may specify the
PEVENT= option in SAS LOGISTIC to denote a prior probability that is the popu-
lation proportion of events. The PEVENT specification corrects the calculation of
sensitivity, specificity, false positives, false negatives, and percentage of correct
classifications because these values are considered posterior probabilities by
Bayes’s theorem. However, the specification of prior probabilities has no impact
on the estimation of parameters or the evaluation of the model.

In the opinion of Hosmer and Lemeshow (2000), “the classification table is
most appropriate when classification is a stated goal of the analysis; otherwise it
should only supplement more rigorous methods of assessment of fit” (p. 160).

Graphing Prediction Accuracy

One primary goal of performing logistic regression is to generate an equation that
can reliably classify observations into one of two outcomes. The degree to which
predictions agree with the data may be shown graphically by either a receiver oper-
ating characteristic (ROC) curve or an overlay plot of sensitivity and specificity
versus predicted probabilities (Afifi & Clark, 1990; Hosmer & Lemeshow, 2000,
pp. 160–164).

The ROC curve is a plot of sensitivity versus 1_minus_specificity. Sensitivity
is defined as the proportion of observations correctly classified as an event. It is
also called the true positive fraction. Specificity is defined as the proportion of ob-
servations correctly classified as a nonevent. Hence, 1_minus_specificity is the
proportion of observations misclassified as an event; it is also called the false posi-
tive fraction. Both sensitivity and 1_minus_specificity change as a function of the
cutoff used on estimated probabilities. Because each cutoff yields one sensitivity
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and one specificity, the ROC curve is a plot based on multiple cutoffs (Figure 2).
This figure suggests that in order for the logistic model to correctly classify a large
proportion (say 75%) of married women who worked in 1975, it has to misclassify
approximately 45% of nonworking women as working women. Researchers con-
templating competing models for their data can rely on a ROC curve for an in-
formed decision. The model with a larger area below the ROC curve (i.e., a larger c
statistic) is considered a better model (Afifi & Clark, 1990). Alternatively, the one
with the greatest height on the ROC curve at a desirable probability cutoff should
be chosen (Afifi & Clark, 1990). In other words, the best model is the one associ-
ated with the greatest sensitivity and the lowest 1_minus_specificity.

Three packages are capable of plotting the ROC curve: BMDP, STATA, and
SAS. BMDP LR produces the curve with the PRINT command and PLOT/COST
options, whereas the curve is requested in STATA LOGISTIC with the LROC
command. In SAS LOGISTIC, researchers first establish a data set with the
OUTROC= option, then submit this data set to the GPLOT procedure to plot the
ROC curve (Peng & So, 1998). It is worth noting that sensitivity and specificity
used in plotting the ROC curve are not corrected for bias by these three packages.

The second plot—an overlay plot of sensitivity and specificity against probabil-
ity cutoffs—is useful for determining an appropriate cutoff for future classifications
(Figure 3 based on the logistic model). The point at which two curves intersect is an
optimal cutoff. The intersecting point treats two groups (i.e., working women and
nonworking women) equally in terms of the proportion of correct classifications.
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FIGURE 2 Receiver operating characteristic curve generated by STATA LOGISTIC. Area
under the ROC curve = 0.6982.



For this model, the optimal cutoff of 0.5848 yielded approximately 64% of correct
classifications for both groups. Although Figure 3 is drawn by STATA with the
LSENS command, BMDP can generate this plot by the PRINT command with
COST and PLOT options. SAS too is capable of plotting Figure 3 with a simple data
manipulation step and the GPLOT procedure (Peng & So, 1998).

OUTLIERS AND DIAGNOSTIC STATISTICS

In addition to the multiple indexes discussed so far, researchers should also include
diagnostic analyses of any logistic regression model. The purposes of diagnostic
analyses are two fold: (a) to identify potential outliers and (b) to understand the
model’s poor fit to certain observations. These analyses are carried out by a series
of diagnostic statistics proposed by Pregibon in 1981. These statistics should be
computed from covariate patterns. Only when the number of unique covariate pat-
terns is much smaller than the number of observations is the examination of diag-
nostic statistics meaningful. For this logistic model, 160 unique covariate patterns
were identified with 14 predictors. Hence, it was appropriate to carry out diagnostic
analysis of the result.
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FIGURE 3 Overlay plot of sensitivity and specificity versus various probability cutoffs gen-
erated by STATA LOGISTIC. The two plots intersect at p = 0.5848 that represents the most opti-
mal cutoff on probabilities.



