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Abstract Multilevel analysis and social network analysis both represent social
structure, and have led to statistical methodologies departing from the traditional
atomic approach to social systems that is implied by linear regression analysis.
There are various ways in which multilevel considerations are important for so-
cial network analysis. This chapter starts by sketching the importance of multilevel
issues for traditional social network analysis, and briefly reviewing multilevel anal-
ysis and statistical models for social networks. It continues by treating multilevel
network analysis, defined as network analysis in multiple ‘parallel’ groups, which
is important for gauging the variability between such groups and for the generaliz-
ability of results. Finally, a new development is discussed: the analysis of multilevel
networks, defined as networks including several node sets of different kinds, where
the nature of ties differs according to the kind of nodes they connect.

1 Away from atomistic approaches

It is strange that the assumption that data obtained from human respondents rep-
resent independent replications has been so pervasive in statistical models used in
sociological research. Sociology, after all, is about the interdependence among in-
dividuals, and about the ways in which individuals make up larger wholes such
as families, tribes, organizations, and societies. Of course we know some of the
reasons for this: statistical models founded on independence assumptions are con-
venient and have properties that can be mathematically ascertained; surveys are a
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major means of getting social information and ideally are obtained from probabil-
ity samples containing a lot of independent operations in obtaining respondents;
and, indeed, independence assumptions may yield good first-order approximations
for statistical modeling. However, as early as 1959 Coleman (1959, p. 36) made
an eloquent plea for taking social structure into account in methods of data collec-
tion and analysis. Coleman writes: “Survey methods have often led to the neglect
of social structure and of the relations among individuals. (...) But (...) one fact re-
mained, a very disturbing one to the student of social organization. The individual
remained the unit of analysis. (...) Now, very recently, this focus on the individual
has shown signs of changing, with a shift to groups as the units of analysis, or to
networks of relations among individuals”. He goes on to discuss methods for survey
data collection and for data analysis that reflect this change in perspective, away
from the focus on atomistic individuals. The analysis methods he discusses include
contextual analysis, the precursor of present-day multilevel analysis, and the study
of subgroups and cliques, still now of crucial importance in social network analy-
sis. He concludes by saying that these methods “will probably represent only the
initial halting steps in the development of a kind of structural research which will
represent a truly sociological methodology”, and mentions the promise of electronic
computers.

In the past half century, since Coleman wrote these words, great advances have
been made in methodologies for analyzing groups, or collectives, along with in-
dividuals; or, more generally, for simultaneously analyzing variables defined on
different domains. The name ‘multilevel analysis’ has replaced2 ‘contextual anal-
ysis’. Great strides also have been taken in the study of relations among individuals,
known now as social network analysis. Network analysis likewise treats variables
defined in various different domains, such as sets of nodes and sets of node pairs,
and it is concerned with groups, but by and large multilevel analysis and social net-
work analysis have developed separately, meeting each other only incidentally. Re-
cently, however, developments in social network analysis have led to combinations
of these two strands of methodology. We are still in an early phase of the junction of
multilevel analysis and social network analysis, and we may echo Coleman in say-
ing that this book presents some ‘initial halting steps’ of this junction. This chapter
gives an overview of some concepts and techniques that now can be seen as playing
important roles in the combination of multilevel and network analysis.

2 Albeit with a shift of meaning.
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2 Multilevel analysis

To be able to discuss multilevel network analysis, we need to present a sketch about
‘regular’ multilevel analysis.

2.1 Origins

Multilevel analysis, as a collection of methods, was born from the confluence of two
streams. On the one hand, sociological methodologists had been developing quite
some conceptual precision for inference relating individuals to collectives, for which
variables need to be combined that are defined in several different domains. On the
other hand, statisticians had already extended analysis of variance and regression
analysis, the general linear model, to linear models combining fixed with randomly
varying coefficients.

Let me first sketch some highlights on the sociological methodology side. Lazars-
feld and Menzel (1961), in their paper On the relation between individual and col-
lective properties — written in 1956, reprinted as Lazarsfeld and Menzel (1993) —
distinguish variables according to the set of units to which scientific propositions
are meant to apply. For propositions about individual and collective properties, they
state that there need to be sets of units both at the individual and at the collective
level. Here ‘individual’ may refer to individual humans, but also, e.g., individual
organizations or other groupings; ‘collective’ refers to sets of ‘individuals’. Lazars-
feld and Menzel go on to define three types of properties defined for collectives.
Analytical properties are obtained by a mathematical operation performed on each
member, for example the mean of an individual variable, or the correlation between
two variables. Structural properties are obtained by a mathematical operation per-
formed on the relations of each member to some or all of the other members, for
example the ‘cliquishness’ of a network. Global properties, finally, are properties of
collectives that cannot be directly deduced from properties of individual members,
e.g., the type of government of a city.

As for properties of individuals, Lazarsfeld and Menzel discuss that the correla-
tion between individual variables may be considered as a correlation between the
individuals but also between the collectives, pointing to the ecological fallacy pre-
sented in Robinson (1950): the mistake of regarding associations between variables
at one level of aggregation as evidence for associations at a different aggregation
level; an extensive review was given by Alker (1969). Researchers became aware of
the importance of the different levels, or sets of units, in which variables are defined,
and as suggested here the focus was on nested levels, representing individuals and
collectives.

During the 1970s, methods for contextual analysis were developed taking into
account these levels of analysis, and trying to avoid ecological fallacies. This was
called ‘contextual analysis’ mainly by sociologists (Blalock, 1984), and ‘multilevel
analysis’ by educational researchers (Burstein, 1980).
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Statisticians had a few decades earlier developed models that waited to be dis-
covered by these social scientists. In the analysis of variance, precursor and paradig-
matic example of the general linear model, models had been developed where co-
efficients could themselves be random variables, allowing for the investigation of
multiple sources of random variation in, e.g., agricultural and industrial production.
Models with only fixed, fixed as well as random, or only random coefficients were
called fixed, mixed, and random models, respectively (Wilk and Kempthorne, 1955;
Scheffé, 1959).

In the early 1980s contextual analysis and linear mixed (or generalized linear
mixed) models were brought together by several statisticians and methodologists:
Mason et al. (1983), Goldstein (1986), Aitkin and Longford (1986), and Rauden-
bush and Bryk (1986). These researchers also developed estimation algorithms and
implemented them in multilevel software packages, making use of the nested struc-
ture of the random coefficients to achieve efficiency in the numerical algorithms.
The scientific gains from the combination of contextual analysis and random coef-
ficient models are also discussed by Courgeau (2003). A more extensive history of
these developments is given in Kreft and de Leeuw (1998).

2.2 Hierarchical Linear Model

The prototypical statistical model used in multilevel analysis is the Hierarchical Lin-
ear Model, which is a mixed effects linear model for nested designs (Raudenbush
and Bryk, 2002; Goldstein, 2011; Snijders and Bosker, 2012). This generalizes the
well-known linear regression model. It is meant for data structures that are hierar-
chically nested, such as individuals in collectives, where each individual belongs
to exactly one collective. The most detailed level (individuals) is called the lowest
level, or level one. The Hierarchical Linear Model is for the analysis of dependent
variables at the lowest level. The basic idea is that studying the simultaneous effects
of variables defined at the individual level, as well as of other variables defined at
the level of collectives, on an individual-level dependent variable requires the use of
regression-type models that include error terms for each of those levels separately;
the Hierarchical Linear Model is a linear mixed model that has this property.

