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Longitudinal modeling of social networks

1. Introduction – modeling network dynamics

Some examples of social networks:

⊚ friendship between school children

⊚ friendship between colleagues

⊚ advice between colleagues

⊚ alliances between firms

⊚ alliances and conflicts between countries

⊚ etc.......

These can be represented mathematically by graphs
or more complicated structures.
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Longitudinal modeling of social networks

Why are ties formed?

There are many recent approaches to this question
leading to a large variety of mathematical models
for network dynamics.

The approach taken here is for statistical inference:

a flexible class of stochastic models
that can adapt itself well to a variety of network data
and can give rise to the usual statistical procedures:
estimating, testing, model fit checking.
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Longitudinal modeling of social networks Research Questions

Some example research questions: networks
Development of preschool children:
how do well-known principles of network formation,
namely reciprocity, popularity, and triadic closure,
vary in importance for preschool children throughout the network
formation period as the structure itself evolves?
(Schaefer, Light, Fabes, Hanish, & Martin, 2010)

Collaboration between inventors:
For collaboration between inventors in biotechnology
as demonstrated by patents,
what are the roles of geographic distance and triadic closure
and how did this develop over time 1976-1995?
(Ter Wal, 2014)

Dependent variable: network.
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Longitudinal modeling of social networks Research Questions

Example research questions: networks and behavior
Peer influence on adolescent smoking:
Is there influence from friends on smoking and drinking?
(Steglich, Snijders & Pearson, 2010)

Peer influence on adolescent smoking:
How does peer influence on smoking cessation differ in magnitude
from peer influence on smoking initiation?
(Haas & Schaefer, 2014)

Weapon carrying of adolescents in US High Schools:
What are the relative contributions of weapon carrying of peers,
aggression, and victimization
to weapon carrying of male and female adolescents?
(Dijkstra, Gest, Lindenberg, Veenstra, & Cillessen, 2012)

Dependent variables: network and behavior.

We use the term ‘behavior’ to indicate dependent actor characteristics:
behavior, performance, attitudes, etc.
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Longitudinal modeling of social networks Research Questions

Example research questions: multiple networks

Friendship and power attribution:
Do people befriend those whom they see as powerful?
do people perceive friends of powerful others as being powerful?
(Labun, Wittek & Steglich, 2016)

Gossip at the work place:
What is the relation between gossip and friendship?
(Ellwardt, Steglich & Wittek, 2012)

Bullying in schools:
Will bullies also bully the defenders of their victims?
(Huitsing, Snijders, Van Duijn & Veenstra, 2014)

Dependent variables: multiple networks.
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Longitudinal modeling of social networks Research Questions

Example research questions: multiple networks

Friendship and media use:
Do adolescents adjust their TV viewing behavior
to that of their friends on the level of programs or of genres?
(Friemel, 2015)

(Viewing TV programs represented as two-mode network.)

Partners and internal structure of organizations:
Do organizations adapt their internal structure
to that of partners with whom they have dealings?
(Stadtfeld, Mascia, Pallotti & Lomi, 2015)

(Internal structure represented as two-mode network.)

Dependent variables: one-mode networks and two-mode networks.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 7 / 93



Longitudinal modeling of social networks Research Questions

Example research questions: multiple networks

Friendship and media use:
Do adolescents adjust their TV viewing behavior
to that of their friends on the level of programs or of genres?
(Friemel, 2015)

(Viewing TV programs represented as two-mode network.)

Partners and internal structure of organizations:
Do organizations adapt their internal structure
to that of partners with whom they have dealings?
(Stadtfeld, Mascia, Pallotti & Lomi, 2015)

(Internal structure represented as two-mode network.)

Dependent variables: one-mode networks and two-mode networks.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 7 / 93



Longitudinal modeling of social networks Process approach

This type of research question is framed better in a network approach
than a variable-centered approach,
because dependencies between the actors are crucial.

This requires a network model representing actors
embedded in networks, sometimes in multiple networks.
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Longitudinal modeling of social networks Process approach

This also requires new methodologies:

We are used to thinking in terms of variables,
as in ANOVA, linear models, generalized linear models.
Thinking in terms of processes is different.

We are accustomed to basing models on independence;
we are only starting to understand how to specify dependence.
This implies a larger place
for explorative parts in theory-guided research.

Mathematical proofs are much harder
without independence assumptions.
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Longitudinal modeling of social networks Process approach

In some questions the main dependent variable is constituted
by the network,
in others by a changeable characteristic of the actors (‘behavior’)
or by multiple interrelated networks.

In the latter type of study, a network–behavior
or network–network co-evolution model is often useful.
This represents not only
the internal feedback processes in the network,
but also the interdependence
between the dynamics of the network and the behavior
or between the multiple networks.
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Longitudinal modeling of social networks Panel Data

Network panel data

We assume that to study such questions we have network panel data,
where the set of actors = nodes is fixed,
or has some exogenous change
(new actors coming in, current actors dropping out, mergers, ...),
and a changing network on this node set is observed repeatedly
in two or more waves.

