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Abstract

A parametric, continuous-time Markov model for digraph panel data is considered. The parameter is estimated by the method of
moments. A convenient method for estimating the variance–covariance matrix of the moment estimator relies on the delta method,
requiring the Jacobian matrix—that is, the matrix of partial derivatives—of the estimating function. The Jacobian matrix was
estimated hitherto by Monte Carlo methods based on finite differences. Three new Monte Carlo estimators of the Jacobian matrix
are proposed, which are related to the likelihood ratio/score function method of derivative estimation and have theoretical and
practical advantages compared to the finite differences method. Some light is shed on the practical performance of the methods by
applying them in a situation where the true Jacobian matrix is known and in a situation where the true Jacobian matrix is unknown.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The present paper considers digraph panel data, that is, data that can be represented by a directed relation (or
digraph) on a set of nodes observed at two or more discrete time points. Social scientists use digraphs to study, among
other things, informal relations (e.g., friendship) among individuals embedded in formal organizations (business firms,
schools, etc.). Such data tend to display second- and third-order dependencies among observed arcs, so that modeling
digraph panel data requires to take into account such dependencies.

A flexible approach to model such dependent data is based on the assumption that the observed digraphs are outcomes
at some discrete time points of a Markov process evolving in continuous time, indexed by a parameter �. The basic,
underlying idea dates back to Holland and Leinhardt (1977) and Wasserman (1979, 1980), and was expanded by
Snijders (2001) to model third- and higher-order dependencies.

Since the continuous-time Markov process is not observed in continuous time but at discrete time points, the likelihood
function cannot be written in closed form and thus likelihood-based inference is hard. The method of moments was
proposed by Snijders (2001) to estimate the parameter �. A convenient method to estimate the variance–covariance
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matrix of the moment estimator is based on the delta method, which requires the Jacobian matrix of the estimating
function, that is, the matrix of first-order partial derivatives. Snijders (2001) estimated the Jacobian matrix by Monte
Carlo methods based on finite differences with common random numbers.

The present paper proposes three new estimators of the Jacobian matrix, all of them related to the likelihood ratio/score
function method of derivative estimation (Aleksandrov et al., 1968), and two of them utilizing variance reduction
methods based on control variates. The three estimators have theoretical advantages compared to the finite differences
method, but an important practical motivation for the estimators is that they roughly cut down the computational burden
by a factor L + 1, where L is the dimension of �. The achieved reduction in computation time is of great practical
value, since in practice computation time is an issue, and it is not unusual for L to be between 10 and 30.

The paper is structured as follows. The probabilistic framework is outlined in Section 2. The central argument is
presented in Section 3. Section 4 compares the estimators of the Jacobian matrix in a situation where the true Jacobian
matrix is known and in a situation where the true Jacobian matrix is unknown.

2. Probabilistic framework

It is assumed that a binary, directed relation −→ on a finite set of nodes N = {1, 2, . . . , n} has been observed at
discrete, ordered time points t0 < t1 < · · · < tG. These observations may be represented by digraphs and stored as binary
matrices x (t0) , x (t1) , . . . , x (tG), where element xij

(
tg
)

of n × n matrix x
(
tg
)

is defined as

xij

(
tg
)=

{
1 if i −→ j at time point tg,

0 otherwise,
(1)

where i −→ j means that node i is related to node j ; the fact that the relation is directed means that xij

(
tg
)

may be
different from xji

(
tg
)
; the diagonal elements xii

(
tg
)

are regarded as structural zeros.
It is postulated that the observed digraphs are generated by an unobserved, continuous-time stochastic process. The

discrete time points t0 < · · · < tG are embedded in the time interval [t0, tG]. The digraph x(t0) observed at time point
t0 is not modeled, that is, the statistical modeling is done conditional on x (t0). Consider the case G = 1.

A simple process can be constructed by assuming that the process is a Markov process. Then the model is specified
by the generator of the Markov process, which corresponds to a W × W matrix Q� indexed by a parameter �, where
W = 2n(n−1) is the number of digraphs on N. The elements q� (x�, x) of generator Q� are the rates of moving from
digraph x� to digraph x.

Let x� and x be two arbitrary digraphs on N. If x deviates from x� in more than one arc variable x�
ij , then Snijders

(2001) assumes that q� (x�, x) = 0; in other words, the process moves forward by changing not more than one arc
variable x�

ij at the time. Let x� be an arbitrary digraph on N, and let x be the digraph that is obtained from x� by
changing one and only one specified arc variable, say x�

ij . Since the transition from x� to x involves only the ordered
pair of nodes (i, j), one can rewrite q� (x�, x) as q� (x�, i, j) and decompose q� (x�, i, j) as follows:

q�
(
x�, i, j

)= �i

(
�, x�

)
ri(�, x, j), (2)

where

�i

(
�, x�

)=
n∑

h�=i

q�
(
x�, i, h

)
(3)

and

ri(�, x, j) = q� (x�, i, j)

�i (�, x�)
. (4)

The interpretation is that �i—called the rate function—is the rate at which the set
{
x�
ij : j �= i ∈ N

}
of arcs emanating

from node i is changed, while ri gives the conditional probabilities of such changes.
A simple specification of the rate function is

�i

(
�, x�

)= �, (5)
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that is, as constant across nodes i and digraphs x�, equal to some rate parameter �. A more general specification of the
rate function is given by

�i

(
�, x�

)= � exp
[
�′ai

(
x�, ci

)]
, (6)

where � = (�k) is a vector valued parameter and ai = (aik) is a vector valued function of covariates ci depending on
node i and graph-dependent statistics involving the arcs of node i. When there is more than one time interval, that is,
G > 1, then parameter � can be made dependent on time interval

[
tg−1, tg

]
.

A convenient, multinomial logit parametrization of ri(�, x, j) is given by

ri(�, x, j) = exp
[
fi (�, x, j)

]
∑n

h�=i exp
[
fi (�, x, h)

] , (7)

where

fi(�, x, j) = �′si(x, j), (8)

while �=(�k

)
is a vector valued parameter and si=(sik) is a vector valued statistic. The function fi is called the objective

function. Examples of statistics sik are the number of arcs
∑n

h=1 xih, the number of transitive triplets
∑n

h,l=1 xihxhlxil ,
or other statistics involving the arcs of node i and covariates; such statistics can be used to define third- and higher-order
dependencies.

Remark 2.1 (Simulation of the Markov process). The methods proposed in Section 3 rely on Monte Carlo simulation
of the Markov process. Therefore, it is worthwhile to consider how the Markov process can be simulated. Let Exp(�)

be the negative exponential distribution with parameter �. The Markov process can be simulated in time interval [t0, t1]
conditional on digraph x (t0) observed at time point t0 by starting at time point t = t0 at digraph x(0) = x (t0) and
iterating the following steps (with initial value M = 0):

Increment M .
(1) Increment t :

— Sample hM ∼ Exp
(∑n

k=1 �k

(
�, x(M−1)

))
.