In the two-level situation – let us say, individuals in groups – it can be expressed
as follows. Highlighting the distinction with regular regression models, the termi-
nology speaks of units rather than cases, and there are specific types of unit at each
level. We denote the level-1 units, individuals, by i and the level-2 units, groups, by
j. Level-1 units are nested in level-2 units (each individual is a member of exactly
one group) and the data structure is allowed to be unbalanced, such that j runs from
1 to N while i runs, for a given j, from 1 to n j. The basic two-level hierarchical
linear model can be expressed as

Yi j = β0 +
r

∑
h=1

βh xhi j + U0 j +
p

∑
h=1

Uh j zhi j + Ri j . (1)



The Multiple Flavours of Multilevel Issues for Networks 5

Here Yi j is the dependent variable, defined for level-1 unit i within level-2 unit j;
the variables xhi j and zhi j are the explanatory variables. Some or all of them may
be defined at the group level, rendering superfluous the index i for such variables.
Variables Ri j are residual terms, or error terms, at level 1, while Uh j for h = 0, . . . , p
are residual terms, or error terms, at level 2. In the case p = 0 this is called a random
intercept model, for p≥ 1 it is called a random slope model. The usual assumption is
that all Ri j and all vectors U j = (U0 j, . . . ,Up j) are independent, Ri j having a normal
N (0,σ2) and U j having a multivariate normal Np+1(0,T) distribution. Parame-
ters βh are regression coefficients (fixed effects), while the Uh j are random effects.
The presence of both of these makes (1) into a linear mixed model. Similar models
can be defined for nesting structures with more than two levels, e.g., employees in
departments in firms.

In most practical cases, the variables with random effects are a subset of the
variables with fixed effects (xhi j = zhi j for h ≤ p; p ≤ r). The Hierarchical Linear
Model can then be expressed in the appealing form

Yi j = (β0 +U0 j) +
p

∑
h=1

(βh +Uh j)xhi j +
r

∑
h=p+1

βh xhi j + Ri j , (2a)

which shows that it can be regarded as a regression model defined for the groups
separately, with group-specific intercept

(β0 +U0 j) (2b)

and group-specific regression coefficients

(βh +Uh j) (2c)

for h = 1, . . . , p; variables Xh for p+ 1 ≤ h ≤ r have regression coefficients that
are constant across groups. This pictures the Hierarchical Linear Model as a linear
regression model defined by the same model for all groups, but with regression
coefficients that differ randomly between groups.

Going back to the teachings of Lazarsfeld and Menzel, it can be concluded that
multilevel analysis elaborates the inference about individual and collective proper-
ties as a system of nested samples drawn from nested populations: a population of
individuals nested in a population of groups (or collectives). The fact that, in prac-
tice, groups will be finite, whereas the populations are mathematically considered
as if they were infinite, is usually glossed over in research aiming to generalize to
social mechanisms or processes (as distinct from descriptive survey research about
concrete groups, without the aim of generalization to other groups) (see Cox, 1990;
Sterba, 2009).
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2.3 Non-nested data structures

It soon transpired that the relevant data structures are not always nested, because
social structures often are not. A basic example in studies of school effectiveness
is that neighborhoods may also be an important factor for student achievement,
but schools will have students coming from diverse neighborhoods while neighbor-
hoods will have students attending different schools. This leads to a data set where
students are nested in schools and also nested in neighborhoods, but schools and
neighborhoods are not nested in each other; the term used for non-nested category
systems is ‘crossed’, so that this would be called a cross-nested data structure. To
present an extension of model (1) for such a cross-nested data structure, consider
again a data structure with individuals i nested in groups j but now also nested in
aggregates k of a different kind (in the example of the previous sentence, neighbour-
hoods). Denote by k(i, j) the aggregate k to which individual i in group j belongs. In
the simplest extension there is only a random intercept Vk associated with k, leading
to the equation

Yi j = β0 +
r

∑
h=1

βh xhi j + U0 j +
p

∑
h=1

Uh j zhi j + Vk(i, j) + Ri j . (3)

The default assumption for the Vk is that again they are independent and normally
distributed with mean 0 and constant variance, and independent of the U and R
variables. A further extension is to mixed-membership models (Browne et al., 2001),
in which individuals may be partial members of more than one group.

2.4 Frequentist and Bayesian estimation

Multilevel models such as (2), in which parameters vary randomly between groups,
provide a natural bridge between the frequentist paradigm in statistics, which treats
parameters as fixed quantities which are unknown, ‘out there’, and the Bayesian
paradigm, which treats parameters as random variables; in both paradigms, of
course, the observations are the material that helps us get a grip on the values of
the parameters. In the multilevel case, the random variation of parameters can be
linked to a frequency distribution of parameters in the population of groups, which
may be estimated from empirical data. Accordingly, this bridging ground is often
called empirical Bayes (see, e.g., Raudenbush and Bryk, 2002, and Chapter 5 of
Gelman et al., 2014). Bayesian estimators3 for the parameters such as (2a) and (2b),
using the sample of groups to get information about the corresponding population,
are called empirical Bayes estimators. For the parameters β , σ2, and T in (1), fre-
quentist as well as Bayesian estimators have been developed.

3 In frequentist terminology these are not called estimators but predictors, because they refer to
statistics that have the purpose to approximate random variables.
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Especially for non-nested data structures, Bayesian estimators may have algorith-
mic advantages, and Bayesian Markov chain Monte Carlo (‘MCMC’) algorithms are
often employed (Draper, 2008; Rasbash and Browne, 2008) for such more complex
models. These are algorithms which use computer simulations, very flexible but also
much more time-consuming than traditional algorithms. Today, Bayesian methods
for multilevel analysis are often proposed and used without much attention paid to
the distinct philosophical underpinnings. This lack of attention does not, however,
take away the differences. The Bayesian approach can be a useful way to account
for prior knowledge; this is discussed for the special case of multilevel analysis by
Greenland (2000), and elaborated more practically in Chapter 5 of Gelman et al.
(2014). Using this approach requires, however, that one pays attention to the sen-
sitivity of the results to the choice of the prior distribution. In addition there are
interpretational differences, but these may be less important because of the con-
vergence between frequentist and Bayesian approaches discussed in Gelman et al.
(2014, Chapter 4).

2.5 What is a level?

The various extensions of the basic multilevel model have made even more pressing
the question ‘What is a level?’ which has harrowed quite a few researchers even
in the case of the more basic nested models. The mathematical answer is that, for
applications of linear mixed or generalized linear mixed models, a level is a system
of categories for which it is reasonable to assume random effects. More elaborately,
this means that we assume that the categories j on which the variables U j are defined
(which are latent variables in model (1)) may be regarded has having been sampled
randomly from some universe or population G , making the U j into independent and
identically distributed random variables, and our aim is to say something about the
properties of the population G rather than about the individual values U j of the units
in our sample. In the case that the U j are one-dimensional quantities, the property
of interest concerning population G could be, e.g., the variance of U j. In practical
statistical modeling, the assumption that the units in the data were randomly sam-
pled from the population is usually taken with a grain of salt (again cf. Cox, 1990;
Sterba, 2009). The essential assumption is residual exchangeability, which can be
described as follows. The random effects, Ri j and U j in (1) and also Vk in (3), are
residuals given that the explanatory variables xhi j are accounted for; these residuals
are assumed to be exchangeable across i and j (or k) in the sense that they are ran-
dom and as far as we know we have no a priori information to distinguish them for
different units in the data. Any Ri j could be high or low just as well as any Ri′ j in
the same group j or any Ri′ j′ in a different group j′; any U0 j could be high or low
just as well as any other U0 j′ ; etc.

In this sense, multilevel analysis is a methodology for research questions and
data structures that involve several sources of unexplained variation, contrasting
with regression analysis which considers only one source of unexplained variation.
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Employing the Hierarchical Linear Model, as in (1) or its variants with additional
levels, gives the possibility of studying contextual effects on the individual units.
But also in more complex structures where nesting is incomplete, random effects
will reflect multiple sources of unexplained variation. In social science applications
this can be fruitfully applied to research questions in which different types of actor
and context are involved; e.g., patients, doctors, hospitals, and insurance companies
in health-related research; or students, teachers, schools, and neighborhoods in ed-
ucational research. The word ‘level’ then is used for a type of unit, or a category
system, for which a random effect is assumed. The basic phenomenon we are study-
ing will be at the most detailed level (patients or students, respectively), and the
other levels may contribute to the variation in this phenomenon, e.g., as contexts or
other actors.

