
Package ‘multiSiena’
June 18, 2024

Encoding UTF-8

Type Package

Title multiSiena - Simulation Investigation for Multilevel Empirical Network Analysis

Version 1.2.26

Date 2024-06-11

Maintainer Tom A.B. Snijders <tom.snijders@nuffield.ox.ac.uk>

Depends R (>= 3.5.0), RSiena (>= 1.4.13)

Imports Matrix,
parallel,
MASS,
methods,
xtable

Suggests codetools

SystemRequirements GNU make

Description This package is a multilevel extension of the RSiena package for
simulation-based estimation of stochastic actor-oriented models for
longitudinal network data collected as panel data.
The extension consists of the function sienaBayes and associated functions.
The purpose is to fit hierarchical Bayesian models with random effects
to sienaGroup data objects.
An extensive manual, scripts, and much further information is at the Siena
website http://www.stats.ox.ac.uk/~snijders/siena.

License GPL-3

LazyData yes

BuildResaveData no

Biarch yes

NeedsCompilation yes

URL http://www.stats.ox.ac.uk/~snijders/siena

R topics documented:
multiSiena-package . 2
bayesTest . 3
extract.sienaBayes . 5

1

http://www.stats.ox.ac.uk/~snijders/siena

2 multiSiena-package

print.sienaBayesFit . 7
sienaBayes . 11
simulateData . 17
smallNetworks . 19

Index 20

multiSiena-package Simulation Investigation for Multilevel Empirical Network Analysis

Description

Package multiSiena is based on RSiena, and has the extra functionality of function sienaBayes.

Details

This package is a multilevel extension of the RSiena package for simulation-based estimation of
stochastic actor-oriented models for longitudinal network data collected as panel data. The exten-
sion consists of the function sienaBayes and associated functions. The purpose is to fit hierarchical
Bayesian models random effects to sienaGroup data objects.

It was built on RSiena 1.4.13.

Next to the help pages, more detailed help is available in the manual (see below) and a lot of
information is at the website (also see below).

Package: multiSiena
Type: Package
Version: 1.2.26
Date: 2024-06-11
Depends: R (>= 3.5.0)
Imports: Matrix, parallel, MASS, methods
Suggests: codetools
SystemRequirements: GNU make
License: GPL-3
LazyData: yes
BuildResaveData: no
NeedsCompilation: yes

Author(s)

Ruth Ripley, Tom Snijders, Johan Koskinen.

Maintainer: Tom A.B. Snijders <tom.snijders@nuffield.ox.ac.uk>

References

See http://www.stats.ox.ac.uk/~snijders/siena/

Koskinen, J.H. and T.A.B. Snijders (2007). Bayesian inference for dynamic social network data.
Journal of Statistical Planning and Inference, 13, 3930-3938.

Koskinen, J.H. and T.A.B. Snijders (2023). Multilevel Longitudinal Analysis of Social Networks.
Journal of the Royal Statistical Society, Series A, 186, 376-400, DOI: https://doi.org/10.1093/jrsssa/qnac009

http://www.stats.ox.ac.uk/~snijders/siena/

bayesTest 3

See Also

RSiena, sienaBayes

bayesTest Tests for sienaBayes results with print and plot methods

Description

These functions compute tests based on sienaBayesFit objects resulting from sienaBayes. Print
and plot methods are available for the results of the multi-parameter test.

Usage

simpleBayesTest(z, nfirst=z$nwarm+1, tested0=0,
probs = c(0.025,0.975), ndigits=4)

multipleBayesTest(z, testedPar, nfirst=z$nwarm+1, tested0=0, ndigits=4)
S3 method for class 'multipleBayesTest'
print(x, descriptives=FALSE, ...)
S3 method for class 'multipleBayesTest'
plot(x, xlim=NULL, ylim=NULL, main=NULL, ...)

Arguments

z A sienaBayesFit object, resulting from a call to sienaBayes.

nfirst The first element of the MCMC chain used for calculating properties of the
chain; this can be the first element for which it is assumed that convergence has
occurred.

tested0 The value to be tested; for simpleBayesTest this must be a number (applied
to all coordinates), for multipleBayesTest it can be a number (applied to all
coordinates) or a vector.

probs A vector of two numbers between 0 and 1, the credibility limits for the credibility
intervals.

ndigits Number of digits to be given when representing the limits of the credibility
intervals.

testedPar A vector with the numbers of the parameters to be tested (numbered as in the
output of simpleBayesTest), or a k * p matrix, for testing k linear combinations
given by the rows, where p is the number of effects in the model except the basic
rate parameters.

x A multipleBayesTest object, resulting from a call to multipleBayesTest.

... Extra arguments for print.multipleBayesTest and plot.multipleBayesTest.

descriptives Boolean: whether to print the posterior mean, s.d., and covariance matrix of the
parameters included in the test.

xlim Parameter xlim in plot; if NULL, a sensible default will be used.

ylim Parameter ylim in plot; if NULL, a sensible default will be used.

main Parameter main in plot; if NULL, ’posterior distances’.

4 bayesTest

Details

Note that for the default values of probs and tested0, simpleBayesTest gives information also
contained in print.sienaBayesFit.
To use multipleBayesTest, it is advisable first to execute simpleBayesTest to see the numbers
that index the testedPar parameter; or its columns, if it is a matrix.
multipleBayesTest tests the hypothesis that the multivariate parameter for the effects defined by
testedPar is equal to tested0. If testedPar is a set or vector of numbers then the parameters
with these numbers are tested; if testedPar is a k * p matrix, the tested hypothesis is for the k lin-
ear combinations defined by its rows, and the number of columns p should be equal to the number
of non-rate effects, which is the same as the number of effects listed by simpleBayesTest.
For the test, distances (for one parameter) or Mahalanobis distances (for more than one parameter)
of the elements of the posterior sample from the posterior mean are calculated, and the p-value is the
relative frequency that these are greater than the distance between the tested value and the posterior
mean.
The p-values reported by simpleBayesTest are one-sided, and those reported by multipleBayesTest
are two-sided for k=1, and ’all-sided’ if k is larger than 1.
The plot presents a density plot of the posterior Mahalanobis distances, and the observed distance
is indicated by a vertical line (if within the plot window).