Diagnostic statistics available from statistical software include Pearson and de-
viance residuals, change in the Pearson chi-square statistic and change in the devi-
ance, the change in parameter estimates due to a particular covariate pattern
deleted, the hat matrix diagonal, and confidence interval displacement diagnostics
(see Appendix B Results and Diagnostic statistics).

The Pearson residual and the deviance residual are components of the Pearson
chi-square statistic and of the deviance respectively. A “large” value of either sta-
tistic is indicative of a poorly explained covariate pattern. Because large is a rela-
tive term, researchers must rely on their own judgement in deciding if a particular
residual is large, compared to other residuals. For this reason, the Pearson residual
and the deviance residual are not as informative as their respective changes. The
change in Pearson chi-square is defined as the difference in Pearson chi-square due
to the deletion of a particular covariate pattern. A large value once again indicates
that the corresponding covariate pattern contributes heavily to the disagreement
between data and predicted probabilities. In fact, a change exceeding four signals
an ill-fit covariate pattern. The selection of four as a criterion is based on the criti-
cal value (i.e., 3.841) of the chi-square distribution with one degree of freedom and
an alpha level of 0.05. Using this criterion, we identified seven covariate patterns,
or 23 observations, that were poorly fit by the logistic model. These are shown in
Figure 4. Similarly, the change in deviance due to the deletion of a particular
covariate pattern signals the possibility of an outlier, if the change is large relative

50 PENG AND SO

FIGURE 4 Plot of change in Pearson chi-square versus estimated probabilities generated by
MINITAB BLOGISTIC.



to other changes. Unlike the change in Pearson chi-square, there is no recom-
mended criterion by which one can judge changes in deviance. We chose four for
the same reason as four was used to assess the change in Pearson chi-square. Our
decision was justified by the fact that the chi-square approximation for differences
in deviance is adequate, although it is inadequate for deviancies themselves (Ryan,
1997, p.270). Figure 5, based on change in deviance, identifies five covariate pat-
terns, or 30 observations, that were poorly explained by the present model.

The change in standardized parameter estimates (∆β), due to the omission of a
covariate pattern, is another useful way of locating ill-fit covariate patterns be-
cause a “large” change signals instability in estimates. Figure 6 is a display of
changes in the Pearson chi-square statistic versus estimated probabilities using 2.5
× |∆β| as the size of the plotting symbol. This plot reveals that seven covariate pat-
terns (marked by a square), or 36 observations, were associated with 0.20 or
greater standardized changes in the k5 coefficient estimate. On the basis of Figures
4, 5, and 6, we identified three covariate patterns or 11 observations to be outliers.
They are highlighted by arrows in Figure 6. These potential outliers need to be in-
vestigated further to determine if they are incorrectly coded or the model is
misspecified for them. Whatever the cause may be, outliers should not be dis-
carded solely to improve the fit of a model (Long, 1997, p. 99).

Hat matrix diagonals refer to diagonal elements in the hat matrix (Hosmer &
Lemeshow, 2000). A large hat matrix diagonal discloses those covariate patterns
that are unusually influential in the covariate pattern space. When a predicted
probability is extreme, say less than 0.1 or greater than 0.9, its hat matrix diagonal
may be greatly reduced; hence, it is not a valid indicator of the model’s fit (Hosmer
& Lemeshow, 2000, pp. 171–172).
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FIGURE 5 Plot of change in deviance versus estimated probabilities generated by MINITAB
BLOGISTIC.



The confidence interval displacement diagnostics provide scalar measure of the
influence of individual observations on the parameter estimates. These confidence
interval displacement diagnostics are based on the same ideas as the Cook distance
in linear regression diagnostics. A plot of these diagnostics against observations
reveals observations that exercise a large influence over parameter estimates.
Hence, these observations are candidates for potential outliers.