Lazarsfeld and Menzel (1961, first page) mentioned that, to be specific about
the intended meaning of variables, we should ‘examine (them) in the context of the
propositions in which they are used’. This focus on propositions also sheds light on
the question about what can be meaningfully considered as a ‘level’ in multilevel
analysis. We have to distinguish between the individual level, which is the level of
the phenomena we wish to explain, the population of units for which the dependent
variable is defined; and higher, collective levels, which do not need to be mutually
nested, but in which the individuals are nested. To be a level requires, in the first
place, that the category system is a population – a meaningfully delimited set of
units with a basic similarity and for which several properties may be considered,
such as a well-defined set of schools, of companies, of meetings. A category sys-
tem then is a meaningful higher level if it is a population that we wish to use to
explain4 some of the variability in our phenomenon and also, potentially or actually,
we may be interested in finding out which properties of the categories/units explain
the variability associated with this category system.

To illustrate this, suppose we are interested in the phenomenon of juvenile delin-
quency as our dependent variable, and we consider neighborhoods as collectives.
The individual level is, e.g., a set of adolescents living in a certain area at a certain
time point; the dependent variable is their delinquency as measured by some instru-
ment. We may observe that neighborhoods differ in average juvenile delinquency,
and we then may wonder about the properties of neighborhoods – perhaps neigh-
borhood disorder, of which a measurement may be available – that are relevant in
this respect. This step, entertaining the possibility that there might be specific prop-
erties of neighborhoods associated with their influence on juvenile delinquency, and
analyzing this statistically, is the step that makes the neighborhood a meaningful
‘level’ in the sense of multilevel analysis. In the paradigm of multilevel analysis
we will then further assume that in addition to the effect of disorder there may be
other neighborhood effects, but conditional on the extent of disorder and perhaps
other neighborhood properties that we take into account, the neighborhoods are ex-
changeable (as far as we know) in their further, residual, effects.

4 ‘Explaining’ is meant here in the simple statistical sense, without considering deeper questions
of causality.
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The fact that we are interested in statistically analyzing the effect of the categories
on the dependent variable also implies that for a level to be meaningful in a practical
investigation, the total number of its units in the data set should be sufficiently large:
a statistical analysis based on a sample of, say, less than 10 units usually makes no
sense.

2.6 Dependent variables at any level

The Hierarchical Linear Model is considered a model for dependent variables at the
lowest level of the nesting hierarchy. However, it is so amazingly flexible that it
can just as well be used for complex configurations of multiple dependent variables
defined for several different levels. This was proposed, quite casually, already by
Goldstein (1989a,b). It is also explained in Goldstein (2011, Section 5.3). The basic
idea can be made clear by showing, for a two-level structure, the model for interde-
pendent dependent variables Y (1) at level 1 and Y (2) at level 2. Denoting by xh and
zh any explanatory variables and by wh explanatory variables at level 2, the model
reads

Y (1)
i j = β0 +

r

∑
h=1

βh xhi j + U0 j +
p

∑
h=1

Uh j zhi j + Ri j (4a)

Y (2)
j = γ0 +

q

∑
h=1

δh wh j + Vj , (4b)

where (U0 j, . . . ,Up j,Vj) is a (p+ 2)-dimensional random residual at level 2, with
a multivariate normal distribution. By using products with dummy variables this
can be written as a single Hierarchical Linear Model, see Goldstein (2011, p. 150).
Not all multilevel modeling software will allow for this complexity, but Goldstein’s
program MLwiN (Rasbash et al., 2014) handles such models straightforwardly.

This model for a two-level nested hierarchy allows studying a dependent variable
Y (2) at the higher level, and the idea can be extended to other multilevel structures,
not necessarily nested.

An equivalent model was proposed independently by Croon and van Veldhoven
(2007) and further elaborated by Lüdtke et al. (2008). These authors proposed mod-
els where the regression of level-1 variables is on latent level-2 variables, thus allow-
ing analysis methods that correct for unreliability of measurement of level-2 vari-
ables. They developed and investigated estimators using structural equation model-
ing. Recently, similar models were elaborated for latent classes, i.e., discrete rather
than normally distributed latent variables (Bennink et al., 2013).
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3 Models for Social Networks

This section gives an overview of some statistical models for explaining social net-
works, as represented by directed graphs; we will focus on models and issues that are
related to the treatment of multilevel networks in the next section. A wider overview
of statistical models for networks is given in Snijders (2011).

The nodes 1, . . . ,n of the digraph refer to social actors, and ties are represented
by tie variables Yi j with the value 1 if a tie i→ j exists, and 0 otherwise. The di-
graph then can be represented by its adjacency matrix

(
Yi j

)
[1≤i, j≤n]. Y denotes the

random digraph and y one outcome, or realization of it; henceforth we shall usually
denote outcomes, or deterministic variables, by small letters and random variables
by capitals.

3.1 The basic multilevel nature of social network analysis

Social network analysis (Wasserman and Faust, 1994; Carrington et al., 2005) is
fundamentally a multilevel affair with a focus on relations rather than attributes,
thereby combining the actor level and the dyadic level. A basic issue for social net-
work analysis is the study of how relations — the dyadic level — and individual
characteristics — the monadic level — impinge on one another. This has led to
models studying how a given, fixed network influences individual actor attributes,
with a variety of network autocorrelation models (e.g. Doreian, 1980; Leenders,
2002) and models for social influence (Friedkin, 1998). Network autocorrelation
models use correlation structures to represent dependencies between the values of
linked actors. In this volume, they are used in the contributions by Agneessens and
Koskinen (2016) and Bellotti et al. (2016). Another way to model this was proposed
by Tranmer et al. (2014), who used the multiple membership models of Browne
et al. (2001) to represent network effects on individual outcomes. This has the lim-
itation that the network effects are represented only by additive random effects of
the affiliations of the individual, and the advantages of flexibility in choosing these
affiliations (which can include, e.g., clique or other subgroup memberships) and the
possibility to combine this with other random effects, representing other types of
context. This method is used in this volume in Tranmer and Lazega (2016).

In the literature about social support and social capital, multilevel models have
been used for studying characteristics of ties in egocentric networks, taking into
account the hierarchical structure of ties nested in egocentric networks (van Duijn
et al., 1999). In this field, Wellman and Frank (2001) specifically paid attention to
the importance of including in the model not only attributes calculated for the actor
and the dyadic level, but also for the network level more generally.

This chapter focuses, however, on models for networks where the collection of
ties itself is the dependent variable. While in traditional models for social networks
the focus was on the relations, and individual attributes were considered quite cir-
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cumspectly or as an afterthought, modern statistical methods representing network
data are in the realm of generalized linear models and incorporate dyadic as well as
actor attributes in a very straightforward way; we see this, e.g., in MRQAP model-
ing (Dekker et al., 2007), the p2 model (van Duijn et al., 2004), latent space models
(Hoff et al., 2002), exponential random graph models (Lusher et al., 2013), and
stochastic actor-oriented models (Snijders, 2001). The presence of variables defined
at different levels does not by itself bring these models close to the Hierarchical
Linear Model, however — the exception being the p2 model.

As discussed in Snijders (2011), there are several quite different approaches for
representing network dependencies in probability models that can be used as a basis
for statistical inference. Leaving aside conditionally uniform models (which cannot
incorporate general attributes) and MRQAP (which controls for network structure
but does not represent it), we can distinguish latent variable models, of which the
p2 model, latent space models, and stochastic block models (Nowicki and Snijders,
2001) are major representatives; exponential random graph models; and stochastic
actor-oriented models as the main approaches.