Value

simpleBayesTest produces a data frame containing for the non-rate effects their names, an indica-
tion of whether or not they are varying parameters, and test results. For each parameter separately,
(for the varying parameters) the population mean or (for the non-varying parameters) the value is
tested. The test results are the posterior credibility intervals for the probability limits defined by
probs, and the posterior probabilities of values larger than tested0.
multipleBayesTest produces an object of type multipleBayesTest which is a list with values:

prob posterior p-value

chisquared test statistic

postDistances sample from posterior of distances from tested0

nullValue input value of tested0

effectNames names of effects tested as given in . . .
posteriorSample

sample from posterior of tested effects

print.multipleBayesTest prints the posterior p-value with an explanation; and the proportions
of all sign patterns (of deviations from 0) in the sample from the posterior.
plot.multipleBayesTest plots the density function of x$postDistances.

Author(s)

Tom Snijders

References

See the manual and http://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaBayes, print.sienaBayesFit

http://www.stats.ox.ac.uk/~snijders/siena/

extract.sienaBayes 5

Examples

Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
Group6 <- sienaDependent(array(c(N3406, HN3406), dim=c(36, 36, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
dataset.6 <- sienaDataCreate(Friends = Group6)
FourGroups <- sienaGroupCreate(

list(dataset.1, dataset.3, dataset.4, dataset.6))
FourEffects <- getEffects(FourGroups)
FourEffects <- includeEffects(FourEffects, transTrip)
FourEffects <- setEffect(FourEffects, density, random=TRUE)
FourEffects <- setEffect(FourEffects, recip, random=TRUE)
print(FourEffects, includeRandoms=TRUE)
Note this also shows the "randomEffects" column.
FourAlgo <- sienaAlgorithmCreate(projname = "FourGroups", maxlike=TRUE)

Not run:
bayes.model <- sienaBayes(FourAlgo, data = FourGroups,

effects = FourEffects, nwarm=10, nmain=25, nrunMHBatches=10, saveFreq=0)
bayes.model
simpleBayesTest(bayes.model, probs = c(0.05,0.95))
(mbt <- multipleBayesTest(bayes.model, c(2,3)))
(mbt2 <- multipleBayesTest(bayes.model, c(2,3), tested0 = c(2,0.6)))
plot(mbt)
plot(mbt2)
plot(mbt$posteriorSample)
Possible because the number of tested parameters is 2.
A <- matrix(c(1,1,0),1,3)
multipleBayesTest(bayes.model, A)

End(Not run)

extract.sienaBayes Extraction of posterior samples or posterior means from sienaBayes
results

Description

The first function extracts posterior samples from a list of sienaBayesFit object to be used, e.g.,
for assessing convergence.
The second function extracts posterior means and standard deviations per group from a sienaBayesFit
object.

Usage

extract.sienaBayes(zlist, nfirst=zlist[[1]]$nwarm+1, extracted,
sdLog=TRUE)

extract.posteriorMeans(z, nfirst=z$nwarm+1, pmonly=1, excludeRates=FALSE,
verbose=TRUE)

6 extract.sienaBayes

Arguments

zlist A list of sienaBayesFit objects, further called ’chains’, resulting from calls to
sienaBayes with a common data set and model specification.

z A sienaBayesFit object.

nfirst Integer: the first element for the first MCMC chain used for calculating proper-
ties of the chain.

extracted The parameters for which posterior samples are to be extracted:
"all": all parameters;
"rates": all groupwise rate parameters;
"varying": all varying non-rate parameters: global means and standard devia-
tions;
"non-varying": all estimated non-varying (and therefore, non-rate) parame-
ters;
"objective": all non-rate parameters.

sdLog Logical: should the logarithms be taken of the posterior standard deviations
(applies only to varying parameters).

pmonly if pmonly=0 the posterior means and standard deviations are extracted, if pmonly=1
only the posterior means, if pmonly=2 only the posterior standard deviations.

excludeRates Logical: whether to exclude the rate parameters.

verbose Logical: gives some console output to show ongoing activity (may be reassuring
for large number of groups).

Details

extract.sienaBayes produces a 3-dimensional array, iterations by chains by parameters, suitable
for use, e.g., in function monitor() of package rstan. The ’iterations’ are draws from the posterior
distribution (provided that convergence was achieved), after the thinning in sienaBayes implied by
its parameters nrunMHBatches, nSampVarying, nSampConst and nSampRate.
The number of iterations should be the same for all chains.
It is not checked that the specifications of the chains are identical. For the parameter names, the
shortNames in the first chain are used.

extract.posteriorMeans produces the posterior means of the groupwise varying parameters. The
resulting matrix has the groups in the rows. The effects are in the columns: for each effect comes
first the posterior mean, then the posterior standard deviation.

Value

For extract.sienaBayes a 3-dimensional array, iterations by chains by parameters, the third di-
mension having the names of the parameters.
For extract.posteriorMeans a matrix with the groups in the rows and all effects in the columns,
with for each effect two columns: first the posterior mean (effect name preceded by "p.m.") and
then the posterior standard deviation (effect name preceded by "psd.").
If some names are duplicated (e.g., because of the presence of evaluation and creation effects), these
can be changed by the user after creation of the array.