— Set t = t + hM .
(2) If t < t1 then:

— Sample node i with probability �i

(
�, x(M−1)

)
/
∑n

k=1�k

(
�, x(M−1)

)
.

— Given i,sample node j with probability ri
(
�, x(M), j

)
and

set x
(M)
ij = 1 − x

(M−1)
ij and x

(M)
kl = x

(M−1)
kl for all (k, l) �= (i, j).

Else: terminate.

Remark 2.2 (Extensions). Extensions to G > 1 time intervals are straightforward due to the Markov property. It is
furthermore possible to deal with the co-evolution of digraphs and other outcome variables (Snijders et al., 2006).

3. Derivative estimation

The present section begins by briefly discussing the estimation of the parameter vector � and its variance–covariance
matrix, which requires the knowledge of the Jacobian matrix of the estimating function. The problem is that the Jacobian
matrix of the estimating function cannot be written in closed form and hence must be estimated. Section 3.1 outlines a
conventional Monte Carlo estimator of the Jacobian matrix based on finite differences, while in Section 3.2 three new
Monte Carlo estimators are proposed, based on the likelihood ratio/score function method. Attention is restricted to the
case of G = 1 time intervals; the extension to the case G > 1 is immediate.

Snijders (2001) proposed to estimate the parameter � ∈ � ⊂ RL by the method of moments (Pearson, 1902a,b).
Let U (t1) be a suitable L × 1 vector function (statistic) of the digraph and covariates at time point t1 with observed
value u (t1); the function U (t1) may in addition depend on the digraph x (t0) and covariates observed at time point t0.
Let �̂ be the solution of the moment equation

E� [U (t1) | X (t0) = x (t0)] = u (t1) . (9)
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In the sequel, the left-hand side of (9) is referred to as E�U . The estimation problem amounts to finding a root of
E�U − u as a function of �, where u = u (t1). Experience suggests that, for suitable statistics U , Eq. (9) has a unique
root in almost all cases. The moment estimator �̂ is not available in closed form. However, it is possible to simulate the
Markov process so that root-finding algorithms based on stochastic approximation (Robbins and Monro, 1951) can be
used to find �̂ (see Snijders, 2001).

To estimate the variance–covariance matrix of �̂, it is inconvenient to use bootstrap (or resampling) methods, because
each of the multiple estimation runs required by resampling methods is time-consuming; an alternative is to utilize the
delta method (Lehmann, 1999, p. 315) and the implicit function theorem, giving the approximation

Cov� �̂ ≈ �−1(�)	(�)
[
�−1(�)

]′
, (10)

where

	(�) = Cov� U (11)

is the L × L variance–covariance matrix of U , and

�(�) = �

��′ E�U (12)

is the Jacobian matrix of E�U at �, that is, the L × L matrix of first-order partial derivatives of E�U evaluated at �.
Here again, no closed form expressions are available.

The variance–covariance matrix (10) can be estimated by plugging in the moment estimator �̂ in (11) and (12).

Monte Carlo estimation of 	
(
�̂
)

is straightforward; the issue is how to construct a Monte Carlo estimator of �
(
�̂
)

.

In Section 3.1, a conventional Monte Carlo estimator of �
(
�̂
)

based on finite differences is described, whereas

in Section 3.2 three new Monte Carlo estimators are proposed, based on the likelihood ratio/score function
method.

3.1. Finite differences method

By definition,

�l (�) = lim

−→0

E�+el
U − E�U



, l = 1, . . . , L, (13)

where �l (�) refers to the lth column of �(�). The finite differences method to estimate �l (�) is based on

�l,
(�) = E�+el
U − E�U



, l = 1, . . . , L. (14)

The expectations E�+el
U , l = 1, . . . , L, and E�U are not available in closed form, but can be estimated by the
corresponding Monte Carlo sample averages: given �+el
 and a pseudo-random number generator (see, e.g., Marsaglia
and Zaman, 1991), one can simulate the Markov process as described in Remark 2.1 of Section 2; having simulated
the Markov process multiple times, the Monte Carlo sample average of U can be used as an estimate of E�+el
U ; the
expectation E�U can be estimated accordingly by simulating the Markov process multiple times given � and using the
Monte Carlo sample average of U as an estimate of E�U . Thus, to estimate the L+ 1 expectations, L+ 1 Monte Carlo
samples are required, because the parameters are different.

It is well-known (see, e.g., L’Ecuyer, 1991) that the resulting estimator is biased. Under regularity conditions,
the bias is of order 
, which suggests to make 
 as small as possible. On the other hand, it is clear from (14) that,
when using independent draws of U under the distributions corresponding to � + el
 and to �, the variance of the
resulting estimator is of order 
−2, which implies that small values of 
 are undesirable. A way out of this dilemma
is provided by using common random numbers (Hammersley and Handscomb, 1964, pp. 48–49) for simulating the
random variable U under the distributions corresponding to � + el
 and to �. Denoting by W the random number
stream and by U�(W) the result of the simulation procedure as a function of W and �, this means that the same W is
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used for generating U under � + el
 and under �, so that the random variable used for generating a value of �l,
(�) is
given by

U�+el
(W) − U�(W)



. (15)

If U�(w) would be a continuously differentiable function of �l for any given w, then under regularity conditions the
random variable (15) would tend to the derivative �U�(w)/��l , its variance would be bounded for 
 −→ 0, and 
 could
be taken very small to get a finite differences estimator (15) which is practically unbiased and N -consistent, where
N is the size of the Monte Carlo sample. However, the discrete nature of the outcome variable U in the considered
model implies that U�(w) is a discontinuous function of �. The following lemma can be used to determine the order of
magnitude of the variance of (15).

Lemma 1. Let D(
) be a random variable with a finite outcome space that does not depend on 
, let d
 = ED(
)/
,
and suppose that d = lim
−→0 d
 is finite and non-zero. Then

lim inf

−→0

|
| Var

(
D(
)




)
> 0. (16)

Proof. Let d0 be the smallest non-zero outcome of |D(
)|. Then D2(
)�d0|D(
)| and

E
D2(
)


2 � d0

|
|E
|D(
)|

|
| . (17)

From Var(D(
)/
) = E
[
D2(
)/
2

]− d2

 it follows that

lim inf

−→0

{
|
| Var

(
D(
)




)}
� lim inf


−→0

{
d0E

|D(
)|
|
| − |
|d2




}
�d0|d| > 0. � (18)

Applying Lemma 1 to D(
) = U�+el
(W) − U�(W) shows that if the derivative to be estimated is non-zero, the
variance of (15) is at least of order 
−1. Note that if the derivative is zero, then E�U is not sensitive to changes
in �, and therefore U is not a sensible choice for estimating � in a method of moments framework (see Snijders,
2001).