3.2 p2 Model

Let us begin with the p2 model. For a network represented by a digraph on n nodes,
it postulates the existence of random sender effects U = (U1, . . . ,Un) and random
receiver effects V = (V1, . . . ,Vn). As proposed in van Duijn et al. (2004), condition-
ally on (U,V ) and given dyadic covariates xh =

(
xhi j

)
[1≤i, j≤n] (some or all if which

may depend only on i or only on j, making them actor covariates), in the p2 model
the probability distribution for each dyad (Yi j,Yji) is given by

P{(Yi j,Yji) = (a,b) | U,V} = ci j exp
(

a
(
∑
h

βh xhi j +Ui +Vj
)

+b
(
∑
h

βh xh ji +U j +Vi
)
+ abρ

)
(5)

where a,b ∈ {0,1} and ci j is a norming constant independent of (a,b). One of the
covariates will be constant, representing the intercept. ρ is a reciprocity parameter.
Variables Ui and Vi are, respectively, the latent sender and receiver effects at the
actor level, and can be correlated for the same actor i, but are independent across
different i. Conditional on (U,V ), the dyads (Yi j,Yji) are assumed to be independent
but there is dependence between Yi j and Yji with a strength depending on parameter
ρ . In this way, random effects are used to represent those dependencies between
network ties that follow from actor differences, while the model also represents
tendencies toward reciprocity. In the bestiary of statistical models, this qualifies as
a generalized linear mixed model, and therefore is akin to the Hierarchical Linear
Model.
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It should be noted that the p2 model is a close relative of the so-called Social
Relations Model (Kenny and La Voie, 1985; Kenny et al., 2006), a random effects
model with a similar structure for continuous relational variables Yi j assumed to
have normal distributions. The relation between the Social Relations Model and the
Hierarchical Linear Model was discussed in Snijders and Kenny (1999).

3.3 Latent space models

Another latent variable model for networks is the latent metric space model, pro-
posed by Hoff et al. (2002). Here the nodes in the network are assumed to have
locations in a metric space, and the probability of a tie depends on the distance be-
tween the nodes. Denoting the location of node i by αi, and the distance between αi
and α j by d(αi,α j), the probability of a tie in this model is given by

logit
(
P{Yi j = 1 | α}

)
= −d(αi,α j) + ∑

h
βh xhi j (6)

where again xhi j are values of covariates with logistic regression coefficient βh. This
expresses that actors who are closer to each other, controlling for covariates, have
a larger probability of being tied. Although the model was formulated for arbitrary
metric spaces, it is being applied mainly for 2- or 3-dimensional Euclidean spaces.

This model was extended by Handcock et al. (2007) to a random effects model for
the locations according to a mixture model, with the purpose to represent clusters of
actors. Krivitsky et al. (2009) further extended this to a model where also the actors
have main effects for activity Ui and popularity Vj,

logit
(
P{Yi j = 1 | α,U,V}

)
= −d(αi,α j) + ∑

h
βh xhi j + Ui + Vj (7)

where the Ui and Vi are (unfortunately!) assumed to be independent.
One of the attractive features of the latent Euclidean space models is their visual

interpretation: an estimated 2-dimensional model corresponds directly to a graphical
layout of the network, where ties will correspond to relatively short distances.

3.4 Exponential Random Graph Models

The Exponential Random Graph Model, fondly abbreviated to ERGM, is a general-
ized linear model for graphs and digraphs, representing the dependence between the
ties in a direct way. It was proposed by Frank (1991) and Wasserman and Pattison
(1996), and is treated in the extensive recent textbook by Lusher et al. (2013).

This model is defined by the probability function
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Pθ{Y = y} = exp
(
∑
h

θh uh(y) − ψ(θ)
)
, (8)

where y is the digraph, the uh(y) (h = 1, . . . , p) are statistics of the graph, and θ

is a p-dimensional parameter. The function ψ(θ) takes care of the normalization
requirement that the probabilities sum to 1. There may be covariates defined on the
nodes, and on the dyads, on which the uh(y) may depend. This is still an extremely
general model, and Snijders et al. (2006) discussed how to specify it in practically
feasible and fruitful ways, avoiding the so-called ‘near-degeneracy’. Lusher et al.
(2013, Chapter 6) contains an extensive presentation of statistics uh(y) that may be
included in the specification of an ERGM.

The dependence on actor and dyadic covariates can be implemented by defining
some of the uh(y) as sums of ties weighted by covariates, such as

uh(y) = ∑
i, j

vi yi j

for the sender effect of an actor covariate V , or

uh(y) = ∑
i, j

vi j yi j

for a dyadic covariate V . Dependence between tie variables, such as reciprocity and
transitivity, is expressed by defining some of the uh(y) to be counts of subgraphs
like those in Figure 1. The literature mentioned explains this more fully, e.g., Lusher
et al. (2013, Chapter 7).

. . . .

.

.

. .

.

.

.

tie reciprocal dyad

2-transitive triplet transitive triplet

Fig. 1: Examples of subgraphs, counts of which are used in ERG models.
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3.5 Stochastic Actor-oriented Models

Longitudinal network data potentially give much more information about the an-
tecedents as well as consequences of network configurations than cross-sectional
data. They also require more effort to collect, but there already are a large number
of longitudinal network data sets, and their number is growing.

The Stochastic Actor-oriented Model (‘SAOM’; Snijders, 2001) is a statistical
model for network dynamics that has been developed for the interdependent dy-
namics of networks and(monadic) actor variables (Steglich et al., 2010) and various
other network structures. We sketch it here for the case of interdependent networks
and actor variables, calling the latter ‘behavior’ just as a general term, and denoting
the ‘behavior’ of actor i by Zi. The network is Y , the vector of behaviors for all
actors is Z = (Z1, . . . ,Zn). The method assumes that data are available for a number
of discrete observation moments, the panel waves, and that the process of change in
network and behavior runs on in between the observation moments. The probabili-
ties of changes in network ties depend on the network configurations in which the
actor is involved who sends the ties; this can be formulated in a model where the
changes in network and in behavior result from choices by the actors. The interpreta-
tion is that actors control their outgoing ties and their behavior, subject to constraints
determined by network context, attributes, and path dependence (inertia).

In the basic model, the network is a directed graph and the behavior is a discrete
variable with a finite number (say, 2–10) of ordered categories, integer coded (1,2,
etc). The time parameter is continuous, meaning that at any moment between the
observations, a change in tie or behavior is possible. The model is a Markov chain,
which means that the probabilities of change at any moment depend only on the cur-
rent state (y,z) of the network and behavior, together with the available covariates.
The dynamic process is defined as follows. At random moments, the frequency of
which is determined by ‘rate functions’, a randomly selected actor i gets the oppor-
tunity to change either one outgoing network tie Yi j or the behavior Zi. The behavior
can change only by unit steps, +1 or −1. The actor can also let the network and
behavior stay as it is. The network tie to be changed, or the change in the behavior,
is determined probabilistically by the so-called evaluation functions and the current
state of the network and behavior (y,z). There are separate evaluation functions for
the network and the behavior, and the probability of a particular change is greater
when it would lead to a higher change in the evaluation function.

Specifically, the model has two components, a waiting model for timing of
changes and a choice model for outcome of changes. The timing component is rela-
tively simple. It must satisfy the consequence of the Markov assumption that waiting
times between changes have an exponential distribution; to this are added consider-
ations of interdependence between actors, and interdependence between networks
and behavior. The assumption is that each actor has a rate function λY

i (y,z) for the
network and a rate function λ Z

i (y,z) for the behavior. The waiting time for the next
opportunity for a change in an outgoing tie of actor i is exponentially distributed
with parameter λY

i (y,z), and for the next opportunity for a change in behavior of
actor i it is exponentially distributed with parameter λ Z

i (y,z). At any given moment,
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the briefest of these waiting times across all actors is selected, the choice model is
activated, which usually will lead to a change in state, and then the model starts
again with the new state.

To define the choice model, suppose that the current state of the network and be-
havior combination is (y(0),z), and actor i gets the opportunity for a network change.
Then the set C of possible networks that could result from this change opportunity
is composed of all networks y′ for which in comparison with network y(0) exactly
one outgoing tie i→ j, for some j 6= i, is either added or dropped; and, in addition,
the network y(0) itself, representing no change. Denote the evaluation5 function for
the network for actor i by f Y

i (y,z), defined for all possible network-behavior config-
urations (y,z). The probability that the resulting network is y′ is given by

P{next Y = y′} =
exp

(
f Y
i (y
′,z)

)
∑y∈C exp

(
f Y
i (y,z)

) (y′ ∈ C ) . (9)

For behavior changes the set of possible changes has only 3 elements: up, stay,
down; and the evaluation function for behavior is used. For the rest, all is analogous.
The dynamic process then consists of a repetition of these steps, where the result of
the previous step is always he starting point of the next.