Author(s)

Tom Snijders

print.sienaBayesFit 7

References

See the manual and http://www.stats.ox.ac.uk/~snijders/siena/

See Also

sienaBayes, plotPostMeansMDS

Examples

Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
Group6 <- sienaDependent(array(c(N3406, HN3406), dim=c(36, 36, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
dataset.6 <- sienaDataCreate(Friends = Group6)
FourGroups <- sienaGroupCreate(

list(dataset.1, dataset.3, dataset.4, dataset.6))
FourEffects <- getEffects(FourGroups)
FourEffects <- includeEffects(FourEffects, transTrip)
FourEffects <- setEffect(FourEffects, density, random=TRUE)
FourEffects <- setEffect(FourEffects, recip, random=TRUE)
print(FourEffects, includeRandoms=TRUE)
algo0 <- sienaAlgorithmCreate(projname = NULL, seed=321,

nsub=2, cond=FALSE, lessMem=TRUE)
mom.model <- siena07(algo0, data = FourGroups, effects = FourEffects,

batch=TRUE)
Note this also shows the "randomEffects" column.
Get three parallel estimates (the numbers of runs are way too low):

Not run:
bayes.models <- lapply(1:3, function(k){

algok <- sienaAlgorithmCreate(projname = NULL, seed=321+(k*37))
sienaBayes(algok, data = FourGroups,

effects = FourEffects, prevAns=mom.model,
nprewarm=5, nwarm=10, nmain=25, nrunMHBatches=2, nImproveMH=10)})

bayes.extracted <- extract.sienaBayes(bayes.models, extracted="all")
dim(bayes.extracted)
dimnames(bayes.extracted)
extract.posteriorMeans(bayes.models[[1]])
extract.posteriorMeans(bayes.models[[2]])
extract.posteriorMeans(bayes.models[[3]])

End(Not run)

print.sienaBayesFit Methods and functions for processing sienaBayes objects

Description

print and summary methods for sienaBayesFit objects, and further functions for interpretation
of results.

http://www.stats.ox.ac.uk/~snijders/siena/

8 print.sienaBayesFit

Usage

S3 method for class 'sienaBayesFit'
print(x, nfirst=NULL, ...)

S3 method for class 'sienaBayesFit'
summary(object, nfirst=NULL, allGroups=FALSE, ...)

S3 method for class 'summary.sienaBayesFit'
print(x, nfirst=NULL, allGroups=FALSE, ...)

sienaBayes.table(x, nfirst=NULL, d=3,
filename=paste(deparse(substitute(x)),'.tex',sep=""), align=TRUE)

shortBayesResults(x, nfirst=NULL)

plotPostMeansMDS(x=NULL, pm=NULL, pmonly=1, dim=2, method=1, excludeRates=TRUE,
nfirst=NULL, main=NULL, ...)

Arguments

object An object of class sienaBayesFit.

x An object of class sienaBayesFit or summary.sienaBayesFit as appropriate.

nfirst The first element of the MCMC chain used for calculating properties of the
chain; i.e., the first element for which it is assumed that convergence has oc-
curred. If NULL, the value x$nwarm+1 will be used.

allGroups Logical: whether to print results for each group.

pm In plotPostMeansMDS, at least one of x or pm should be given.
If pm is not NULL, it should be an earlier obtained result of extract.posteriorMeans.
If this is given, it overrides the values of pmonly and excludeRates.

pmonly if pmonly=0 a plot is made for posterior means and standard deviations: if
pmonly=1 only for the posterior means, if pmonly=2 only for the posterior stan-
dard deviations.

dim Dimension of the MDS representation. For dim=1 the single dimension is plot-
ted vertically, and the horizontal dimension is the sequence number of the group.
For dim >= 3 only the first two dimensions are plotted.

method Method for determining the similarities between the vectors of posterior means.
See "Details".

excludeRates Logical: whether to exclude the rate parameters for determining the coordinates.

... For extra arguments. At present used only for further specification of the plot
made by plotPostMeansMDS, allowing further arguments for plot and text.

main Parameter main in plot; if NULL, "MDS" with name of x.

filename filename for output; if "", printed to the console.

d Number of decimals to be used in table.

align Whether to align numbers at the decimal point.

print.sienaBayesFit 9

Details

The function print.sienaBayesFit prints results (estimated posterior means, posterior standard
deviations, and percentiles) of a Bayesian analysis, as resulting from function sienaBayes.
The function summary.sienaBayesFit prints more extensive results, including groupwise results.
The columns "cred. from" and "cred. to" give the left and right end points of the estimated 95
percent credibility interval for the parameters, and the column "p" gives the estimated posterior
probability that the parameter is greater than 0.

The function plotPostMeansMDS uses an MDS plot of the posterior means; if pm is not NULL, func-
tion extract.posteriorMeans will be used to compute it.
For method=1 the dissimilarities are the sum of squared differences of distances between the poste-
rior means normalized and orthogonalized with respect to a robustly estimated covariance matrix;
for method=2 the dissimilarities are the sum of squared differences of distances between the poste-
rior means divided by their standard deviations;
for method=3 the dissimilarities are the sum of squared differences of distances between the poste-
rior means.

Function plotPostMeansMDS uses random starting points, and running it will give a different result
each time it is done. On convergence, it reports the minimized stress function. Since this usually
will be a local minimum only, it is advisable to do it repeatedly and then interpret the plot with the
lowest stress value.

Function plotPostMeansMDS can be useful for detection of outliers, or can signal that too many
randomly varying effects are included in the model.

It is advisable to employ the first parameter; looking at trace plots will be helpful to estimate the
number of runs from which convergence has occurred; this may well be different from the default
value x$nwarm+1.