In the remainder of the paper, D0(
) refers to the Monte Carlo finite differences estimator with common random
numbers which estimates the columns �l (�) of �(�) by �̂l,
(�), where �̂l,
(�) is the Monte Carlo estimator of �l,
(�)

obtained by replacing the expectations E�+el
U and E�U by the corresponding Monte Carlo sample averages. An
important practical implication of using D0(
) is that L + 1 Monte Carlo samples are required. Section 3.2 considers
an alternative method that produces unbiased and N -consistent estimators, in contrast to D0(
), and requires only one
Monte Carlo sample.

3.2. Likelihood ratio/score function method

The alternative method is related to the likelihood ratio/score function method of derivative estimation, which can
be traced back to Aleksandrov et al. (1968). Some related papers are Rubinstein (1986, 1989) and Glynn and L’Ecuyer
(1995).

Denote the complete data—that is, the holding times of the Markov process and the sequence of arc changes in
time interval [t0, t1]—by Z. Let P� be the probability law governing Z, admitting a probability density p� = dP�/d�
with respect to some dominating measure �, and let Z1, Z2, . . . be Monte Carlo generated random variables with
distribution P�.

Three likelihood ratio/score function (LR) estimators of the Jacobian matrix �(�) are derived below, called DI, DII,
and DIII; the dependence of the D-estimators on � is left implicit. The LR estimator DI (Section 3.2.1) is the basic LR
estimator, while LR estimators DII and DIII (Section 3.2.2) use variance reduction methods and have less Monte Carlo
variance than DI.
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3.2.1. Estimator DI: the basic LR estimator
Let

DI = 1

N

N∑
i=1

Ui

� ln p� (Zi)

��′ , (19)

where N is the size of the Monte Carlo sample.

Lemma 2. Let U be any function of x (t0), x (t1), and covariates that does not depend on �. Then DI is an unbiased
and N -consistent estimator of the Jacobian matrix �(�) defined in (12).

Proof. By definition,

�l (�) = lim

−→0

E�+el
U − E�U



= lim


−→0

∫
Z

U
p�+el
(z) − p�(z)



d�(z). (20)

The model definition of Section 2 implies that the model for Z is a family of negative exponential-multinomial
distributions, which is an exponential family of distributions. The outcome space of U is finite, so that E�U exists for
all � ∈ � and is finite. Hence, by Theorem 2.7.1 of Lehmann and Romano (2005, p. 49), it is admissible to interchange
the order of differentiation and integration:

lim

−→0

∫
Z

U
p�+el
(z) − p�(z)



d�(z) =

∫
Z

U lim

−→0

p�+el
(z) − p�(z)



d�(z). (21)

Thus, the Jacobian matrix can be written as

�(�) =
∫
Z

U
�p�(z)

��′ d�(z) = E�

[
U

� ln p�(Z)

��′
]

. (22)

Eq. (22) proves the unbiasedness of DI for estimating �(�). N -consistency follows from the strong law of large numbers
(see, e.g., Ferguson, 1996, p. 21). �

Since in practice the aim is to evaluate the Jacobian matrix �(�) at the moment estimate �̂ of �, �̂ is plugged in for �.
Given �̂, the Monte Carlo generation of random variables Zi (i=1, 2, . . . , N) with probability law P�̂ is straightforward;

see Remark 2.1 of Section 2. The complete-data efficient score � ln p�̂ (Zi) /��̂
′

is derived in Appendix A.
The Monte Carlo variance of the basic LR estimator DI may be too large for practical purposes. It is therefore

sensible to reduce the variance of DI by using variance reduction methods, which is explored in Section 3.2.2.

3.2.2. Estimators DII and DIII: LR estimators exploiting variance reduction methods based on control variates
In the present section, two LR estimators are proposed which have less variance than DI. Both estimators are based

on the idea of reducing the variance of LR estimators by using the complete-data efficient score as a control variate
(see Fieller and Hartley, 1954; Rubinstein, 1986, 1989).

It will be convenient to let

S′
� = S′

�(Z) = � ln p�(Z)

��′ , (23)

and to rewrite the Jacobian matrix �(�) given by (22) using the vec operator as

vec �(�) = E�
[
vec
(
US′

�

)]
. (24)

Let A be any non-random matrix of order L2 × L. Observe that E�S� = 0 and that

vec �(�) = E�
[
vec
(
US′

�

)]= E�
[
vec
(
US′

�

)− A (S� − E�S�)
]

= E�
[
vec
(
US′

�

)− AS�
]

. (25)

Please cite this article as: Michael Schweinberger, Tom A.B. Snijders, Markov models for digraph panel data: Monte Carlo-based derivative
estimation, Computational Statistics & Data Analysis (2006), doi: 10.1016/j.csda.2006.07.014

http://dx.doi.org//10.1016/j.csda.2006.07.014


ARTICLE IN PRESS
M. Schweinberger, T.A.B. Snijders / Computational Statistics & Data Analysis ( ) – 7

Eq. (25) suggests that (24) can be estimated by

DC(A) = 1

N

N∑
i=1

[
vec
(
UiS

′
�,i

)
− AS�,i

]
= vec (DI) − A

1

N

N∑
i=1

S�,i . (26)

If A is constant, then DC(A) as an estimator of (24) is both unbiased and N -consistent.
The idea of control variates is to exploit the fact that E�S� and hence the Monte Carlo integration error (1/N)

∑N
i=1

S�,i − E�S� is known; let L = 1 so that US� and S� are scalars; if US� and S� are correlated, the knowledge of the
integration error can be used to (linearly) transform DI such that DI gets closer to its expectation, resulting in variance
reduction. Two choices of A, and hence two control variate estimators, are elaborated below.

3.2.2.1. Estimator DII: heuristic LR control variate estimator A simple, heuristic control variate estimator is obtained
as follows. Let

U� = U − E�U , (27)

and observe that at the moment estimate �̂ of �, E�U is known and given by E�̂U = u, where u is the observed value
of statistic U . The centering (27) is equivalent to using S� as a control variate with A = IL ⊗ u, where IL is the L × L

identity matrix, which is evident from the identity

vec
(
U�S′

�

)= vec
(
US′

�

)− vec
(
uS′

�

)
(28)

and the fact that vec
(
uS′

�

)
can be written as

vec
(
uS′

�

)= vec
(
uS′

�IL

)= (IL ⊗ u) vec
(
S′

�

)= AS�. (29)

The resulting estimator, which is (26) with A = IL ⊗ u, is denoted by DII:

DII = DC (IL ⊗ u) . (30)

Since A = IL ⊗ u is constant, DII as an estimator of (24) is both unbiased and N -consistent.
To give some insight into the behavior of estimator DII, let L = 1 so that U , S�, DI, and DII are scalars. Using

E�
[
U� S�

]= E�
[
US�

]
,

Var� (DI) − Var� (DII) =
E�
[
(US�)

2]− E�

[
(U�S�)

2
]

N

= E�

[(
2U

u
− 1

)
u2S2

�

]/
N . (31)

Thus, under the (unrealistic) assumption P�(U/u� 1
2 )=1, the right-hand side of (31) is non-negative and Var� (DI) �

Var� (DII). In practice, (31) suggests that if the ratio of the standard deviation of U to the absolute value of the
expectation E�̂U = u is less than, say, 1

4 , then the variance of DII is probably much smaller than the variance of DI;
by Chebyshev’s inequality, a more conservative guess is that variance reduction is very likely if the ratio is less than
1

10 . Furthermore, when this ratio is close to 0 and thus U is “almost constant”, the right-hand side of (31) is roughly

u2 Var� (S�) /N .
However, while the variance of DII may be considerably smaller than the variance of DI, its variance may not be

the minimum variance that can be achieved by using S� as a control variate. The estimator proposed below attains the
minimum variance by construction.