The relation is assumed to be a state, as opposed to an event;
there will be inertia; changes are possible, and meaningful.

The basic model is for directed networks.

For time-stamped network event data there are network event models
developed by Carter Butts, Christoph Stadtfeld, and others.
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Longitudinal modeling of social networks Panel Data

Constraints, quantities

Number of actors usually between 20 and 2,000 (≥ 400 is large).

Number of waves usually 2 to 4; but unrestricted in principle.

A quantitative measure for the inertia is the Jaccard index,
defined for two consecutive panel waves as
the number of enduring ties
divided by the number of ties present in at least one wave;
if this is larger than .2 or .3, inertia is high enough.

Many waves / high Jaccard values are not a problem; however,
time homogeneity may become an issue for many waves.

Many waves may compensate for small networks.

Multilevel structures (many groups) can also allow
analyzing many very small networks.
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Longitudinal modeling of social networks Panel Data

Process modeling

The well-known basic type of statistical modeling
of linear regression analysis and its generalizations
cannot be transplanted to network analysis,
where the focus has to be on modeling dependencies,
and the network is dependent as well as explanatory variable
(as in transitivity, where friends of friends become friends).

Instead, longitudinal statistical modeling of networks
relies heavily on modest process modeling:
use models for network dynamics that can be simulated
as models for data
– even though direct calculations are infeasible.
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Longitudinal modeling of social networks Panel Data

Networks as dependent variables
Here: focus first on networks as dependent variables.

But the network itself also explains its own dynamics:
e.g., reciprocation and transitive closure
(friends of friends becoming friends)

are examples where the network plays both roles
of dependent and explanatory variable.

Single observations of networks are snapshots,
the results of untraceable history.
Everything depends on everything else.

Therefore, explaining them has limited importance.
Longitudinal modeling offers more promise for understanding.
The future depends on the past.
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Longitudinal modeling of social networks Panel Data

Co-evolution

After the explanation of the
actor-oriented model for network dynamics,
attention will turn to co-evolution, which further combines variables
in the roles of dependent variable and explanation:

co-evolution of networks and behaviour
(‘behaviour’ stands here also for other individual attributes);

co-evolution of multiple networks.
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Network Dynamics

2. Stochastic Actor-oriented Model

The Stochastic Actor-oriented Model (‘SAOM’) is a model for repeated
measurements on social networks:
at least 2 measurements (preferably more).

Data requirements:

The repeated measurements must be close enough together,
but the total change between first and last observation
must be large enough
in order to give information about rules of network dynamics.
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Network Dynamics

Example: Studies Gerhard van de Bunt

Longitudinal study: panel design.

Study of 32 freshman university students,
7 waves in 1 year.
See van de Bunt, van Duijn, & Snijders,
Computational & Mathematical Organization Theory,
5 (1999), 167 – 192.

This data set can be pictured by the following graphs
(arrow stands for ‘best friends’).
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Network Dynamics

Friendship network time 1.

Average degree 0.0; missing fraction 0.0.
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Network Dynamics

Friendship network time 2.

Average degree 0.7; missing fraction 0.06.
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Network Dynamics

Friendship network time 3.

Average degree 1.7; missing fraction 0.09.
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Network Dynamics

Friendship network time 4.

Average degree 2.1; missing fraction 0.16.
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Network Dynamics

Friendship network time 5.

Average degree 2.5; missing fraction 0.19.
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Network Dynamics

Friendship network time 6.

Average degree 2.9; missing fraction 0.04.
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Network Dynamics

Friendship network time 7.

Average degree 2.3; missing fraction 0.22.
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Network Dynamics

Which conclusions can be drawn from such a data set?

Dynamics of social networks are complicated
because “network effects” are endogenous feedback effects:
e.g., reciprocity, transitivity, popularity, subgroup formation.

For statistical inference, we need models for network dynamics
that are flexible enough to represent
the complicated dependencies in such processes;
while satisfying also the usual statistical requirement
of parsimonious modelling:
complicated enough to be realistic,
not more complicated than empirically necessary and justifiable.
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Network Dynamics

For a correct interpretation of empirical observations
about network dynamics collected in a panel design,
it is crucial to consider a model with latent change going on
between the observation moments.

E.g., groups may be regarded as the result of the coalescence
of relational dyads helped by a process of transitivity
(“friends of my friends are my friends”).
Which groups form may be contingent on unimportant details;
that groups will form is a sociological regularity.

Therefore:
use dynamic models with continuous time parameter:
time runs on between observation moments.
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Network Dynamics

Intermezzo

An advantage of using continuous-time models,
even if observations are made at a few discrete time points,
is that a more natural and simple representation may be found,
especially in view of the endogenous dynamics.
(cf. Coleman, 1964).

No problem with irregularly spaced data.

This has been done in a variety of models:

For discrete data: cf. Kalbfleisch & Lawless, JASA, 1985;
for continuous data:
mixed state space modelling well-known in engineering,
in economics e.g. Bergstrom (1976, 1988),
in social science Tuma & Hannan (1984), Singer (1990s).
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Network Dynamics

Purpose of SAOM

The Stochastic Actor-oriented Model is a statistical model
to investigate network evolution (dependent var.) as function of

1 structural effects (reciprocity, transitivity, etc.)