The heart of the model is the specification of the evaluation functions. These are
defined as linear combinations of theoretically argued and/or empirically necessary
characteristics of the network and the behavior,

f Y
i (y,z) = ∑

h
β

Y
h sY

ik(y,z) and f Z
i (y,z) = ∑

h
β

Z
h sZ

ik(y,z) . (10)

These characteristics sY
ik(y,z) and sZ

ik(y,z) are called ‘effects.’ On the network side,
these can be dependent on the network position of actor i. For example, tenden-
cies toward reciprocity and transitivity, respectively, can be represented by positive
parameters for the reciprocity and transitive triplets effects,

sY
ik(y) = ∑

j
yi j y ji , sY

ik(y) = ∑
j,h

yi j y jh yih

as in Figure 1; but, contrasting with ERG modeling, the role of actor i is now special,
as it is used to denote the focal actor of whom the evaluation function is being
considered.

The network and behavior dynamics become interdependent when some of the
effects for network change of actor i, sY

ik(y,z), depend on behavior z, not only on the
behavior of the actor i but also of the other actors. E.g., the cross-product ‘ego ×
alter behavior’ interaction term

sY
ik(y,z) = ∑

j
yi j zi z j

5 We restrict the discussion to specifications with only an evaluation function; see Ripley et al.
(2015) for more general models.
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will reflect (if it has a positive coefficient) that actors who have themselves a higher
value of zi will have a larger probability to create and maintain ties with other actors
j accordingly as these in their turn have a higher z j value. On the other side, some
of the effects for behavior change of actor i, sZ

ik(y,z), can depend on the network y.
An example is the ‘average behavior alter’ effect

sZ
ik(y,z) =

zi ∑ j yi j z j

∑ j yi j
,

defining 0/0= 0. If its coefficient is positive, this effect will imply that actors whose
connections have on average a higher z j value, will themselves tend to increase
more, or decrease less, in their own zi value. In models including such effects, the
changes in the network lead to changes in the change probabilities for behavior and
vice versa: the actors are each others’ changing environment.

These dynamic models can be studied by computer simulation which is also how
parameters are estimated: see the mentioned literature. Further information is at
http://www.stats.ox.ac.uk/˜snijders/siena/.

3.6 Choice of model

The range of statistical network models is starting to be bewildering and it may
be helpful to point out some differences in their properties. All these models can
incorporate fixed effects of quite arbitrary covariates, so the difference is only in
how they represent structural network features.

The p2 model represents only three aspects of networks: differences between
actors in popularity (indegrees) and activity (outdegrees), and reciprocity. Further
structural features such as transitivity are not modeled.

The latent Euclidean space models represent networks by embedding the actors,
as nodes, in a 2- or 3-dimensional Euclidean space. (More dimensions are possi-
ble but unusual.) This is visually very attractive. Network dependencies such as
reciprocity, transitivity, and higher-order dependencies are represented only as con-
sequences of this embedding. On the one hand the model is inflexible in the repre-
sentation of network dependencies, as there are no free parameters for this purpose:
the tendencies towards reciprocity and transitivity follow jointly from the spatial ar-
rangement of the nodes, and cannot further be tuned. On the other hand the model
is very flexible in choosing the locations of the nodes. This has a downside: the
likelihood surface for the location of the nodes is often quite multimodal, a problem
that is not really resolved by giving the locations a probability distribution as in a
random effects model. I think it is doubtful that the intricacies of social space can
be well represented by Euclidean space.

The Exponential Random Graph Model represents network dependence directly
by using subgraph count statistics as statistics uh(y) in (8), as discussed in Lusher
et al. (2013, Chapters 6, 7). A large number of triadic and higher-order structures
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can be considered, and are indeed used in practical network research, as is illus-
trated by the same book. The Stochastic Actor-oriented Model represents network
dependencies, somewhat similarly, by the effects sk(y) in (10), and here also a large
array of structural effects can be considered (Ripley et al., 2015).

An illuminating difference between ERGM and SAOM models on the one hand,
and latent variable models (spatial or otherwise) on the other hand, is the conse-
quence of restriction to a smaller set of nodes and the importance of network de-
lineation. The former models do not allow restriction to a random subset of nodes;
for the ERGM this was elaborated in Snijders (2010). The reason is that ERGMs
and SAOMs represent dependencies, and cutting off arbitrary nodes would be an
amputation. For the latent variable models, on the other hand, it is conceptually un-
problematic to consider only a subset of nodes: if a random subset of nodes with
their incoming and outgoing ties is dropped, the information available in the data is
reduced but the model formulation of the rest remains intact. In practice, however,
it appears that working with a somewhat restricted node set in ERGMs and SAOMs
usually does not strongly change results except for the fact that the data set is less
informative, so this difference may be more important theoretically than practically.
This issue may be regarded as a practical advantage of latent variable models, but
it also highlights that these represent networks in a descriptive way but not in their
essential dependence structure.

In some research the focus is on the structural dependencies directly, and then the
ERGM and SAOM will be preferable. In other research the estimates of the random
effect variances (sources of variability) and the posterior predictions of the random
effects and spatial locations may be important, leading to preference for a latent
variable model.

Whether the latent variable approach or the directly structural approach of the
ERGM and the SAOM yield a better representation of empirical social networks is
still an open question. In a sense this question is ill-posed because both models have
flexible opportunities for model specification, so a poor fit may always be remedied
by a more appropriate specification. Other open questions include: how important
a good fit for such models is in practice; and how robust conclusions can be for a
model that fits poorly on characteristics that has a poor fit on characteristics that are
secondary to the main research questions.
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4 Multilevel network analysis

The combination of the terms ‘multilevel’ and ‘social networks’ leads to a multi-
plicity of directions. Above it was mentioned that social networks combine different
types of units — social actors and social ties — and variables can and will be de-
fined on both of these sets. Varieties of the ERGM (Daraganova and Robins, 2013)
and of the SAOM (Steglich et al., 2010) combine dependent network variables with
dependent actor variables. But this volume is about other combinations. The cur-
rent section is about multilevel network analysis: the combined network analysis for
several independent groups. Section 5 is about analysis of multilevel networks: the
analysis of structures with nodes of several types, connected by ties of several types.

4.1 Why combine several ‘parallel’ networks?

Multilevel network analysis, where the term ‘multilevel’ is used in the sense of
hierarchical nesting, is a combined network analysis for several groups, applying
the same model to each group. We then have several networks, with different actor
sets and assumed to be mutually independent, that may be combined in a single
analysis with a common model but allowing parameter values to be different. Why
should we do this?

In general, multilevel analysis may have several main purposes. I formulate them
for the case where individuals are the lower-level units and groups the higher-level
units. These purposes are entwined, and the salience of each of them will differ
depending on the application considered.

⇒ Obtain results from the combination of data sets about multiple groups, taking
into account the ‘random’ variability between individuals within groups as well
as the ‘random’ variation between groups, with standard errors (or other mea-
sures of uncertainty of the results) that account for these two sources of variation.

⇒ Increase the amount of information (sample size) compared to analyzing a single
group.

⇒ Generalize to the population of groups.
⇒ Test effects of group-level variables.
⇒ Analyze the groups jointly in a way that allows more detail and precision than

would be possible when analyzing the groups separately. This sometimes is for-
mulated by saying that the analysis of each group ‘borrows strength’ (Morris,
1983) from the other groups, which is possible because of the assumption that
this group is a member of the same population as the other groups. This is related
to the idea of ‘empirical Bayes’ estimates mentioned in Section 2.4.