A summary of diagnostic statistics is given in Appendix B under Results and
Diagnostics statistics. A note of caution is issued here: The calculation of diagnos-
tic statistics by SPSS and SYSTAT is always based on individual observations. It
is therefore inappropriate to evaluate these diagnostic statistics when the number
of covariate patterns is much smaller than the number of observations. The compu-
tation of diagnostic statistics by SAS depends on the data format. BMDP,
MINITAB, and STATA always base the computation of diagnostic statistics on
covariate patterns. Appendix C summarizes capabilities of the six packages for
graphing diagnostic statistics. Besides Figures 4, 5, and 6 discussed so far, Long
(1997) and SAS (1999) suggested that index plots also be used to search for poorly
fit observations. SAS is the only software that has an option (i.e., IPLOT) for gen-
erating index plots. The other five packages use two procedures—the logistic re-
gression and the plot—to draw index plots. Index plots are examined in the same
manner as Figures 4 to 6.

The standardized Pearson residual index plot, suggested by Long (1997, p. 99),
is a plot of standardized residuals. Hence, any observation outside the bounds of
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FIGURE 6 Plot of change in Pearson chi-square versus estimated probabilities with the size of
circles representing the absolute, standardized change in parameter estimates of k5, multiplied
with 2.5, generated by SAS GPLOT.



±2 may be considered a potential outlier (Figure 7). The IPLOT option in SAS
LOGISTIC does not generate such a plot. Researchers can circumvent this limita-
tion by first calculating standardized Pearson residuals by dividing the Pearson re-
siduals with leverages (i.e., diagonals of the hat matrix). Then input the
standardized Pearson residuals into the GPLOT procedure to draw this plot.

MODELING STRATEGY AND REPORTING

An ideal modeling approach in logistic regression is to consider and contrast all
models that are theoretically significant and practically important. This course of
action is not feasible for most researchers. As an alternative, we recommend the fol-
lowing steps:

1. Perform a descriptive analysis of each predictor and its relation with the out-
come variable. Results from this initial analysis provide much insight into poten-
tially viable models for the data.

2. Properly transform categorical predictors by a set of design variables and
include the design variables in logistic models, in lieu of categorical predictors.

3. Correctly identify the event of the outcome and model its probability by a
series of univariate logistic regressions, each based on a single predictor.
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FIGURE 7 Index plot of standardized Pearson residual versus case numbers generated by
SAS GPLOT.



4. Based on results from univariate analyses (as described in number 3), fit a
preliminary multivariate logistic model using all predictors that are of importance
or of interest to the researcher.

5. Fit alternative models to data. Alternative models may be derived from the
preliminary multivariate model by (a) adding two-way, three-way, and so on, in-
teractions of significant main predictors; (b) creating polynomial trends from con-
tinuous predictors; (c) performing nonlinear transformations (e.g., log, square
root, etc.) of continuous predictors; or (d) removing unimportant or statistically in-
significant predictors.

6. Compare the performance of alternative models with that of the preliminary
multivariate model in terms of models’ overall test of all parameters,
interpretability and statistical significance of each predictor, goodness-of-fit statis-
tics, predictive power, accuracy of prediction, and diagnostic results. A good model
surpasses competing models in more areas than one. Thus, a researcher needs to
gather as much information as possible before accepting a model as the best model
for the data.

In presenting logistic regression results, researchers should include comprehen-
sive information similar to those portrayed in Table 3, Figures 2, 3, 6, and 7. The
decision to accept one model to be the “best fit” among its competitors should be
justified by multiple indicators, including the model’s overall test of all parame-
ters, interpretability and statistical significance of each predictor, goodness-of-fit
statistics, predictive power, accuracy of prediction, and diagnostic results.
Cross-validating the best-fit model with other samples increases the
generalizability of findings, although exploratory models cannot be replicated ex-
actly. Last but not the least, researchers should pay attention to mathematical defi-
nitions of statistics generated by any statistical package. Among the six packages
we reviewed, none was found to be error-free. A reference to the software should
inform readers of programming mistakes and limitations and help researchers ver-
ify results with another package.