Function siena.table can also be used to make html or LaTeX tables of posterior means and
standard deviations of a sienaBayesFit object.

Value

The function shortBayesResults produces a data frame containing posterior means and between-
group standard deviations, and 95 percent crdibility intervals. This is meant to be a component for
use in other functions.
Of this data frame, variables "name" to "effectName" are as in a sienaEffects object; variables
"postMeanGlobal", "postSdGlobal", "cFrom", "cTo" are the posterior mean, posterior standard de-
viation, and lower and upper boundaries of the 95 percent posterior interval for the global param-
eters (mu and eta); variables "postSdBetween", "cSdFrom", "cSdTo" are the posterior mean, and
similar percentiles, for the global between-group standard deviations (sigma) of the parameters that
are randomly varying between groups.

Function sienaBayes.table is based on shortBayesResults and constructs a LaTeX tables of
posterior means and posterior between-groups standard deviations.

The return value of plotPostMeansMDS is a list with three components:
pm, the matrix of posterior means;
dist, the dissimilarities between the groups, used for the MDS;
points, the matrix of dim-dimensional MDS coordinates.

Author(s)

Tom Snijders

10 print.sienaBayesFit

References

See also http://www.stats.ox.ac.uk/~snijders/siena/
For plotPostMeansMDS: for the MDS method see p. 308 and for the robust covariance matrix see
p. 336 of
W.N. Venables and B.D. Ripley (2002), Modern Applied Statistics with S. Fourth edition. Springer.

See Also

siena.table, sienaBayes, extract.sienaBayes, extract.posteriorMeans.

Examples

Construct a list of Siena data sets of smallNetworks
together with group-level variable "num", the rank number in 1:50
mData <- list()
for (i in 1:20){

net <- sienaDependent(array(c(smallNetworks[[1]],smallNetworks[[i+1]]),
dim=c(5,5,2)), allowOnly=FALSE)

num <- coCovar(rep(i,5), warn=FALSE)
mData[[i]] <- sienaDataCreate(net,num)

}
Construct the multigroup dataset:
(multiData <- sienaGroupCreate(mData))
specify model
eff.p <- getEffects(multiData)
eff.p <- setEffect(eff.p, density, random=TRUE)
eff.p <- setEffect(eff.p, recip, random=TRUE)
eff.p <- setEffect(eff.p, transTrip, random=TRUE)
eff.p <- setEffect(eff.p, egoX, interaction1='num')
eff.p <- includeInteraction(eff.p, egoX, recip, interaction1=c('num',''))
eff.p <- includeInteraction(eff.p, egoX, transTrip, interaction1=c('num',''))
print(eff.p, includeRandoms=TRUE, dropRates=TRUE)
alg.ml <- sienaAlgorithmCreate(projname=NULL, seed=1234)
Prior distribution; for rho it does not matter
(because priorRatesFromData=2)
Mu <- c(1,-1,0.5,0.2)
Sig <- matrix(0,4,4)
diag(Sig) <- 0.09
Estimate (the numbers of runs indicated are way too low):
bayes.model <- sienaBayes(alg.ml, data=multiData,

effects=eff.p, nprewarm=10, nwarm=25, nmain=50, nrunMHBatches=2,
initgainGroupwise=0, reductionFactor=0.1,
priorMu=Mu, priorSigma=Sig, priorKappa=0.09,
silentstart=TRUE, saveFreq=0)

If one would assume that convergence was reached by iteration 30 out of 75:
print(bayes.model, nfirst=30)
summary(bayes.model)
siena.table(bayes.model, type="html", d=3)
shortBayesResults(bayes.model)
pm <- extract.posteriorMeans(bayes.model)
ppm <- plotPostMeansMDS(bayes.model, pm=pm)

http://www.stats.ox.ac.uk/~snijders/siena/

sienaBayes 11

sienaBayes A function for fitting Bayesian models

Description

A function to fit hierarchical Bayesian models random effects to sienaGroup data objects. Uses the
function maxlikec for the SAOM part, the Bayesian part is performed in R.

Usage

sienaBayes(data, effects, algo, saveFreq=100,
initgainGlobal=0.1, initgainGroupwise = 0.001, initfgain=0.2, gamma=0.05,
initML=FALSE, priorMeanEta=NULL, priorSigEta=NULL,
priorMu=NULL, priorSigma=NULL, priorDf=NULL, priorKappa=0,
priorRatesFromData=2,
frequentist=FALSE, incidentalBasicRates=FALSE,
reductionFactor=0.5, delta=1e-10,
nprewarm=50, nwarm=50, nmain=250, nrunMHBatches=20,
nSampVarying=1, nSampConst=1, nSampRates=0,
nImproveMH=100, targetMHProb=0.25,
lengthPhase1=round(nmain/5), lengthPhase3=round(nmain/5),
storeScores = FALSE,
storeAll=FALSE, prevAns=NULL, usePrevOnly=TRUE,
prevBayes=NULL, newProposalFromPrev=(prevBayes$nwarm >= 1),
silentstart = TRUE,
nbrNodes=1, clusterType=c("PSOCK", "FORK"),
getDocumentation=FALSE)

glueBayes(z1, z2, nwarm2=0)

Arguments

data A sienaGroup object as returned by sienaGroupCreate. It is planned to also
allow a siena data object as returned by sienaDataCreate.

effects sienaEffects object as returned by getEffects(data). The effects indicated by
its column randomEffects get effects that are varying across the groups.

algo Algorithm object, as created by sienaAlgorithmCreate. Should contain all
options required for the MCMC scheme, and a random seed if required.

saveFreq Integer. If this is larger than 1, the provisional results are saved after each multi-
ple of saveFreq iterations in the main phase, in a file with name PartialBayesRe-
sult.RData (if a file with this name exists, it will be overwritten). This file con-
tains an object z of class sienaBayesFit, with the provisional results. This is
to guard against crashes or power failure. It can be used as value for prevBayes
as indicated below.

initgainGlobal Step sizes in initial searches for good parameter values across the groups.
initgainGroupwise

Step sizes in initial searches for good parameter values by group; can be up to
0.1 for larger networks, 0 for very small networks.