All except the last purpose are also, potentially, goals of meta-analysis (e.g., Hedges
and Olkin, 1985). The main difference between multilevel analysis and meta-
analysis is that, usually, meta-analysis is a two-step procedure, using finished anal-
yses of the single groups and combining these in overall conclusions, whereas mul-
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tilevel analysis usually unites these two parts of the analysis. Meta-analysis also
can be more liberal with respect to the model assumptions concerning the group
level. The correspondence between meta-analysis and multilevel analysis is dis-
cussed in Raudenbush and Bryk (2002), Chapter 7, and Snijders and Bosker (2012),
Section 3.7. A two-step approach can also be used in multilevel analysis provided
that the groups individually are large enough, cf. Achen (2005).

While we assume that the same model applies to all groups, they will have dif-
ferent parameter values. In addition, groups will usually have different sizes and
different distributions of explanatory variables; in consequence, the standard errors
resulting from analyses per single group will also differ across groups. To be used
in a valid way, meta-analytic and two-step approaches should take these differences
into account — which is automatic in multilevel analysis via the Hierarchical Linear
Model.

For multilevel network analysis, any or all of these purposes may apply. One ma-
jor purpose is to generalize to a population of networks. It was noted by Snijders
and Baerveldt (2003) and Entwisle et al. (2007) that traditional social network anal-
ysis focused on the analysis of single networks, while nevertheless usually implying
that the mechanisms and processes uncovered have a larger validity than only for
the particular group under study. But these authors also noted that more and more
studies are being done where data is collected for multiple networks considered to
be similar. On the level of networks, traditional social network research mostly was
based on N = 1 studies. To have a statistical basis for generalizing to a wider popula-
tion, however, one needs to analyze data for several networks that may be regarded,
in some sense, as replications of each other. The target population then will be a
population of networks, and almost always will be somewhat vaguely described and
perhaps have a somewhat hypothetical nature. This is often the case for the popula-
tions at higher levels in multilevel analysis. Above, Cox (1990) and Sterba (2009)
were already mentioned as references about this topic; some further philosophical
considerations about the use of probability models for multilevel and network data
are presented in Sections 1.1.1 and 14.1.1 of Snijders and Bosker (2012) and on
pages 135–137 of Snijders (2011). The practical question is whether a particular
collection of networks is homogeneous enough with respect to the social processes
taking place to justify pursuing a common conclusion by using all of them together;
as well as to justify applying a common statistical model, with parameters that are
allowed to vary from group to group according to a joint probability distribution in
the population of groups.

The ‘replications’ may be network studies in several similar schools, several sim-
ilar companies, etc. The Adolescent Society study of Coleman (1961) was based on
detailed investigations of friendship networks in 10 schools, juxtaposed as 10 inter-
connected case studies. More recent examples such as the PROSPER study (Moody
et al., 2011), the ASSIST study (Campbell et al., 2008; Steglich et al., 2012), and the
School Social Environments study (Light et al., 2013) have provided network data
to be analyzed by multilevel or meta-analytic means.
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4.2 Two-step meta-for-multilevel network analysis

In the following model for two-step meta-analysis, the population at the higher level
is made explicit. It is assumed that independent groups — in the meta-analysis case
these may be individual studies or publications — are combined, being regarded as
a sample from a population of groups. The focus often is on one parameter at a time,
so that the parameter is one-dimensional and denoted by θ . The dependent variable
at the group level is the parameter estimate from group k, denoted by θ̂k. The as-
sumption of the random effects model for meta-analysis (cf. p. 210 in Raudenbush
and Bryk, 2002; Snijders and Bosker, 2012, p. 37) is

θ̂k = θk + Rk = µθ + Ek + Rk . (11)

Here θk is the true parameter in group k; Rk is the estimation error within this study;
µθ is the mean of parameter θ in the population of groups; and Ek is the deviation
of this group from the population mean. Rk reflects within-group variability and Ek
reflects between-group variability. From the point of view of estimating θk, Rk is
regarded as error variation and Ek as true variation.

These are independent residuals both with expected value 0. The secret of this
analysis method is that the within-group analysis provides us with an estimate of
the standard error σk = s.e.(θ̂k) which is the standard deviation of Rk, and we act
(almost always) as if we know this standard error exactly. Armed with this extra
information we can estimate not only µθ but also var(Ek) = var(θk) without the
‘hat’ on top of θ , the ‘true between-group variance’ of θk; as opposed to

var(θ̂k) = var(Rk) + var(Ek) ,

which is the ‘observed between-group variance’.
If the number of groups is large enough, such a study also permits the assess-

ment of effects of variables Xh at the group level, by entering them in the model as
predictor variables:

θ̂k = µθ + ∑
h

βh xh j + Ek + Rk , (12)

where xh j is the value of Xh for group k. In most practical cases the number of
networks in a data set for a multilevel network analysis will be not very large, so the
number of variables Xh of which the effect can be studied will be low.

For model (11) an explicit estimator in a network context was suggested by Snij-
ders and Baerveldt (2003), using a method derived by Cochran (1954). The maxi-
mum likelihood (ML) or restricted maximum likelihood (REML) estimators under
the assumption that Rk and Ek have normal distributions will usually be more ef-
ficient. This can be calculated by multilevel software such as HLM (Raudenbush
et al., 2011) and MLwiN (Rasbash et al., 2014), and by R packages such as metafor
(Viechtbauer, 2010). This two-step approach was used for multilevel network anal-
ysis, e.g., by Lubbers (2003) and Schaefer et al. (2011) who combined ERGM anal-
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yses for several groups; and by Mercken et al. (2012) and Huitsing et al. (2014) who
combined Stochastic Actor-oriented Models for several groups.

4.3 Integrated multilevel network analysis

The other possibility is to integrate the within-network and between-network models
in one joint model and analyze this in one simultaneous analysis. The generic way to
do this is by postulating a between-network probability model, where the parameters
of the within-network model are supposed to be drawn independently from a com-
mon across-network distribution: in other words, a random effects model. This is
more complicated than the two-step approach, and for every type of within-network
model a multilevel model has to be specifically elaborated. The integrated approach
is sketched in Sweet et al. (2013, Section 2), who call this the Hierarchical Network
Model.

The great potential advantage to this is the possibility of ‘borrowing strength’ as
was mentioned above. In many settings where network data are collected, the groups
are rather small — e.g., school classes with sizes between 20 and 40 — and for each
group separately an analysis might be possible only with a quite meagre model spec-
ification. The consequence then is that various effects of focal interest may have to
be left out because the data for each individual group does not support parameter es-
timation for a truly interesting model, or the possibilities of controling for additional
or competing mechanisms are reduced. In such a case, a random effects multilevel
model can be very helpful; sometimes the analysis may even be impossible without
it. In addition, an integrated random effects multilevel model will often be more ef-
ficient, and an integrated analysis may be in itself more attractive than a two-step
analysis.

The first multilevel network analysis model of this kind was presented by Zijlstra
et al. (2006), a multilevel version of the p2 model. To define this extension, indicate
the groups by k and the tie variable from actor i to actor j in group k by Yki j. The
simplest multilevel version of the p2 model (5), containing random intercepts Wk for
the groups, then is given by

P{(Yki j,Yk ji) = (a,b) |U,V,W} =

cki j exp
(

a
(
∑
h

βhxhi j +Wk +Ui +Vj
)

(13)

+b
(
∑
h

βhxh ji +Wk +U j +Vi
)
+ abρ

)
,

again for a,b ∈ {0,1}, where cki j does not depend on a or b. This means that (on
the logistic scale) there is a random main effect for the groups, but further they are
similar. More elaborate models can be obtained by adding random slopes for some
of the Xh, and the reciprocity coefficient ρ may also get a random effect.
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Several applications of this model were published, e.g., by Vermeij et al. (2009)
and Rivellini et al. (2012).