3.2.2.2. Estimator DIII: minimum variance LR control variate estimator Let Cov� [DC(A)] be the variance–covariance
matrix of the vector valued LR control variate estimator DC(A) as given by (26), and let |Cov� [DC(A)]| be the
determinant of Cov� [DC(A)], called the generalized variance of DC(A).
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Lemma 3 (Rubinstein and Marcus, 1985). The value of A that minimizes the generalized variance of DC(A) is given
by

B = �21(�)�−1
11 (�), (32)

where

�11(�) = E�
[
S�S

′
�

]
(33)

is the variance-covariance matrix of S�, and

�21(�) = E�
[{

vec
(
US′

�

)− E�
[
vec
(
US′

�

)]}
S′

�

]
(34)

is the covariance matrix of vec
(
US′

�

)
and S�.

Proof. See Rubinstein and Marcus (1985). �

Let L= 1 so that S�, US�, DI, and DC(B) are scalars, where DC(B) is given by (26) with A=B. Then the variance
of DC(B) is equal to (1 − 2) Var�(DI), where  is the correlation between US� and S�: thus, the higher the absolute
correlation between US� and S�, the greater is the reduction in variance. A similar argument for L > 1 follows from
Rubinstein and Marcus (1985).

The matrix B can be estimated by

B̂ = V21V
−1
11 , (35)

where V11 and V21 are Monte Carlo estimators of �11(�) and �21(�), respectively, estimated from the Monte Carlo
sample Z1, Z2, . . . , ZN .

Let DIII be (26) with A = B̂:

DIII = DC

(
B̂
)

. (36)

The estimator DIII is N -consistent, but because A = B̂ depends on S�, DIII is not unbiased (Fishman, 1996, p. 279);
however, the bias is of order N−1 (cf. Cochran, 1977, pp. 198–199). �

3.2.3. Comparison: estimators D0(
), DI, DII, and DIII
It is evident from Lemma 2 that DI and DII are unbiased and N -consistent, in contrast to D0(
), while DIII is an

N -consistent estimator whose bias is of order N−1.
To demonstrate how the LR estimators DI, DII, and DIII are interrelated, let L = 1. It was argued that DII may be

superior to DI in terms of variance, and that if the standard deviation of U is small relative to the absolute value of the
expectation E �̂U = u and hence U is “almost constant”, then Var� (DII) ≈ Var� (DI) − u2 Var� (S�) /N . For large N ,

B̂ is expected to be close to B as given by (32) and hence the variance of DIII is roughly
(
1 − 2

)
Var� (DI), where

 is the correlation between US� and S�. Furthermore, if the standard deviation of U is small relative to
∣∣∣E�̂U

∣∣∣, then

(33) and (34) imply that �21 ≈ u�11 and thus B = �21�
−1
11 ≈ u, suggesting that DII ≈ DIII and that the variance of

DII and DIII is of a similar order of magnitude. In sum, if the standard deviation of U is small relative to
∣∣∣E�̂U

∣∣∣, then

it is thought that DII and DIII are close in terms of variance and outperform DI.
An important practical motivation for considering DI, DII, and in particular DIII as alternative estimators of the

Jacobian matrix �(�) is that using one of the LR estimators instead of D0(
) roughly cuts down the computation time
by a factor L + 1, where L is the dimension of �.

4. Applications

In the present section, the derivative estimators D0(
), DI, DII, and DIII are compared in a situation where the true
Jacobian matrix is known (Section 4.1) and in addition in the common situation where the true Jacobian matrix is
unknown (Section 4.2).
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In each subsection, one real-world data set is studied, the moment estimate �̂ of � is obtained, and the Jacobian matrix
�
(
�̂
)

is estimated from 1000 Monte Carlo samples of size N = 1000, where N corresponds to the number of terms

on which the derivative estimators—which are averages—are based, implying that for DI, DII, and DIII the Markov
process is N times simulated, while for D0(
) the Markov process is (L + 1) × N times simulated, because each term
requires L + 1 simulations.

4.1. Application: Jacobian matrix known

A simple, classical model where Jacobian matrices can be derived analytically is the independent arcs (IA) model
(see Snijders and Van Duijn, 1997), which is in most empirical applications inadequate because of its simplicity, but
provides an opportunity to compare the simulation-based derivative estimators.

The IA model is a continuous-time Markov model, where the rate of change q� (x�, i, j) depends only on x�
ij , so that

all arc variables xij (t) follow independent Markov processes. To keep the parametrization consistent with the general
model of Section 2, the rate of change is written as

q�
(
x�, i, j

)= �1

(
1 − x�

ij

)
exp (�2) + x�

ij exp (−�2)

n − 1
. (37)

The rate function �i follows from (3) and (37), and is given by

�i

(
�, x�

)= �1

(
(n − 1) − x�

i+
)

exp (�2) + x�
i+ exp (−�2)

n − 1
, (38)

where x�
i+ =∑n

h�=i x�
ih. The conditional probability mass function ri is, using (4), (37), and (38), given by

ri(�, x, j) =
(

1 − x�
ij

)
exp (�2) + x�

ij exp (−�2)(
(n − 1) − x�

i+
)

exp (�2) + x�
i+ exp (−�2)

. (39)

Let

Mkl = #
{
(i, j) | xij (t0) = k, xij (t1) = l

}
, (40)

where k, l =0, 1. The statistic U = (M01 + M10, M01 + M11)
′ is a sufficient statistic, and thus, to estimate �= (�1, �2)

′
by the method of moments, E�U − u is a natural estimating function; note that, in the case of the IA model, the
sufficiency implies that the moment estimator based on estimating equation E�U −u= 0 coincides with the maximum
likelihood (ML) estimator (see Snijders and Van Duijn, 1997). The expectation E�U , the variance–covariance matrix
	(�) = Cov� U , and the Jacobian matrix �(�) = �E�U/��′ are derived analytically in Appendix C.