EVALUATIONS OF SIX PACKAGES
FOR LOGISTIC REGRESSION

Even though, for most studies, commercially available statistical packages yield
similar estimates of parameters and standard errors (Long, 1997), they differ in
flexibility of data formats, model building strategies, treatment of interaction
terms, goodness-of-fit and diagnostic statistics calculated, and graphic capabilities.
In this section, attention is focused on computing algorithms, function, and relative
strengths and weaknesses of each statistical package.
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Computing Algorithms

The Newton–Raphson algorithm is used by SAS, SPSS, BMDP, and STATA, the
iterative-reweighted least squares algorithm is used by MINITAB, and the
Gauss–Newton algorithm is used by SYSTAT. The default algorithm in SAS is ac-
tually the Fisher-scoring algorithm; the Newton–Raphson algorithm is used only
when the Fisher-scoring algorithm fails to converge. In rare cases when one of
these algorithms does not converge, researchers should turn to alternative algo-
rithms to circumvent this problem (Long, 1997).

Function

Six logistic regression procedures provided helpful statistics. All features common
or unique to these procedures are summarized in Appendix B. For building and se-
lecting the best logistic model, only five procedures were compared. MINITAB
was excluded because it did not provide a selection method. Readers should pay
special attention to statistics computed at each stage of the selection process, as
they directly affect the kind of final “best” model identified by each package.

Relative Strengths and Weaknesses

An ideal statistical package for logistic regression should be user-friendly and com-
prehensive in its options and output. Each package we examined possesses certain
features of this “ideal” package. We recommend the versatile SAS LOGISTIC and
BMDP LR for researchers experienced with logistic regression techniques and pro-
gramming. Diagnostic statistics in SAS LOGISTIC are based either on observa-
tions or covariate patterns. Several unique goodness-of-fit indexes and selection
methods are provided in SAS. Its ability to fit a broad class of binary response mod-
els, plus its provision to correct for oversampling, overdispersion, and bias intro-
duced into predicted probabilities, sets it apart from the other five. BMDP LR per-
forms logistic regression on covariate patterns. It is a stepwise procedure that
provides the greatest flexibility in selecting the best set of predictors, under the hi-
erarchical modeling restriction. Unfortunately, diagnostic analyses suggested by
Hosmer and Lemeshow (2000) cannot be performed in BMDP as it does not com-
pute such statistics as: change in Pearson chi-square, change in deviance, or change
in parameter estimates.

If either SPSS LOGISTIC REGRESSION or SYSTAT LOGIT is the only
package available, researchers must be aware that both compute the good-
ness-of-fit and diagnostic statistics from individual observations. Consequently,
these statistics are inappropriate for statistical tests. With dazzling graphic inter-
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faces, both packages are user-friendly. They provide several goodness-of-fit in-
dexes and selection methods. However, in both SPSS LOGISTIC REGRESSION
and SYSTAT LOGIT, Pearson or deviance goodness-of-fit statistics, and diagnos-
tic statistics are calculated from individual observations, rather than covariate pat-
terns. They should not be readily interpreted as chi-square values.

MINITAB BLOGISTIC is the simplest to use. It adopts the hierarchical model-
ing restriction in direct modeling (see Appendix A). Diagnostic statistics are calcu-
lated correctly from covariate patterns. A substantial number of goodness-of-fit
indexes are available including the unique Brown statistic. Diagnostic graphics
suggested by Hosmer and Lemeshow (2000) are programmed as subcommands.
However, the absence of predictor selection methods may make it less appealing to
some researchers.

STATA LOGISTIC provides the most detailed information on parameter esti-
mates, yet its goodness-of-fit indexes are limited. Its command language is easy to
learn. It generates high quality graphics with a single command. Diagnostic statis-
tics are calculated correctly. Model selections are carried out in two procedures:
SW for stepwise selection and LOGISTIC for logistic regression modeling.
Multicollinearity among predictors is examined automatically during stepwise
modeling. When checking multicollinearity, STATA defines predictors broadly as
terms that can refer to a single predictor, an interaction between predictors, or a se-
ries of dummy variables grouped by parenthesis. STATA examines
multicollinearity in predictors both within and between terms. We recommend
MINITAB and STATA for beginners, although experienced researchers may also
employ them for logistic regression.