There is a lot of recent and current activity in extending other network models
to multilevel versions. Sweet et al. (2013) elaborated their ‘Hierarchical Network
Model’ for the case of the latent Euclidean space model, and presented an applica-
tion with a random intercept and an (unfortunately, uncorrelated) random slope. In
another publication (Sweet et al., 2014) these authors elaborated a multilevel version
of the hierarchical mixed membership latent block model of Airoldi et al. (2008).
Koskinen and Snijders (2016) are working on a multilevel extension of the Stochas-
tic Actor-oriented Model, and a brief documentation of this is given in Ripley et al.
(2015).

4.4 Hierarchical structures

Much like the situation of multilevel analysis with the Hierarchical Linear Model
and its variants, multilevel network analysis is also a hierarchical type of model
for a hierarchical data structure. Estimation for this hierarchical data structure again
may be regarded as empirical Bayes estimation, where the group-level parameters θk
have a frequency distribution about which we get information thanks to the observed
sample of groups. The analysis of each group borrows strength from the data of the
other groups. Therefore, multilevel network analysis is particularly appropriate for
combining the data of many small networks, each of which would be too small to
permit analysis by a suitably specified ERGM or SAOM.

For single-level as well as multilevel network analysis, frequentist as well as
Bayesian estimation methods have been proposed. Bayesian methods are potentially
more compatible with the hierarchical nature of multilevel network analysis, and
may be helpful for incorporating prior knowledge in cases where the number of
groups is rather small. More research is needed to make meaningful comparisons
between estimation methods, be they Bayesian or frequentist, for these complicated
models.

5 Analysis of multilevel networks

Brass et al. (2004) proposed that for network studies in organizational research,
it is important to consider both intra-organization and inter-organization networks.
Lazega et al. (2008) pioneered a study with a linked intra- and inter-organizational
design. Models and methods for the complex network structures that are necessary
for the analysis of such designs are now in an early stage of development, and this
volume aims to contribute to this domain.

A multilevel network (Wang et al., 2013) can be defined as a network with nodes
of several types, where a distinction is made between types of ties according to the
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types of nodes that they connect. Thus, if types of nodes are A, B, C, etc., there is
a distinction between A−A, B−B, C−C ties, etc., and also between A−B, A−C,
etc., ties. The first are intra-type, the second inter-type ties. Some of the networks
may be the networks of interest, others may be fixed constraints, still others may be
non-existent or otherwise outside of consideration. The intra- and inter-organization
network of Brass et al. (2004) and Lazega et al. (2008) is composed of organiza-
tions (type A) and their members (type B), where A−A ties can be organizational
cooperation, competition, etc., while B−B ties can be interpersonal collaboration,
acquaintance, etc. The primary two-mode A×B network then will be the member-
ship or affiliation network, where the simplest situation is one of complete nesting,
and each individual is a member of exactly one organization; the B×A network
may be superfluous, and then could be defined formally as an empty network. The
design will be especially interesting if B−B ties between members of different or-
ganizations are also recorded, so that interpersonal ties within as well as between
organizations can be included in the analysis. Another example is the co-evolution
of a one-mode and a two-mode network as studied by Snijders et al. (2013), where
A is a set of individual students, B a set of companies, the A×A network represents
friendship or advice ties, while the two-mode A×B network represents that the stu-
dent is potentially interested to work for this company; B×B and B×A networks
were not used.

This kind of multilevel network can potentially be studied by extensions of the
models mentioned above. This is sketched in the following sections for the Expo-
nential Random Graph Model and the Stochastic Actor-oriented Model.

A representation that is quite generally useful for handling multilevel relational
structures was proposed by Wasserman and Iacobucci (1991). This defines a com-
bined node set as the union or disjoint union of the A, B, etc., node sets. The com-
bined node set allows treating the various one-mode and two-mode networks as
subgraphs of an overall graph, with its associated adjacency matrix as in Figure 2.

A B

A
(

one-mode A×A two-mode A×B
)

B two-mode B×A one-mode B×B

Fig. 2: Adjacency matrix for combined node set

If some of the within-type or between-type networks are undefined, meaningless,
or not studied for other reasons, the corresponding sub-matrices can be defined as
structurally null blocks, i.e., having all entries equal to 0.
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5.1 Exponential Random Graph Models for multilevel networks

Mathematically, model (8) can be used straightforwardly for multilevel networks,
because it defines a general exponential family of graphs (directed or non-directed),
and the node set can be taken as the union or disjoint union of the A, B, etc., node
sets, as mentioned above. The outcome space of graphs can be restricted so that
certain blocks in the adjacency matrix are fixed; e.g., a two-mode network of af-
filiations of individuals to organizations might be considered an exogenously fixed
datum of the analysis.

Of course, turning the general ERG model into a model for multilevel networks
in this way is not as easy as it might seem from the previous sentences. The model
must be specified in a way that corresponds to the differences between the node
sets; and the existing algorithms must be tuned for the estimation of parameters in
the model. This was accomplished by Wang et al. (2013). The following is a very
brief sketch.

To express the ERGM for a multilevel network with two node sets A and B, let us
refer to the one-mode A×A and B×B networks by A and B (a manageable misuse of
notation) and to the two-mode A×B cross-level network by X . Then the multilevel
network can be denoted by (yA,yB,yX ), and the vector of statistics s(y) in (8) can
be split into parts depending on each of yA, yB, and yX separately, and each of their
combinations; leading to the formulation of the multilevel ERGM as

Pθ{(YA,YB,YX ) = (yA,yB,yX )}= exp
(
θA sA(yA) + θB sB(yB) (14)

+ θX sX (yX ) + θAX sAX (yA,yX )

+ θBX sBX (yB,yX ) + θABX sABX (yA,yB,yX )−ψ(θ)
)
,

where θ = (θA,θB,θX ,θAB,θAX ,θBX ,θABX ). The θ and s symbols all denote vectors.
This decomposes the model in parts with the following statistics:

sA(yA) internal dependence of the one-mode network A, specified as in Lusher
et al. (2013, Chapter 6).

sB(yB) internal dependence of the one-mode network B, analogous.
sX (yX ) internal dependence of the two-mode network X , specified as in Lusher

et al. (2013, Section 10.2).
sAX (yA,yX ) bivariate interdependence between the A and X networks; interdepen-

dence between a one-mode and a two-mode network is not treated specifically in
the ERGM literature (as far as I know), but since two-mode networks have less
structural features than one-mode networks, the directions for specifying bivari-
ate networks given in Lusher et al. (2013, Section 10.1) can be followed.

sBX (yB,yX ) bivariate interdependence between the B and X networks, analogous.
sABX (yA,yB,yX ) three-way interdependence between the A, B, and X networks, to

which Wang et al. (2013) is specifically devoted. For example, a basic three-way
effect expressing the multilevel structure is the effect that ties between individu-
als will tend to go together with ties between the organizations they are members
of. This is the C4AXB effect discussed in their Section 6.5.
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In practice, all cross-level dependencies will be crucial in giving a meaningful
representation of the multilevel network, and the three-way interdependence rep-
resented by sABX (yA,yB,yX ) will often be the main point of scientific interest. The
other parameters are also interesting in their own right. Wang et al. (2013) find that
including three-way and other between-level dependencies may simplify the intra-
network models compared to modeling the A, B, and X networks independently,
which reflects the theoretical notion that internal structure will be shaped depending
on external or contextual demands, pressures, and possibilities, and ‘controlling for’
the between-level dependencies gives a purified view of the intra-network mecha-
nisms.

As is mentioned in the discussion of Wang et al. (2013), the determination of
the levels in a multilevel network can be done in several ways, depending on the
aims of the research. One possibility is to define node sets based on their different
nature and way of connecting to other nodes, such as individuals and organizations.
Another possibility is to distinguish nodes of the same basic kind by attributes, thus
permitting a model with arbitrary differences between the ways in which the nodes
relate to other nodes, depending on these attributes. The discussion above focuses
on the first method, but the multilevel ERG model can be applied also to the other
way of determining node sets.