Snijders and Van Duijn (1997) applied the IA model to a well-known data set called the EIES data, corresponding
to the “communication” among n = 32 scholars observed at two time points, where xij = 1 if scholar i met scholar j ,

and xij = 0 otherwise. The moment (and ML) estimate of � = (�1, �2)
′ is �̂ = (2.418, 1.557)′, the expectation of U is

E�̂U = (154, 653)′, and, using the results of Appendix C, the exact values of 	
(
�̂
)

and �
(
�̂
)

are given by

	
(
�̂
)

=
(

108.80 95.00
95.00 108.80

)
and �

(
�̂
)

=
(

52.18 114.55
47.44 130.85

)
. (41)

The Jacobian matrix �
(
�̂
)

is estimated from each Monte Carlo sample by D0(
) with 
 = .2 and 
 = 1.0; the two

values of 
 are motivated by the fact that most values of 
 used in practice are between .2 and 1.0. In addition, �
(
�̂
)

is estimated from each Monte Carlo sample by DI, DII, and DIII; the complete-data efficient score, on which DI, DII,
and DIII are based, is derived in Appendix B.

The computation time required to evaluate D0(.2) and D0(1.0) was on average approximately 20 s on a PC with
Intel Pentium 3.06 GHz processor and 1021 MB RAM. While 20 s are negligible, note that in general the computation
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Table 1
EIES data: average estimates of �

(
�̂
)

= (�ij

)
across 1000 Monte Carlo samples

True value D0(.2) D0(1.0) DI DII DIII

�11 52.18 51.34 48.22 52.60 52.03 51.92
�21 47.44 46.67 43.83 49.72 47.30 47.21
�12 114.55 122.98 151.00 115.42 114.29 114.06
�22 130.85 137.76 161.08 135.43 130.67 130.41

Table 2
EIES data: Monte Carlo standard deviations of estimates of �

(
�̂
)

= (�ij

)
based on 1000 Monte Carlo samples

D0(.2) D0(1.0) DI DII DIII

�11 .53 .21 26.36 2.39 2.40
�21 .53 .22 111.36 2.28 2.28
�12 .87 .32 62.27 5.53 5.54
�22 1.01 .33 262.31 5.84 5.87

time is roughly proportional to N × L2 × C1 × C2, where C1 =∑G
g=1

∑n
i=1
∑n

j �=i

∣∣xij

(
tg
)− xij

(
tg−1

)∣∣ and C2 =
(1/G)

∑G−1
g=0

∑n
i=1
∑n

j �=i xij

(
tg
)
. Here, L = 2 and n = 32, which are very small values: in practice, it is frequently

the case that L > 10 and n > 50 (in fact, n may be in the hundreds), and then computation time is an issue and the
computational advantage of DI, DII, and DIII over D0(
) is appreciated.

The average estimates of the Jacobian matrix �
(
�̂
)

are presented in Table 1. The average estimate of �
(
�̂
)

based

on the biased estimator D0(.2) is close to the true value for the first column, but overestimates the elements of the
second column by 7.4% and 5.3%, respectively; the average estimate of D0(1.0) underestimates the elements of the
first column by roughly 7.6%, and overestimates the elements of the second column by 31.8% and 23.1%, respectively.

While the bias of D0(.2) may be tolerable, the bias of D0(1.0) clearly is not. The average estimates of �
(
�̂
)

based on

DII and DIII are very close to the true value of �
(
�̂
)

, but DI, which is known to be unbiased, seems to overestimate

the elements of the second row of �
(
�̂
)

; this is an inaccuracy stemming from the huge variance of DI (see below).

The Monte Carlo standard deviations (MC SDs) of the estimates of �
(
�̂
)

are shown in Table 2. Note that the

efficiency of the estimators cannot be evaluated by inspecting the MC SDs alone, because D0(
) requires (L + 1) × N

= 3000 simulations, while DI, DII, and DIII require N =1000 simulations; the efficiency of the estimators is discussed
in Section 5. The MC SDs of DII and DIII for given N seem to be of a similar order of magnitude, whereas D0(.2) and
D0(1.0) seem to do considerably better and DI considerably worse.

The MC SDs of the elements of D0(.2) are 2.4 to 3.1 times as large as the corresponding MC SDs of D0(1.0), which
is in line with the fact that the variance of D0(
) is at least of order 
−1 (see Lemma 1), and if independent random
numbers are used, it is of order 
−2; hence the ratio of MC standard deviations of D0(.2) to D0(1.0) is expected to be
between

√
5 = 2.24 and 5, and because common random numbers are used, closer to 2.24 than to 5, which is indeed

the case.
Concerning DI, note that DI estimates the first row of �

(
�̂
)

much more accurately than the second row, which is

not surprising. By (41), the standard deviations of coordinates U1 and U2 of U both equal 10.43, while the expectation
of U is given by E�̂U = (154, 653)′; therefore, the standard deviations are small relative to the expectations and U can

be considered to be “almost constant” for practical purposes. Then Var�̂ (DI) = Var�̂

(
US�̂

)/
N ≈ u2 Var�̂

(
S�̂

)/
N

(in case L = 1, with obvious extension to L > 1), and the ratio of the MC SDs of the second row to the first row is
expected to be roughly 653

154 = 4.24, which is indeed the case.
Concerning the LR control variate estimators DII and DIII, it is obvious that the introduction of the complete-data

score as a control variate reduces the variance considerably as compared to DI. The small advantage of DII over DIII
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Fig. 1. EIES data: kernel density plots of Monte Carlo estimates of s.e.
(
�̂1

)
and s.e.

(
�̂2

)
based on 1000 Monte Carlo samples. The exact values of

the standard errors, s.e.
(
�̂1

)
= .477 and s.e.

(
�̂2

)
= .191, are represented by vertical lines.

can be explained as follows. Since the standard deviations of the coordinates of U are small relative to the expectations,
B̂ ≈ u and DII ≈ DIII as argued in Section 3.2.3, and therefore it is not surprising that the MC SDs of DII and DIII
are of a similar order of magnitude. The fact that DII seems to outperform DIII slightly may be due to the additional
sampling variance resulting from the estimation of B given by (32).

As was pointed out above, the ultimate aim of the derivative estimators is to produce Monte Carlo estimates of

�−1
(
�̂
)

	
(
�̂
) [

�−1
(
�̂
)]′

, (42)

which is an approximation of the variance–covariance matrix of �̂ (see (10)). For the IA model, (42) can be evaluated

analytically by using (41). The resulting standard errors of �̂1 and �̂2 are given by s.e.
(
�̂1

)
= .477 and s.e.

(
�̂2

)
= .191,

respectively; these values will be referred to as the exact standard errors, exact in the sense that they are based on
analytical evaluation of (42) and not estimated from Monte Carlo simulations. It is of interest to study the behavior
of the Monte Carlo estimators of the standard errors, which are obtained by plugging in estimators D0(.2), D0(1.0),

DI, DII, and DIII for �
(
�̂
)

and a Monte Carlo estimator for 	
(
�̂
)

. Fig. 1 shows Gaussian kernel density plots of the

Monte Carlo estimates of the standard errors based on D0(.2), D0(1.0), DII, and DIII; the plots corresponding to DI are
omitted because the estimated standard errors have huge MC SDs. All distributions are fairly symmetric, but the MC
SDs of the standard errors are larger for D0(.2) and D0(1.0) than for the LR estimators DII and DIII. The estimators
of the standard errors based on D0(.2) and D0(1.0) seem to be upwards biased, in particular D0(1.0) leads to a large
bias in estimated standard errors. In contrast, the standard errors based on DII and DIII seem to be (almost) unbiased.