SUMMARY

Logistic regression has been gaining popularity among social sciences researchers
with thewideavailabilityof sophisticatedstatistical software thatperformscompre-
hensive analyses of this technique. Yet a recent review of 52 articles, published be-
tween1988and1999 in threehighereducational journals, revealed lackof standards
in the analysis and reporting of logistic regression (Peng et al., in press). The level of
completeness and accuracy of supplementary analyses was uneven across studies.
Thus, we feel that there is a need to provide a primer on logistic regression for re-
searchers, editors, and journal readers. Specifically, this article was written to illus-
trate the implementation of direct logistic regression modeling and its supplemen-
tary evaluations. A real-world data set was analyzed by a complex logistic model to
explain the likelihood of women entering the paid labor force based on their educa-
tional and demographical information. Results were evaluated and diagnosed in
termsof theoverall testofallparameters, interpretability,andstatistical significance
of each predictor, goodness-of-fit statistics, predictive power, accuracy of predic-
tion, and identification of potential outliers. Guidelines are offered for modeling
strategies and reporting standards in logistic regression. Furthermore, six statistical
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packages were employed to perform logistic regression. Their strengths and weak-
nesseswerenoted in termsof flexibility,accuracy,completeness,andusefulness.
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Appendix A
Glossary of Terms Used in  Logistic Regression

Term Definition

A nonevent A negative outcome or outcome of no interest (e.g., diagnosed as HIV
negative, normal in learning, staying in college, being rejected, etc.).

An event A positive outcome or outcome of interest (e.g., diagnosed as HIV
positive, learning disabled, dropping out from college, being
admitted, etc.).

Concordant pair A pair of observations is said to be concordant if the observation
associated with the event outcome has a higher predicted probability
derived from the logistic model.

Confounder A predictor in the logistic regression model that is related both to the
outcome variable and a risk factor (also a predictor).

delta-p It measures the change in predicted probability as one unit change in a
predictor (Xj) while holding other predictors at a constant. Delta-p is
not a constant over the range of Xj; it also depends on values of other
predictors held at a constant.

Deviance (G2) –2 log likelihood of a particular model.
Direct modeling The modeling technique that permits researchers to include main

effects and interactions into a regression model according to a
theory-based proposition.

Dummy coding
(reference cell or
indicator coding)

A coding scheme in which one category of a nominal variable is coded
as 0 on all dummy variables, others are coded as 1 on one of the
dummy variables and 0 on others. Such a coding scheme is
particularly useful/relevant when the slope coefficient (or eβ) is
directly interpreted as the odds ratio of the current category at risk,
compared to the category coded as 0 on all dummy variables.

Effects coding
(deviations from
the average/mean
coding)

A coding scheme in which one category of a nominal variable is coded
as (–1) on all dummy variables, and other categories are coded as 1
on one dummy and 0 on all others. This coding strategy is derived
from ANOVA framework. Slope coefficients based on this coding
scheme are deviations of odds ratio deviating from the average odds
ratio.

Effect modifier A predictor in the logistic regression model that interacts with a risk
factor (also a predictor variable).

False negative The proportion of observations incorrectly classified as associated with
the nonevent outcome, among all classified as nonevents.

False positive The proportion of observations incorrectly classified as associated with
the event outcome, among all classified as events.

Independent variable Predictors in the logistic regression model, also called covariates,
explanatory, or predictor variables.

log-likelihood The value of the log-likelihood function of a logistic regression model.
When model parameters are substituted by their maximum likelihood
estimates, the log-likelihood achieves its maximal value.

(continued)
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Appendix A (Continued)

Term Definition

Logit Natural log of odds =

or the regression model that linearly links the logit transformation of
predicted probabilities with a set of parameters.