12 sienaBayes

initfgain Positive number, used only for frequentist estimation and incidentalBasicRates:
the gain factor in the Robbins Monro algorithm is initfgain during warming
and Phase 1, and initfgain * ((iteration number after Phase 1)^(-gamma))
after that.

gamma Positive number, used only for frequentist estimation: see initfgain.
initML Boolean, whether to use maximum likelihood estimation for the groupwise ini-

tial estimation.
priorMeanEta Vector of length equal to the number of fixed parameters, or NULL. Prior mean

of eta (fixed effects); default: 0.
priorSigEta Vector of length equal to the number of fixed parameters, or NULL. If not NULL,

values that are not NA are prior variances of eta (fixed effects); these must all be
positive.

priorMu Vector of length equal to the number of randomly varying parameters, or NULL.
Prior mean of mu (global population mean for varying parameters); default: 0.
For the basic rate parameters the defaults are data-dependent, but if ((priorRatesFromData
= 0) and priorMu=NULL), for these parameters the prior mean will be 2.

priorSigma Square matrix of dimension equal to length of priorMu, or NULL. Prior between-
groups population covariance matrix Sigma for the varying parameters; default:
identity matrix.

priorDf Prior degrees of freedom for Sigma (global population covariance matrix); de-
fault: number of randomly varying parameters + 2.

priorKappa Proportionality constant between prior covariance matrix and covariance ma-
trix of prior distribution for mu; default: 0 (then the prior for mu is improper, and
priorMu has no effect, except for the rate parameters if priorRatesFromData=0).

priorRatesFromData

-1, 0, 1, or 2. Determines the prior distribution for the rate parameters.
-1: all basic rate parameters are fixed; this must correspond to effects;
0: prior is taken from priorMu and priorSigma;
1: prior is defined by mean and covariance matrix of estimated rate parameters
from initialization phase;
2: prior is defined by robust estimates for location and multivariate scale of
estimated rate parameters from initialization phase.

frequentist Currently only frequentist=FALSE works. Boolean: chooses between fre-
quentist or Bayesian estimation of the global parameters. Frequentist estimation
is possible only for at least 2 groups.

incidentalBasicRates

Boolean. If this is TRUE, the basic rate parameters are defined specifically for
each group, and estimated using a Robbins Monro algorithm; if FALSE, they
have a common prior for all groups.

reductionFactor

Positive number. If priorRatesFromData = 1 or 2, the prior distribution for
the rate parameters is the estimated covariance matrix of the estimated rate
parameters in the initialization phase multiplied by reductionFactor, plus a
contribution of 0.01 for the variances. For many data sets the default will be
OK. If the rate parameters diverge, as evidenced by the traceplots of the pos-
terior values, then a smaller value is advisable, such as 0.01. Has no effect if
priorRatesFromData <= 0.

delta When the global population covariance matrix becomes non-positive definite
(i.e., has one or more negative correlations) during iterations, it is changed so
that all eigenvalues are at least delta.

sienaBayes 13

nprewarm Number of iterations in the pre-warm-up phase, before improveMH.

nwarm Number of iterations in the warm-up phase. Used only if prevBayes is NULL.
Then it should be at least 5.

nmain Number of iterations in the main phase. Should be at least 10.

nrunMHBatches Integer: thinning ratio in MCMC process; but thinning at the lowest level is
further determined by parameter mult in algo, see sienaAlgorithmCreate.
Should be even.

nSampVarying Number of samples of varying parameters for each chain sample.

nSampConst Number of samples of constant parameters ("eta") for each chain sample.

nSampRates Number of extra samples of basic rate parameters for each chain sample.

nImproveMH Number of iterations per improveMH step. If nImproveMH=0, no improveMH
steps at all. It is recommended to use the default value.

targetMHProb Desired proportion of acceptances in MH steps. This can be one number, or a
vector of two numbers. In the latter case, the first number applies to the MH
steps per group (for each group), the second to the MH steps for the constant
parameters ("eta").

lengthPhase1 Only used for frequentist estimation or incidentalBasicRates: length of the
first phase of the Robbins Monro algorithm. lengthPhase1 + lengthPhase3
should be strictly less than nmain.

lengthPhase3 Only used for frequentist estimation or incidentalBasicRates: length of the
third phase of the Robbins Monro algorithm. lengthPhase1 + lengthPhase3
should be strictly less than nmain.

storeScores Boolean: whether to store thinned scores.

storeAll Boolean: whether to store parameters for all MCMC iterations, i.e., before thin-
ning. storeAll=TRUE may lead to producing very large objects and is not rec-
ommended for usual operation.

prevAns An object of class "sienaFit" as returned by siena07 for the same data set and
effects object. This then is the result of a multi-group estimation for these data,
from which scaling information (derivative matrix and standard deviation of the
deviations) can be extracted along with the parameters estimates which will be
used as the initial values, unless algo requests the use of standard initial values.
If prevAns=NULL, then a multi-group estimation using siena07 will be per-
formed as part of the initialization. If prevAns is an object as described, es-
timated with unconditional estimation (cond=FALSE), with 500 or more runs in
Phase 3, then if usePrevOnly=TRUE this multi-group estimation will be skipped;
if usePrevOnly=FALSE a multi-group estimation still will be performed, but
starting at the results provided by prevAns; if usePrevOnly=TRUE but with less
than 500 runs in Phase 3, then the multi-group estimation will be done only for
Phase 3 (skipping Phases 1 and 2).

usePrevOnly Boolean: see immediately above.

prevBayes An object of class sienaBayes as returned by function sienaBayes, on which
the current function will continue. For example, the object z contained in the in-
termediate saved result PartialBayesResult.RData as mentioned above. Ini-
tialization and warming phases are skipped.
If these are given, the values of nrunMHBatches, nSampVarying, nSampConst,
and nSampRates supersede those in prevBayes. If these are given, the values
of prevAns, nwarm, incidentalBasicRates, priorRatesFromData, and the
prior distributions are disregarded.