As a side remark, Snijders and van Duijn (1997) report for the IA model applied to the EIES data standard errors

s.e.
(
�̂1

)
= .22 and s.e.

(
�̂2

)
= .24, which are Monte Carlo estimates based on D0(
); the value of 
 is not reported.

Thus, the exact standard error s.e.
(
�̂1

)
= .477 is underestimated by 53.9%, which can be explained by (a) bias (if 


was large) or (b) large MC SD (if 
 was small) or both; (a) is not too plausible, because Fig. 1 suggests an upwards
bias; however, no matter what explanation is applicable here, the case illustrates that choosing 
 is hard and can have
great practical implications.
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Table 3
Van de Bunt data: average estimates of �

(
�̂
)

across 1000 Monte Carlo samples

D0(.2) D0(1.0)

78.96 23.93 17.14 2.84 51.86 19.26 22.85 .85
28.88 30.33 37.48 6.23 16.00 26.36 40.10 2.13

150.35 64.81 270.23 15.64 91.13 57.63 342.82 7.79
3.41 4.53 5.33 17.82 4.82 3.65 4.97 17.52

DI DII

88.38 25.63 −6.80 2.31 86.74 25.04 7.26 3.24
34.30 31.36 22.27 6.75 33.52 31.08 28.94 7.20

172.60 67.40 203.58 15.29 170.02 66.47 225.66 16.76
2.85 4.60 6.53 17.61 2.93 4.63 5.83 17.57

DIII

86.55 24.98 7.27 3.23
33.44 31.02 28.88 7.18

169.65 66.31 225.25 16.70
2.93 4.62 5.80 17.54

4.2. Application: Jacobian matrix unknown

In the present section, the derivative estimators D0(.2), D0(1.0), DI, DII, and DIII are compared in the common
situation where the Jacobian matrix is unknown.

Snijders (2001) studied data collected by Van de Bunt (1999), concerning a friendship relation among n = 32
university freshmen enrolled in a common study program. The digraph was observed at 7 time points. Here, the digraph
evolution between observation points t2 < t3 < t4 is modeled.

A simple model is specified by constant rate functions and objective function

fi(�, x, j) =
4∑

k=1

�ksik (x, j) , (43)

where the statistics sik are given by

si1(x, j) =∑n
h=1xih: the number of outgoing arcs (“outdegree”),

si2(x, j) =∑n
h=1xihxhi : the number of reciprocated arcs,

si3(x, j) =∑n
h=1(1 − xih)maxl xilxlh: the number of indirect connections,

si4(x, j) = ci si1(x, j): interaction of outdegree and gender of student i,
where si1 is the outdegree of i and ci = 1 if i is male and 0 otherwise.

Conditioning, as described in Snijders (2001), on the observed number of changes, which is 60 in [t2, t3] and 51 in
[t3, t4], the parameter � to be estimated by the method of moments reduces to � = (�1, �2, �3, �4

)′. The coordinate
Uk of statistic vector U , corresponding to coordinate �k of �, is given by Uk =∑n

i=1 sik (k = 1, . . . , 4). The moment

estimate of � turns out to be �̂ = (−1.058, 2.507, −.535, −.562)′.
The average estimates of the Jacobian matrix �

(
�̂
)

are presented in Table 3. As was pointed out above, estimators

D0(.2) and D0(1.0) are biased, whereas DI and DII are unbiased and DIII is approximately unbiased. An unbiased
estimator of the bias of D0(.2) is the average of D0(.2) − DII across Monte Carlo samples; the bias of D0(1.0) can be
estimated accordingly. The bias of D0(1.0) seems to be large; the bias of D0(.2) also is non-negligible. The average
estimates of DII and DIII agree closely, while the average estimate of DI differs slightly from DII and DIII.

The MC SDs of the estimates of �
(
�̂
)

are shown in Table 4; to save space, attention is restricted to the diagonal

elements of �
(
�̂
)

. Note that D0(
) requires (L+1)×N =5000 simulations, while DI, DII, and DIII require N =1000

simulations, so that the efficiency of the estimators cannot be the evaluated on the basis of the MC SDs alone; see
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Table 4
Van de Bunt data: Monte Carlo standard deviations of the estimated diagonal elements �ii of �

(
�̂
)

based on 1000 Monte Carlo samples

D0(.2) D0(1.0) DI DII DIII

�11 1.55 .32 108.17 4.69 4.70
�22 1.54 .32 24.67 1.96 1.97
�33 5.63 1.43 267.89 19.84 19.95
�44 .73 .16 2.46 .94 .95

Fig. 2. Van de Bunt data: kernel density plots of Monte Carlo estimates of s.e.
(
�̂k

)
(k = 1, . . . , 4) based on 1000 Monte Carlo samples.

Section 5. The MC SDs of DII and DIII for given N seem to be of a similar order of magnitude, whereas D0(.2) and
D0(1.0) seem to do considerably better and DI considerably worse. Once again, the introduction of the complete-data
score as a control variate reduces the variance of the LR estimator greatly.

It is of practical interest to assess how the methods perform in terms of the standard errors of the coordinates �̂k of

�̂. Fig. 2 shows Gaussian kernel density plots of the estimated standard errors s.e.
(
�̂k

)
(k = 1, . . . , 4) based on D0(.2),

D0(1.0), DII, and DIII; the estimates based on DI have huge MC SDs and are omitted. The distributions of estimated
standard errors based on DII and DIII appear to be very similar; D0(.2), in turn, produces distributions that are similar

to the ones based on DII and DIII, apart from the distribution of estimates of s.e.
(
�̂3

)
which has a smaller mean and

a smaller MC SD than the corresponding distributions based on DII and DIII. The estimator D0(1.0) gives rise to

distributions that deviate more (see s.e.
(
�̂1

)
and s.e.

(
�̂3

)
) or less (see s.e.

(
�̂2

)
and s.e.

(
�̂4

)
) from the distributions

produced by the other three methods; the estimated standard errors based on D0(1.0) seem to be biased.

Table 5 shows the MC SDs of the standard errors s.e.
(
�̂k

)
(k = 1, . . . , 4) for Monte Carlo samples of size N = 100,

200, 500, and 1000; the Monte Carlo samples of size N = 100, 200, and 500 are obtained by taking the first 100, 200,
and 500 observations of each Monte Carlo sample of size N =1000, respectively; once again, the standard errors based
on DI are omitted. Table 5 indicates that the performance gap between D0(.2) on one hand and DII and DIII on the

other hand is relatively small, leaving aside s.e.
(
�̂3

)
. The MC standard deviations are roughly proportional to N−1/2.