Marginal probability
(or marginal effect
or partial effect or
partial change)

The partial derivative of the logistic regression density function, with
respect to Xj. It is the slope of the probability curve relating xj [a
specific value of predictor Xj ] to Pr(Y = 1|X1 = x1, …, Xk = xk),
holding all other predictors constant. It is conditioned on the logistic
regression model being realized on all predictors.

Normit The regression model that linearly links the inverse of cumulative
normal predicted probabilities with a set of parameters.

Odds

Odds ratio A measure of association which equals

where p1 = probability of an event, given the membership in Group 1,
p0 = probability of an event, given the membership in Group 0.
An odds ratio greater than 1 implies an increased likelihood;
conversely, an odds ratio less than 1 implies a decreased likelihood.
Invariant to the change in sample size, marginal shifts,  interchange
of rows (or columns), or row (or columns) multiplications.
Can be used in multiple-way tables.

Orthogonal
polynomial coding
(trend analysis
coding)

A coding scheme in which linear, quadratic, cubic, quintic, and so on,
trends are built into the coefficients (or weights) of all dummy
variables. These coefficients, after being squared, will sum to 1.

Predicted probability Estimated probability derived from a logistic regression model.
Probit An alternative name for normit.
R2 Numerous formulae have been proposed for this concept within the

context of logistic regression modeling. In Menard’s (2000) empirical
study, five were defined and investigated. They are:
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APPENDIX A (Continued)

Term Definition

GM = the model chi-square statistic = –2[ln(L0 – ln(LM)],
ln = the natural log transformation,

LM = the likelihood function for the model containing all predictors,
L0 = the likelihood function for the intercept-only model.
n = the sample size,
y = the observed outcome value, coded as an interger,

Relative risk A generic term that has been used interchangeably with either odds ratio
or risk ratio. Since odds ratio and risk ratio are two distinct concepts,
the use of this term should be restricted to only one of these two.

Risk factor A predictor in the logistic regression model that is of primary interest to
researchers. This term stems from epidemiology in which a risk
factor is always related to health.

Sensitivity A proportion of observations correctly classified as associated with the
event outcome, among all event observations.

Somer’s D statistic D = (nc – nd)/t, where nc = number of concordant pairs, nd = number
of discordant pairs, and t = total number of pairs with different
outcomes. Dyx = correct measure of association between data and the
logistic model, where y = event or nonevent status, x = the predicted
probability derived from the model. SAS and MINITAB are two
statistical software that compute Somer’s D statistic. Unfortunately,
they both calculate the incorrect Dxy.

Specificity A proportion of observations correctly classified as associated with the
nonevent outcome, among all nonevent observations.

Stepwise modeling The modeling technique that yields the “best” regression models
according to predetermined criteria and/or statistical software’s
restrictions. Its approach is atheoretical.

Tobit The normit (or probit) model applied to censored data.

= the mean of the outcome values,
ˆ = the predicted probability of the outcome variable, ranging from 0 to 1.
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Appendix B
Options and Features Available in Six Statistical Packages for Logistic Regression

Diagnostic
Statistics

Calculation
Depends on Data

Formats
Diagnostic Statistics Calculation Based

on Observations
Diagnostic Statistics Calculation Based

on Covariate Patterns

Features SAS LOGISTIC
SPSS LOGISTIC
REGRESSION

SYSTAT
LOGIT BMDP LR

MINITAB
BLOGISTIC

STATA
LOGISTIC

Data requirements
Data format(s) accepted: Raw data

format
• • • • • •

Frequency data format • • • • • •
Covariate pattern (events/trials)

format
• Use PROBIT • • Use

GLOGIT
Default category under the dependent

variable to be modeled if coded 0
and 1

0 1 1 1 1 1

Can rearrange the value order of
outcome variable

• • • •

Coding schemes for creating a set of
design variables for discrete
predictor

Effect, GLM,
Orthpoly,
Polynomial,
Reference

Deviation, Simple,
Difference,
Helmert, Repeated,
Polynomial, Indicator

Effect,
Dummy

Marginal,
Partial,
Orthogonal

Dummy Dummy

Can specify case weights • • •



Specification of model
Available link functions for outcome

probabilities
Logit, probit (or
normit),
complementary
log-log

Logit Logit Logit Logit, normit,
gompit

Logit

Can specify the initial estimates for
all the parameters in the model

• •

Interaction can be specified as A × B
term

• • • • • •

Main effects, A and B, must be
included along with their
interaction, A × B

No, only if
(RULE =
NONE)