14 sienaBayes

A new set of nmain iterations in the main phase are done. All further relevant pa-
rameters of the function call should be identical. This is not completely checked,
so errors may occur if this is not the case.

newProposalFromPrev

Boolean, has consequences only when prevBayes is given: whether to use a
robust estimate of the covariance matrix of parameters in prevBayes to define
a new proposal distribution. Else the proposal distribution is the same as in the
prevBayes object.

silentstart Boolean: whether to suppress most information to the console during the calcu-
lation of initial values.

nbrNodes Number of processes to be used. Cannot be more than the number of periods
summed over number of groups.

clusterType If using multiple processes, whether to use forking processes or not. (Only
"PSOCK" can be used on Windows.)

getDocumentation

Flag to allow documentation of internal functions, not for use by users.

z1 sienaBayes object.

z2 sienaBayes object with the same data and model specification as z1.

nwarm2 Number of warming iterations in z2; the first nwarm2 iterations of z2 will be left
out of the combined object.

Details

The function sienaBayes is for Bayesian estimation of one group or of multiple groups all having
the same number of waves and the same model specification. It wraps Bayesian sampling of pa-
rameters around calls to maxlikec. The RSiena manual has a lot of information.
Effects can be randomly varying between groups, or global (i.e., constant across groups). This is
indicated by the keyword random in the call of setEffect, and reported when using the keyword
includeRandoms in print.sienaEffects.
For the groupwise parameters normal distributions are assumed with conjugate priors. The con-
jugate prior is an inverse Wishart distribution for the covariance matrix Sigma, with parameters
Lambda^{-1} and priorDf, where Lambda = priorDf*priorSigma; and, if priorKappa > 0, con-
ditional on Sigma, for the expected value a multivariate normal with mean priorMu and covariance
matrix Sigma/priorKappa; if priorKappa = 0, the expected value has an improper prior.
For the fixed parameters, if priorSigEta=NULL, the improper constant prior is used. Else, for the
components of eta (fixed effects parameter) for which priorEta is NA, the improper constant prior
is used, and for other components, independent normal priors with mean 0 and variances given by
priorEta.
Recommendation: use the normal prior only for effects of group-level variables. If a non-zero prior
mean is desired, transform the group-level variable.
The required dimensions of the prior parameters priorSigEta, priorMu and priorSigma depend
on the number of groupwise varying parameters and are given in the output for print.sienaEffects
when using the keyword includeRandoms .
If priorRatesFromData is 1 or 2, the prior distribution for the basic rate parameters is determined
in a data-dependent way. For the non-varying parameters, a flat prior is assumed.
The frequentist option currently is not supported (probably broken).
The procedure consists of three parts: initialization, warming, main phase.
In the initialization phase, initial parameter values and the proposal covariance matrix for Metropolis-
Hastings steps for groupwise parameters are obtained from, first, Method of Moments estimation of
a parameter vector assumed to be the same across the groups (in a multi-group estimation); replac-
ing this estimate by a precision-weighted mean of this estimate and the prior mean; followed by one

sienaBayes 15

subphase of the Robbins-Monro algorithm for Method of Moments estimates for the groups sepa-
rately, starting from the overall estimate, with step size initgain. This is skipped if initgain=0.
If the prevBayes object is supplied, this initialization phase is skipped, and if newProposalFromPrev
the proposal covariance matrices are calculated from the simulated chains in this object.
From this basis, nprewarm Metropolis Hastings steps are taken; however, if no acceptances occur
in two consecutive steps, the prewarming phase is ended. The proposal covariance matrices then
are scaled, in the function ’improveMH’, to achieve a proportion of accepted MH proposals approx-
imately equal to target.
After initialization and scaling of the proposal covariance matrices, a warming phase is done of
nwarm Bayesian proposals each with a number of MH steps, followed again by the function ’improveMH’.
If the prevBayes object is supplied, the warming phase is skipped.
Finally nmain repeats of nrunMHBatches are performed of a number of MH steps sampling chains,
plus nSampVarying MH steps sampling the varying parameters (’theta_j’) plus nSampConst MH
steps sampling the non-varying parameters (’eta’) plus one Gibbs step sampling the global mean
and covariance matrix of the varying parameters (’mu’ and ’Sigma’). In the warming as well as the
final phase, the number of MH steps within each run is determined by parameter mult ("multipli-
cation factor") in the algorithm object algo.

The function is time-consuming. When starting to use it, it is advisable to start with low values of
nmain to explore computing time.
Initialisation is an important part, and will be shorter if prevAns is given. If an earlier sienaBayes
object is available for this data specification (which may differ in which effects are specified as being
random), then if the name of this object is zz it will be possible to use prevAns=zz$initialResults.

When the procedure seems to diverge, and for very small groups, it is advisable to use smaller
values of the parameters initgainGlobal and initgainGroupwise.

glueBayes(z1,z2) combines two existing sienaBayesFit objects with the same data and model
specifications (this is not entirely checked) into one by putting z2 after z1. This is intended to be
used when z2 was produced by calling sienaBayes with prevBayes=z1.