In this volume, this model is applied in several varieties. Two chapters in this vol-
ume provide examples of the nested case. Both are about managers in companies.
The study by Brennecke and Rank (2016) is concerned with the interdependence of
the knowledge sharing network between managers (B) and the R&D collaboration
network between the companies (A). Zappa and Lomi (2016) study advice and com-
munication relations between managers (B) in subsidiaries (A) of an international
multi-unit industrial group. The cross-level relation (X) is membership affiliation,
the within-A relation is the hierarchical reporting relation between the subsidiaries.

Hollway and Koskinen (2016) apply the multilevel ERGM to a study about mul-
tilateral fisheries treaties, where the node sets are the countries (A) and the mul-
tilateral treaties (B). This is a crossed rather than nested design because countries
can be members of several treaties. The chapter by Brailly et al. (2016) considers
one node set of buyers and another of sellers, where moreover the buyers as well
as the sellers are nested in their respective organizations. This is analyzed as two
separate bipartite buyer × seller networks, one for the organizations and one for
the individuals, where some of the variables of the other level of aggregation (indi-
viduals and organizations, respectively) are obtained by projection (aggregation or
disaggregation).

The second way of determining the levels is represented by Wang et al. (2016),
who present an application of the multilevel ERG model where the two node sets are
entrepreneurial and non-entrepreneurial farmers, who differ so strongly in their net-
work structures that a multilevel ERGM is able to give a much better representation
than a regular one-mode network analysis. An exploratory method for derivation
and specification of hypotheses in multilevel ERG models is proposed by Zhu et al.
(2016).
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5.2 Stochastic Actor-oriented Models for multilevel networks

For the Stochastic Actor-oriented Model likewise, the basic mathematical model
explained in Section 3.5 can be used6, if it is specified in accordance with the multi-
level structure. The actor-oriented nature of this model requires specifying some-
thing about agency: which sets of actors will be specified as those making the
choices? In the standard actor-oriented model for two-mode networks (Koskinen
and Edling, 2012; Snijders et al., 2013) with node sets A and B, there is agency in
only one node set, so ties are regarded as being directed from A to B and determined
by the actors of type A.

Again, we consider a multilevel network with two node sets, A and B. In this
discussion we leave out the dependent behavioral variable, but it could be added in
a rather direct way. In the general situation there could possibly be ties from A to B
as well as ties from B to A; for the current exposition the second kind of tie will be
ignored, so that again we consider two one-mode networks internal, respectively, to
the actor sets A and B; and one two-mode network X supposed to be directed from
A to B, with agency in the A nodes.

The specification of the model for the RSiena package (Ripley et al., 2015) is
possible by employing the representation with a combined node set A∪B as above
but now with two dependent networks, as displayed in the block structure for the
adjacency matrices shown in Figure 3. The reason why the data must be separated
and treated as two dependent networks instead of one as in the ERGM (Figure 2)
will be explained further below.

A B A B

A
(

internal A 0
) (

0 two-mode A×B
)

B 0 internal B [two-mode B×A] 0

networks A,B network X

Fig. 3: Two dependent networks for combined node set

To avoid confusion, in the rest of this section we shall refer to the original networks
as the one-mode and two-mode networks, and to the two constructed networks used
for the analysis in RSiena as the multi-networks. Both multi-networks have node set
A∪B. The multilevel network is specified as a multivariate network of two multi-
networks, consisting of
(1) a one-mode multi-network containing the two one-mode networks as diagonal
blocks, and off-diagonal blocks that are structurally 0;
(2) another one-mode multi-network containing the A× B network as an off-
diagonal block; all the rest are structurally zero blocks. If the data structure would

6 I thank James Hollway for pointing out this possibility.
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also include a B×A two-mode network with agency in the B nodes, this could be
included as the B×A off-diagonal block in the second multi-network. If the A×B
network would be a fixed context and not a dependent variable (e.g., if it denotes
an externally given membership structure), then the second multi-network would be
replaced by a dyadic covariate.

The rate functions and evaluation functions have to be differentiated according to
the node sets. For the evaluation functions, this differentiation leads to the following
structure, where f A

i (yA;yB,yX ) is the evaluation function for actors in A for their ties
with other A actors, relevant for YA as the dependent variable; f B

i (yB;yA,yX ) the
evaluation function for actors in B for their ties with other B actors, for dependent
variable YB; and f X

i (yX ;yA,yB) the evaluation function for actors in A for their ties
to B actors, relevant for dependent variable YX :

f A
i (yA;yB,yX ) =θ

AsA(yA) + θ
AX sAX (yA;yX ) + θ

ABX sABX (yA;yB,yX )

f B
i (yB;yA,yX ) =θ

BsB(yB) + θ
BX sBX (yB;yX ) + θ

BAX sBAX (yB;yA,yX )

f X
i (yX ;yA,yB) =θ

X sX (yX ) + θ
XAsXA(yX ;yA) (15)

+ θ
XBsXB(yX ;yB) + θ

XABsXAB(yX ;yA,yB) .

The functional dependence of these evaluation functions on the other one-or two-
mode networks reflects inter-network dependence. The arguments before the semi-
colon have the role of dependent variable, those after the semicolon are the explana-
tory variables. Because of the endogeneity according to the Markov model, the state
of the Markov process being (yA,yB,yX ), the dependent variables also are used as
explanations for their own further changes. This model contains more terms com-
pared to the decomposition (14) of the ERG model for multilevel networks, because
the multivariate associations between two networks are represented in the SAOM
—with its ‘co-evolution’ aspect— as two interdependent one-sided influences.

The separation into two multi-networks (or more, for structures with more than
two actor sets) is necessary to separate the choice models. In the SAOM for one
network the changes in all the outgoing ties of an actor are considered together,
as options in one choice process. Putting the ties of A actors to other A actors in a
different network than their ties to B actors means that the ties are chosen in separate,
interdependent choice processes; if these ties were put into one multi-network the
choices of ties to A would be weighed against ties to B and vice versa, and this
would be less natural, given that node sets A and B are of a different nature and
A−A ties are conceptually different from A−B ties. The construction of two multi-
networks represents that for the A actors there are two distinct but interrelated choice
processes, corresponding to the two dependent variables YA and YX in (15), for both
of which the agency is with the A actors.

This implies that the multilevel SAOM, contrasting with the multilevel ERGM,
is aimed firstly at representing network structures where the several node sets, and
especially the ties between several different node sets, are of a different nature. It is
less suitable for representing node sets of the same basic kind, differentiated only
by an attribute. The different kinds of ties in the multilevel SAOM are distinguished
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also by having their own timing models, which play no role in the multilevel ERGM.
The notion that compensation between different outgoing ties of one actor (e.g., a
collaboration tie from i to j1 may serve the same purpose for i as a collaboration tie
from i to j2) is meaningful for ties of the same kind, but less so between the different
sets of ties A−A versus A−B, is built into the choice model and also in the model
specification for the SAOM — the choice of the effects in (15) —, whereas for the
ERGM it is only built into the choice of the effects (14).

6 A forward look

Multilevel analysis of networks (Section 4) is a natural and important development
as more and more data sets are collected that contain similar ‘parallel’ networks in
multiple groups — disconnected groups, or at least, sets of groups for which the
inter-group connections are being ignored in the analysis. One of its great advan-
tages is that it allows the study of contextual effects at the network level, i.e., the
effects of network-level variables. The analysis of multilevel networks (Section 5),
on the other hand, is a different and greater conceptual step. It permits studying in
one model the structure of ties between several different node sets, which has some
similarity to developments in multilevel analysis that permit studying dependent
variables at any level, as discussed in Section 2.6. Thereby it enables the representa-
tion of social systems with multiple agency and of the structural effects of combined
agency patterns. Applications of multilevel ERGMs have started to appear and are
contained in this volume; applications of multilevel SAOMs will be coming. These
new techniques may well have interesting repercussions on theory development.

The research program heralded by Coleman (1959) has flourished in the past half
century with the development of multilevel analysis and social network analysis.
Their combination is a young branch on this tree, or rather two branches, one being
multilevel analysis of networks and the other the analysis of multilevel networks.
This book reflects some of its recent developments and hopefully contributes to
further blossoming.
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