However, it should be noted that, when using D0(.2) and in particular DII and DIII and when N is small (N = 100 or
200), increasing N by factor c clearly reduces the MC SDs by more than c1/2.
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Table 5
Van de Bunt data: Monte Carlo standard deviations of Monte Carlo estimates of s.e.(�̂k) (k = 1, . . . , 4) based on 1000 Monte Carlo samples of size
N = 100, 200, 500, and 1000

N Monte Carlo standard deviations

Using D0(.2) Using D0(1.0) Using DII Using DIII

100 s.e.
(
�̂1

)
.0188 .0143 .0257 .0293

s.e.
(
�̂2

)
.0813 .0322 .0864 .0925

s.e.
(
�̂3

)
.0134 .0061 .0392 .0408

s.e.
(
�̂4

)
.0409 .0191 .0454 .0508

200 s.e.
(
�̂1

)
.0122 .0100 .0155 .0162

s.e.
(
�̂2

)
.0514 .0221 .0505 .0534

s.e.
(
�̂3

)
.0084 .0044 .0203 .0206

s.e.
(
�̂4

)
.0272 .0136 .0265 .0279

500 s.e.
(
�̂1

)
.0074 .0065 .0090 .0091

s.e.
(
�̂2

)
.0296 .0138 .0289 .0294

s.e.
(
�̂3

)
.0051 .0028 .0119 .0120

s.e.
(
�̂4

)
.0167 .0085 .0156 .0160

1000 s.e.
(
�̂1

)
.0052 .0046 .0062 .0062

s.e.
(
�̂2

)
.0207 .0099 .0208 .0210

s.e.
(
�̂3

)
.0036 .0020 .0080 .0081

s.e.
(
�̂4

)
.0114 .0060 .0108 .0110

A minimum requirement is that the MC SD should be less than 5% of the estimate to be useful in practice; the average

estimated standard errors s.e.
(
�̂k

)
(k = 1, . . . , 4) based on DII are .136, .363, .118, and .263, respectively. According

to Table 5, for N = 1000 each of the estimators D0(.2), DII, and DIII meets the 5%-standard for two standard errors,
and “almost” meets it for the other two standard errors; therefore, it is sensible to slightly increase the sample size N .

5. Conclusion

Three likelihood ratio/score function (LR) estimators of the Jacobian matrix of the estimating function, DI, DII, and
DIII, were proposed, and compared with the conventional estimator D0(
) based on finite differences.

Based on theoretical and empirical evidence, it is safe to say that the finite differences estimator D0(
) should be
used with much care; in fact, the difficult choice of 
 and the associated bias-variance dilemma, together with the
computational disadvantage, are strong arguments against using D0(
).

Concerning the LR estimators, the huge variance of LR estimator DI renders DI useless for practical applications.
The efficiency of the LR control variate estimators DII and DIII relative to D0(
) can be evaluated by the classical
efficiency ratio of Hammersley and Handscomb (1964, p. 51), which can be written as

Var� [D0(
)]

Var� [DII or DIII]
× time (D0(
))

time (DII or DIII)
= Var� [D0(
)]

Var� [DII or DIII]
× (L + 1), (44)
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where Var�[D] refers to some element of derivative estimator D—that is, to some partial derivative—and “time(D)”
refers to the amount of computation time required to evaluate D. It is evident that the efficiency ratio tends to favor DII
and DIII if L is moderate or large. In Section 4.1, where the simple IA model with L = 2 parameters was considered,
the efficiency ratio of DII relative to D0(.2) turns out to be .1 for each of the two elements on the main diagonal of the
Jacobian matrix. In Section 4.2, where L = 4, the efficiency ratio of DII relative to D0(.2) is .5, 3.1, .4, and 3.0 for the
four elements on the main diagonal of the Jacobian matrix. However, in practice L is frequently larger than 10, which
tends to favor DII and DIII.

Overall, the conclusion is that using DII or DIII is preferable to using D0(
).
An alternative approach to derivative estimation is to combine the estimation of � and �(�) = �E�U/��′ as follows:

if the interim estimate �̂N generated by the stochastic approximation algorithm for solving estimating Eq. (9) is in a
small neighborhood of the solution �̂, then the simulations from the distributions corresponding to the interim estimates

�̂N can be used to estimate the surface of E�U as a function of �, and to produce derivative estimates of �
(
�̂
)

based

on fitting a linear model. It will be useful to investigate the computational benefits obtainable by such an approach.
The proposed estimators are implemented in theWindows-based computer programSiena embedded in the program

collection StOCNET, which can be downloaded free of charge from http://stat.gamma.rug.nl/stocnet.
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Appendix A. Complete-data efficient score

Let M be the total number of changes of x(t) in time interval [t0, t1], and let x0 be the digraph x (t0) observed at time
point t0. The Markov process corresponds to holding times h1, . . . , hM and some sequence x0, x1, . . . , xM of digraphs,
where xm is the digraph to which the process moves by the mth transition, which takes place at time t0 +∑m

i=1 hi .
Conditional on x (t0), the complete-data probability density p� = p�(z) based on an observed outcome of the Markov
process is given by

M∏
m=1

[
q� (xm−1) exp

[−q� (xm−1) hm

]× q�(xm−1, xm)

q� (xm−1)

]
exp
[−q� (xM) hM+1

]
, (A.1)

where hM+1 = (t1 − t0)−∑M
m=1 hm > 0. The parameter q� (xm−1) of the negative exponential distribution is given by

q� (xm−1) = −q� (xm−1, xm−1) =
n∑

j=1

�j (�, xm−1) , (A.2)

while q� (xm−1, xm) is decomposed according to

q� (xm−1, xm) = �im (�, xm−1) rim (�, xm, jm) , (A.3)

where the rate function �im and the conditional probability mass function rim are given by (6) and (7), respectively.
Section A.1 gives the complete-data efficient score with respect to �=(�, �′, �′)′. Section A.2 considers briefly some

more general models and the associated complete-data efficient score.

A.1. Complete-data efficient score with respect to � = (�, �′, �′)′

If � represents either � or an element of � = (�k), then the complete-data score corresponding to � can be written as

M∑
m=1

[
� ln �im (�, xm−1)

��
− �q� (xm−1)

��
hm

]
− �q� (xM)

��
hM+1, (A.4)
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where

� ln �im (�, xm−1)

��
= 1

�
, (A.5)

�q� (xm−1)

��
= q� (xm−1)

�
, (A.6)

� ln �im (�, xm−1)

��k

= aimk

(
xm−1, cim

)
, (A.7)

and

�q� (xm−1)

��k

=
n∑

j=1

ajk

(
xm−1, cj

)
�j (�, xm−1) . (A.8)

The complete-data score with respect to �k is given by

M∑
m=1

⎡
⎣simk (xm, jm) −

n∑
j=1

simk (xm, j) rim (�, xm, j)

⎤
⎦ . (A.9)

A.2. Other, more general cases

The present section discusses briefly how the complete-data efficient score for some selected, more general models
deviates from the simple case above.

A.2.1. G > 1 time intervals
If the digraph is observed at more than two time points, that is, G > 1, then the complete-data score corresponding to

parameter coordinates that are constant across time intervals is obtained by simply summing the complete-data score
across the time intervals.