For the function print.sienaEffects, the options includeRandoms=TRUE and dropRates=TRUE
are meant to be useful especially for effects objects used for sienaBayes.

Value

sienaBayes as well as glueBayes return an object of class sienaBayesFit. This is a list contain-
ing, among other things:

priorMu prior global population mean (not quite the same as corresponding input param-
eter)

priorSigma prior global between-groups population covariance matrix (not quite the same
as corresponding input parameter)

priorKappa proportionality constant between prior covariance matrix and covariance matrix
of prior distribution for the mean

priorDf prior degrees of freedom for covariance matrix

nmain Number of iterations used in the main phase, as given in the call of sienaBayes

nwarm Number of iterations used in the warm-up phase, as given in the call of sienaBayes;
0 if prevBayes was used. The value of nwarm is used in other functions such
as print.sienaBayesFit, and when the object is used for sienaBayes as a
prevBayes parameter with newProposalFromPrev=TRUE. If it was deemed that
converge begins later (or earlier) than the value of nwarm, this value can be
changed for further use of the object produced by sienaBayes.

effectName array of names of effects included in the model

16 sienaBayes

f$groupNames array of names of groups included in the model

initialResults sienaFit object: result of initial MoM estimation under the assumption of same
parameters across groups

ThinParameters array of dimensions (nwarm+nmain iterations by groups by parameters): sam-
pled groupwise parameters

ThinPosteriorMu

array of dimensions (nwarm+nmain iterations by parameters): sampled global
means of varying parameters

ThinPosteriorEta

array of dimensions (nwarm+nmain iterations by fixed parameters): sampled
fixed parameters

ThinPosteriorSigma

array of dimensions (nwarm+nmain iterations by parameters by parameters):
sampled global covariance matrix of varying parameters

ThinnedScores if storeScores=TRUE: array of dimensions (nwarm+nmain iterations by non-rate
parameters): sampled scores

nrunMH vector (by groups * waves) of number of MH steps in the innermost loop of the
likelihood simulations of the SAOM; this is a data-dependent multiple of the
value of mult set in sienaAlgorithmCreate

ThinBayesAcceptances

matrix of number of acceptances in the nrunMHBatches MH steps in each itera-
tion, and summed over dependent variables, for each group and (duplicated) for
the vector of fixed effects

acceptances if storeAll=TRUE: matrix of booleans: whether the corresponding change to
the parameters was accepted in each step, by group

MHacceptances if storeAll=TRUE: array of acceptances of the MH steps, by step type and group
but summed over dependent variables

MHrejections if storeAll=TRUE: array of rejections of the MH steps

MHproportions if storeAll=TRUE: array of proportions of the MH steps accepted

Author(s)

Ruth Ripley, Johan Koskinen, Tom Snijders

References

See http://www.stats.ox.ac.uk/~snijders/siena/

Koskinen, J.H. and T.A.B. Snijders (2007). Bayesian inference for dynamic social network data.
Journal of Statistical Planning and Inference, 13, 3930-3938.

Koskinen, J.H. and T.A.B. Snijders (2023). Multilevel Longitudinal Analysis of Social Networks.
Journal of the Royal Statistical Society, Series A, 186, 376-400, DOI: https://doi.org/10.1093/
jrsssa/qnac009

See Also

extract.sienaBayes, plotPostMeansMDS, smallNetworks
There are print and summary methods for sienaBayesFit objects, see print.sienaBayesFit.

http://www.stats.ox.ac.uk/~snijders/siena/
https://doi.org/10.1093/jrsssa/qnac009
https://doi.org/10.1093/jrsssa/qnac009

simulateData 17

Examples

Construct a list of Siena data sets of smallNetworks
together with group-level variable "num", the rank number in 1:50
mData <- list()
for (i in 1:50){

net <- sienaDependent(array(c(smallNetworks[[1]],smallNetworks[[i+1]]),
dim=c(5,5,2)), allowOnly=FALSE)

num <- coCovar(rep(i,5), warn=FALSE)
mData[[i]] <- sienaDataCreate(net,num)

}
Construct the multigroup dataset:
(multiData <- sienaGroupCreate(mData))
specify model
eff.p <- getEffects(multiData)
eff.p <- setEffect(eff.p, density, random=TRUE)
eff.p <- setEffect(eff.p, recip, random=TRUE)
eff.p <- setEffect(eff.p, transTrip, random=TRUE)
eff.p <- setEffect(eff.p, egoX, interaction1='num')
eff.p <- includeInteraction(eff.p, egoX, recip, interaction1=c('num',''))
eff.p <- includeInteraction(eff.p, egoX, transTrip, interaction1=c('num',''))
print(eff.p, includeRandoms=TRUE, dropRates=TRUE)
alg.ml <- sienaAlgorithmCreate(projname=NULL, prML=2, seed=531)
Prior distribution; for rho it does not matter
(because priorRatesFromData=2)
Mu <- c(1,-1,0.5,0.2)
Sig <- matrix(0,4,4)
diag(Sig) <- 0.09
Not run:
Estimate: (the numbers of runs indicated are way too low)
(bayes.model <- sienaBayes(alg.ml, data=multiData,

effects=eff.p, nprewarm=10, nwarm=25, nmain=100, nrunMHBatches=10,
initgainGroupwise=0, reductionFactor=0.1,
priorMu=Mu, priorSigma=Sig, priorKappa=0.09,
silentstart=FALSE, saveFreq=0))

End(Not run)

simulateData Forward simulation of data sets from sienaBayes results

Description

This function performs forward simulations of sienaBayesFit results to be used, e.g., for assessing
goodness of fit.
Such simulations are intended to be a sample from the posterior predictive distribution.