• •

Correction for over-sampling •
Correction for over-dispersion • •
Can handle other regression designs:

1:1 case-control design • • • •
(use CLOGIT)
1:M case-control design (use PHREG) • (use

CLOGIT)
N:M case-control design (use PHREG) (use

CLOGIT)
Discrete choice model (use PHREG) • (use

CLOGIT)
Poisson regression • (use LOGLINEAR) (use

POISSON)
Multiple ordered outcome

categories
• (use PLUM) (use PR) (use

OLOGISTIC)
(use
OLOGIT)

Multiple unordered outcome
categories

(use CATMOD) (use NOMREG) • (use PR) (use
NLOGISTIC)

(use
MLOGIT)
(continued)
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Diagnostic
Statistics

Calculation
Depends on Data

Formats
Diagnostic Statistics Calculation Based

on Observations
Diagnostic Statistics Calculation Based

on Covariate Patterns

Features SAS LOGISTIC
SPSS LOGISTIC
REGRESSION

SYSTAT
LOGIT BMDP LR

MINITAB
BLOGISTIC

STATA
LOGISTIC

Selection of predictors
Selection methods

Forward • • •
Backward • • •
Forward stepwise (Fstep) • • • • •
Backward stepwise (Bstep) • • • •

Other modeling methods
Force entry of selected predictors • • • • •
The best k-predictors model •
Sequential modeling • • • (HIER)
Hierarchical modeling • •
Starting and stopping with

k-predictors in selection
•

Selection criteria
Stepwise based on

Conditional statistic • •
Likelihood ratio • •
Wald statistic • For Fstep •
Score statistic For Bstep
Maximum likelihood ratio •
ACE (Estimate asymptotic

covariance matrix of β)
•



Default probability for variable
entry

0.05 0.05 0.05 0.10 No default

Default probability for variable
removal

0.05 0.10 0.10 0.15 No default

Results
Evaluations of the model
Log-likelihood or –2Log-likelihood

for intercept-only model
• • •

Log-likelihood –2Log-likelihood for
intercept with predictors model

• • • • • •

Akaike Information Criterion •
Score statistic • •
Schwartz Criterion •
Wald test •
Residual chi-square performed for

selection methods only
• •

Test for variable not in the model
performed for selection methods
only

Score test Score test Score test Approximate
χ2 or F

z test

Test of variable in the model
performed for the full model and
stepwise models

Wald test Wald test t ratio Coefficient/SE z test

Statistics related to regression
coefficient estimates
Standard error of the regression

coefficient
• • • • • •

Robust estimate of variance for the
coefficients

•

Goodness-of-fit chi-square test for
individual predictor in the
specified model

• (LR) •

(continued)
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Diagnostic
Statistics

Calculation
Depends on Data

Formats
Diagnostic Statistics Calculation Based

on Observations
Diagnostic Statistics Calculation Based

on Covariate Patterns

Features SAS LOGISTIC
SPSS LOGISTIC
REGRESSION

SYSTAT
LOGIT BMDP LR

MINITAB
BLOGISTIC

STATA
LOGISTIC

Can perform a combined test on
design variables

• • • • •

Can perform a combined test on two
or more predictors

• •

Regression coefficient divided by
standard error

Wald chi-square Wald chi-square t ratio Coefficient/SE z ratio z ratio

Probability value of coefficient
divided by standard error

• • •• • •

Confidence interval of the regression
coefficient

• (CLPARM=) •

Odds ratio or exp(β) Odds ratio exp(β) Odds ratio exp(β) Odds ratio Odds ratio
Confidence interval of the odds ratio

or exp(β)
• (CLODDS=) • • • • •

Can set the significant level for the
confidence intervals

• (ALPHA=) •
(CI(#))

• (CONF=#) •
(LEVEL(#))