A.2.2. “Thinning”
Modeling social science network data sometimes makes it desirable to give nodes (“actors”), when designated to

change something, the freedom not to change anything. In formal terms, the additional freedom is represented by
replacing the constraint

n∑
j �=i

ri (�, xm, j) = 1 (A.10)

by the constraint

n∑
j �=i

ri (�, xm, j) �1 (A.11)

so that

ri (�, xm, i) = 1 −
n∑

j �=i

ri (�, xm, j) �0. (A.12)

Therefore, in step (2) of the simulation method described in Remark 2.1 of Section 2, it is admissible that j = i, and if
j = i, then x(M) = x(M−1). The parameter of the negative exponential distribution after thinning the Markov process
(that is, after omitting the “changes” which do not lead to a change of state because j = i) is given by

q� (xm−1) =
n∑

j=1

�j (�, xm−1)

n∑
h�=j

rj (�, xm, h) , (A.13)
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which leads to inconvenient derivatives due to the dependence of q� (xm−1) on � through the conditional probabilities
rj . It is therefore more appealing to consider the Markov process before thinning. The parameter of the negative
exponential distribution before thinning is

q� (xm−1) =
n∑

j=1

�j (�, xm−1) . (A.14)

Let the complete data correspond to all the holding times, the events which do not result in change, and the events
which do result in change. The complete-data likelihood then is proportional to the joint probability of the complete
sequence of events, where an event may or may not lead to some change. The same formulae can be used as in
Section A.1.

A.2.3. Co-evolution of digraphs and other outcome variables
The model can be extended to include, in addition to the Markov process that shapes the digraph, continuous-time

Markov processes that shape other outcome variables; see Snijders et al. (2006). It is beyond the scope of the present
paper to describe such models in detail, but it should be noted that convenient parametrizations lead to simple derivatives.

Appendix B. Complete-data efficient score: IA model

The same notation is used as in Appendix A. Formula (A.1) concerning the complete-data probability density is
valid, but, using (A.2) and (38),

q� (xm−1) =
n∑

j=1

�j (�, xm−1)

= �1

(
n(n − 1) − x�++

)
exp (�2) + x�++ exp (−�2)

n − 1
, (B.1)

and, by (37),

q� (xm−1, xm) = �1

(
1 − x

(m−1)
imjm

)
exp (�2) + x

(m−1)
imjm

exp (−�2)

n − 1
, (B.2)

where x
(m−1)
imjm

is the arc variable of digraph xm−1 that is changed by the mth move of the Markov process, and

x
(m−1)
++ =∑n

i=1
∑n

h�=i x
(m−1)
ih .

The complete-data score with respect to �k (k = 1, 2) can be written as

M∑
m=1

[
� ln q� (xm−1, xm)

��k

− �q� (xm−1)

��k

hm

]
− �q� (xM)

��k

hM+1, (B.3)

where

� ln q� (xm−1, xm)

��1
= 1

�1
, (B.4)

�q� (xm−1)

��1
= q� (xm−1)

�1
, (B.5)

� ln q� (xm−1, xm)

��2
=
(

1 − x
(m−1)
imjm

)
exp (�2) − x

(m−1)
imjm

exp (−�2)(
1 − x

(m−1)
imjm

)
exp (�2) + x

(m−1)
imjm

exp (−�2)
, (B.6)

and

�q� (xm−1)

��2
= �1

(
n(n − 1) − x

(m−1)
++

)
exp (�2) − x

(m−1)
++ exp (−�2)

n − 1
. (B.7)
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Appendix C. Variance–covariance matrix �(�) and Jacobian matrix �(�): IA model

Let M0+ = M00 + M01 and M1+ = M10 + M11, where Mkl is defined by (40). It can be shown (see Snijders and
van Duijn, 1997) that M01 and M11 are independent random variables with distribution

M01 ∼ Binomial (M0+, �0(T )) (C.1)

and

M11 ∼ Binomial (M1+, �1(T )) . (C.2)

The parameters �0(T ) and �1(T ) of the binomial distributions are given by

�0(T ) = p (�2)
(
1 − exp

[−r (�1, T ) q (�2)
])

(C.3)

and

�1(T ) = p (�2) + (1 − p (�2)) exp
[−r (�1, T ) q (�2)

]
, (C.4)

where T = t1 − t0,

p (�2) = exp (�2)

exp (�2) + exp (−�2)
, (C.5)

q (�2) = exp (�2) + exp (−�2) , (C.6)

and

r (�1, T ) = �1T

n − 1
. (C.7)

Due to the conditioning on digraph x (t0) observed at time point t0, M0+ and M1+ are known constants. Thus, for given
x(t0) and � = (�1, �2)

′, the expectation E�U is known,

E�U = E�

(
M01 + M10
M01 + M11

)
=
(

M0+�0(T ) + M1+ (1 − �1(T ))

M0+�0(T ) + M1+�1(T )

)
, (C.8)

the variance–covariance matrix 	(�) = Cov� U is given by

	(�) =
(

Var� M01 + Var� M11 Var� M01 − Var� M11
Var� M01 − Var� M11 Var� M01 + Var� M11

)
, (C.9)

and the Jacobian matrix �(�) = �E�U/��′ with respect to �′ = (�1, �2) is given by

�(�) =
⎛
⎜⎝

M0+
��0(T )

��1
− M1+

��1(T )

��1
M0+

��0(T )

��2
− M1+

��1(T )

��2

M0+
��0(T )

��1
+ M1+

��1(T )

��1
M0+

��0(T )

��2
+ M1+

��1(T )

��2

⎞
⎟⎠ , (C.10)

where

��0(T )

��1
= p (�2) q (�2) exp

[−r (�1, T ) q (�2)
] T

n − 1
, (C.11)

��1(T )

��1
= − (1 − p (�2)) q (�2) exp

[−r (�1, T ) q (�2)
] T

n − 1
, (C.12)

��0(T )

��2
= (

1 − exp
[−r (�1, T ) q (�2)

]) 2

q2 (�2)

+ p (�2) r (�1, T ) exp
[−r (�1, T ) q (�2)

]
(exp (�2) − exp (−�2)) , (C.13)

Please cite this article as: Michael Schweinberger, Tom A.B. Snijders, Markov models for digraph panel data: Monte Carlo-based derivative
estimation, Computational Statistics & Data Analysis (2006), doi: 10.1016/j.csda.2006.07.014

http://dx.doi.org//10.1016/j.csda.2006.07.014


ARTICLE IN PRESS
M. Schweinberger, T.A.B. Snijders / Computational Statistics & Data Analysis ( ) – 19

and

��1(T )

��2
= (

1 − exp
[−r (�1, T ) q (�2)

]) 2

q2 (�2)

− (1 − p (�2)) r (�1, T ) exp
[−r (�1, T ) q (�2)

]
(exp (�2) − exp (−�2)) . (C.14)
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