Usage

simulateData(g, x, xd, thin=1, nstart=x$nwarm,
seed=NULL, nbrNodes=1)

18 simulateData

Arguments

g Integer: group number.

x A sienaBayesFit object.

xd The sienaGroup data set corresponding to x.

thin Integer: a parameter for thinning.

nstart The first iteration in x, starting from which parameter values will be used.

seed Integer: random number seed.

nbrNodes Number of parallel processes to use.

Details

This function takes groupwise simulated parameter values from x for group g, and simulates data for
this group for the sequence of these parameters. This is done by running siena07 with returnDeps=TRUE,
using as thetaValues the parameters simulated in x, and using an algorithm object with nsub=0,
simOnly=TRUE.
Works only if there are no interactions between three effects; and only one dependent network or
behavior variable.

Value

sienaFit object, produced using only Phase 3 of siena07, containing a sample from the posterior
predictive distribution.
The simulated dependent variables are in the component sims of the object produced by simulateData.
The size of the generated sample is parameter nmain in the call of sienaBayes used to generate x,
divided by thin.
See the help page for siena07 for the structure of the simulated dependent variables.

Author(s)

Tom Snijders

See Also

sienaBayes

Examples

mData <- list()
for (i in 1:10){

net <- sienaDependent(array(c(smallNetworks[[1]],smallNetworks[[i+1]]),
dim=c(5,5,2)), allowOnly=FALSE)

num <- coCovar(rep(i,5), warn=FALSE)
mData[[i]] <- sienaDataCreate(net,num)

}
Construct the multigroup dataset:

(multiData <- sienaGroupCreate(mData))
specify model

eff.p <- getEffects(multiData)
eff.p <- setEffect(eff.p, density, random=TRUE)
eff.p <- setEffect(eff.p, recip, random=TRUE)
print(eff.p, includeRandoms=TRUE, dropRates=TRUE)
alg.ml <- sienaAlgorithmCreate(projname=NULL, prML=2, seed=531, lessMem=TRUE)

smallNetworks 19

Mu <- c(1,-1,0.5)
Sig <- matrix(0,3,3)
diag(Sig) <- 0.25

Estimate: (warning: the settings of the algorithm are not realistic)
(bayes.model <- sienaBayes(alg.ml, data=multiData,

effects=eff.p, nprewarm=5, nwarm=25, nmain=25, nrunMHBatches=2,
nImproveMH=0,
initgainGroupwise=0, reductionFactor=0.1,
priorMu=Mu, priorSigma=Sig, priorKappa=0.09,
silentstart=TRUE, saveFreq=0))

(pred.post <- simulateData(1, bayes.model, multiData, seed=321))
length(pred.post$sims) # set by nmain in call of sienaBayes

pred.post$sims contains the simulated networks as edge lists:
pred.post$sims[[25]]

smallNetworks Network data: list of generated small networks.

Description

A list of 51 small networks of 5 actors. The first is meant as the initial network; the next 50
were generated with a model including reciprocity and increasing values of the transitive triplets
parameter.

Format

A list of 51 adjacency matrices.

Author(s)

Tom Snijders

See Also

sienaBayes

Examples

length(smallNetworks)
smallNetworks[[1]]
some descriptives
totalTies <- sapply(smallNetworks, sum)
distances <- sapply(smallNetworks, function(x){sum(abs(x-smallNetworks[[1]]))})
table(totalTies, distances)

Index

∗ datasets
smallNetworks, 19

∗ estimation
sienaBayes, 11

∗ functions
extract.sienaBayes, 5
simulateData, 17

∗ models
sienaBayes, 11

∗ package
multiSiena-package, 2

∗ print
print.sienaBayesFit, 7

∗ tests
bayesTest, 3

bayes (sienaBayes), 11
bayesTest, 3

extract.Bayes (extract.sienaBayes), 5
extract.posteriorMeans, 8–10
extract.posteriorMeans

(extract.sienaBayes), 5
extract.sienaBayes, 5, 10, 16

getEffects, 11
glueBayes (sienaBayes), 11

maxlikec, 11, 14
multipleBayesTest, 3
multipleBayesTest (bayesTest), 3
multiSiena (multiSiena-package), 2
multiSiena-package, 2

plot, 3, 8
plot.multipleBayesTest (bayesTest), 3
plotPostMeansMDS, 7, 16
plotPostMeansMDS (print.sienaBayesFit),

7
print.multipleBayesTest (bayesTest), 3
print.sienaBayesFit, 4, 7, 15, 16
print.sienaEffects, 14, 15
print.summary.sienaBayesFit

(print.sienaBayesFit), 7

RSiena, 2, 3

setEffect, 14
shortBayesResults

(print.sienaBayesFit), 7
siena, 11
siena.table, 9, 10
siena07, 13, 18
sienaAlgorithmCreate, 11, 13, 16
sienaBayes, 2–4, 6, 7, 9, 10, 11, 18, 19
sienaBayes.table (print.sienaBayesFit),

7
sienaBayesFit, 3, 5–9, 11, 17, 18
sienaBayesFit (sienaBayes), 11
sienaDataCreate, 11
sienaEffects, 9
sienaFit, 18
sienaGroup, 18
sienaGroupCreate, 11
simpleBayesTest (bayesTest), 3
simulateData, 17
smallNetworks, 16, 19
summary.sienaBayesFit

(print.sienaBayesFit), 7

testBayes (bayesTest), 3
text, 8

20

	multiSiena-package
	bayesTest
	extract.sienaBayes
	print.sienaBayesFit
	sienaBayes
	simulateData
	smallNetworks
	Index