Partial correlation between outcome
and each predictor

•

Correlations among regression
coefficients

• (CORRB) • • • (VCE,
CORR)

Covariances among regression
coefficients

• (COVB) • • • (VCE)



Goodness-of-fit statistics
Hosmer–Lemeshow statistic • • • • • •
Can change the number of groups

used in Hosmer–Lemeshow
statistic

• • •

Brown goodness-of-fit statistic • • (2 tests)
Goodness-of-fit chi-square test based

on observed versus expected
frequency (deviance)

• • • • • •

McFadden’s rho-squared for the
model

•

Cox & Snell R2 • •
Nagelkerke R2 • •
Pseudo R2 •

Validation of predicted probabilities
Predicted probability of event for

each observation or covariate
pattern

• • • • • •

Measures of association of predicted
probabilities and observed
outcome

•

Concordant pairs • •
Discordant pairs • •
Somer’s D statistic • •
Gamma statistic • •
Kendall Tau a statistic • •
c statistic • • •

Classification table • • • • •
Can specify the cutoff point for

classification
• • • •

(continued)
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Diagnostic
Statistics

Calculation
Depends on Data

Formats
Diagnostic Statistics Calculation Based

on Observations
Diagnostic Statistics Calculation Based

on Covariate Patterns

Features SAS LOGISTIC
SPSS LOGISTIC
REGRESSION

SYSTAT
LOGIT BMDP LR

MINITAB
BLOGISTIC

STATA
LOGISTIC

Diagnostic statistics
Diagonal of the hat matrix (leverage)

for each observation or covariate
pattern

• • • • • •

Logit residual for each observation •
Likelihood residual for each

observation or covariate pattern
Different between observed and

predicted probabilities (residual)
•

Standard error of the predicted
probability for each covariate
pattern

•

Studentized residual for each
observation

•

Pearson residual (standardized
residual)  for each observation or
covariate pattern

• • • • • •

Change in Pearson chi-square
statistic due to deleting each
observation or covariate pattern

• • • •



Deviance (deviance residual) for
each observation or covariate
pattern

• • • • • •

Change in deviance due to deleting
the individual observation or
covariate pattern

• • • •

Standardized difference in the
parameter estimate due to deleting
each observation or covariate
pattern

• • • • •

Cook distance (or similar statistic)
for each observation or covariate
pattern

• • •

Confidence interval displacement
diagnostics for each observation

•



Appendix C
Graphic Capabilities of Six Statistical Packages for Logistic Regression

SAS LOGISTIC
SPSS LOGISTIC
REGRESSION SYSTAT LOGIT BMDP LR MINITAB BLOGISTIC

STATA
LOGISTIC

Scatterplot of Pearson residual
versus observation number

Histogram of
predicted
probabilities
for each group

NA Histogram of predicted
probabilities for each group

Scatterplot of Delta Pearson
χ2 versus estimated event
probability

Receiver
operating
characteristic
curve

Scatterplot of deviance residual
versus observation number

Scatterplot of observed
proportions versus
predicted log-odds

Scatterplot of delta deviance
versus estimated event
probability

Sensitivity/
specificity
versus cut-off
points

Scatterplot of diagonal elements of
the hat matrix versus observation
number

Scatterplot of observed
proportions versus
predicted log-odds

Scatterplots of delta β (based
on standardized Pearson
residual) versus estimated
event probability

Scatterplots of delta β
(standardized) versus
observation number

Scatterplot of the percentage
of correct classification of
observations as a function
of the cut-off points

Scatterplots of delta β versus
estimated event probability

Scatterplot of confidence interval
displacement diagnostics C
versus observation number

Receiver operating
characteristic plot

Scatterplot of delta Pearson
χ2 versus leverage

Scatterplot of confidence interval
displacement diagnostics CBAR
versus observation number

Scatterplot of delta deviance
versus leverage

Scatterplot of delta deviance versus
observation number

Scatterplots of Delta β (based
on standardized Pearson
residual) versus leverage

Scatterplot of delta Pearson χ2 versus
observation number

Scatterplots of delta β versus
leverage