2 explanatory actor variables (independent vars.)

3 explanatory dyadic variables (independent vars.)

simultaneously.

By controlling adequately for structural effects, it is possible
to test hypothesized effects of variables on network dynamics
(without such control these tests would be incomplete).

The structural effects imply that the presence of ties
is highly dependent on the presence of other ties.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 28 / 93



Network Dynamics

Purpose of SAOM

The Stochastic Actor-oriented Model is a statistical model
to investigate network evolution (dependent var.) as function of

1 structural effects (reciprocity, transitivity, etc.)

2 explanatory actor variables (independent vars.)

3 explanatory dyadic variables (independent vars.)

simultaneously.
By controlling adequately for structural effects, it is possible
to test hypothesized effects of variables on network dynamics
(without such control these tests would be incomplete).

The structural effects imply that the presence of ties
is highly dependent on the presence of other ties.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 28 / 93



Network Dynamics

Principles for this approach
to analysis of network dynamics:

1 use simulation models as models for data

2 comprise a random influence in the simulation model
to account for ‘unexplained variability’

3 use methods of statistical inference
for probability models implemented as simulation models

4 for panel data: employ a continuous-time model
to represent unobserved endogenous network evolution

5 condition on the first observation and do not model it:
no stationarity assumption.
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Network Dynamics

Stochastic Actor-Oriented Model (‘SAOM’)

1 Actors i = 1, . . . ,n (individuals in the network),
pattern X of ties between them : one binary network X ;
Xij = 0, or 1 if there is no tie, or a tie, from i to j .
Matrix X is adjacency matrix of digraph.
Xij is a tie indicator or tie variable.

2 Exogenously determined independent variables:
actor-dependent covariates v , dyadic covariates w .
These can be constant or changing over time.

3 Continuous time parameter t ,
observation moments t1, . . . , tM .

4 Current state of network X (t) is dynamic constraint for its own
change process: Markov process.
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Network Dynamics

‘actor-oriented’ = ‘actor-based’

5 The actors control their outgoing ties.

6 The ties have inertia: they are states rather than events.
At any single moment in time,
only one variable Xij(t) may change.

7 Changes are modeled as
choices by actors in their outgoing ties,
with probabilities depending on ‘evaluation function’
of the network state that would obtain after this change.
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Network Dynamics

The change probabilities can (but need not)
be interpreted as arising from goal-directed behaviour,
in the weak sense of myopic stochastic optimization.

Assessment of the situation is represented by
evaluation function, interpreted as
‘that which the actors seem to strive after in the short run’.

Next to actor-driven models,
also tie-driven models are possible.

(‘LERGM’, Snijders & Koskinen,

Chapter 11 in Lusher, Koskinen & Robins, 2013)
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Network Dynamics

At any given moment, with a given current network structure,
the actors act independently, without coordination.
They also act one-at-a-time.

The subsequent changes (‘micro-steps’ or ‘ministeps’) generate
an endogenous dynamic context
which implies a dependence between the actors over time;
e.g., through reciprocation or transitive closure
one tie may lead to another one.

This implies strong dependence between what the actors do,
but it is completely generated by the time order:
the actors are dependent because they constitute
each other’s changing environment.
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Network Dynamics

The change process is decomposed into two sub-models,
formulated on the basis of the idea that the actors i control
their outgoing ties (Xi1, . . . ,Xin):

1. waiting times until the next opportunity
for a change made by actor i :
rate functions;

2. probabilities of changing (toggling) Xij ,
conditional on such an opportunity for change:
evaluation functions.

The distinction between rate function and evaluation function
separates the model for how many changes are made
from the model for which changes are made.
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Network Dynamics

This decomposition between the timing model and the
model for change can be pictured as follows:

At randomly determined moments t ,
actors i have opportunity to toggle one tie variable Xij 7→ 1 − Xij :

micro-step.
(Actors are also permitted to leave things unchanged.)
Frequency of micro-steps is determined by rate functions.

When a micro-step is taken,
the probability distribution of the result of this step
depends on the evaluation function :
higher probabilities of moving toward new states
that have higher values of the evaluation function.
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Network Dynamics

Simulation algorithm micro-step

Generate
∆ time

λ

Choose
actor i

λ

Choose
tie change i → j

i , f

Effectuate changes

t , x

i = actor; t = time; x = network;
λ = rate function; f = evaluation function.
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Network Dynamics Specification

Specification: rate function

‘how fast is change / opportunity for change ?’

Rate of change of the network by actor i is denoted λi :
expected frequency of opportunities for change by actor i .

Simple specification: rate functions are constant within periods.

More generally, rate functions can depend on observation period
(tm−1, tm), actor covariates, network position (degrees etc.), through
an exponential link function.

Formally, for a certain short time interval (t , t + ϵ),
the probability that this actor randomly gets an opportunity
to change one of his/her outgoing ties, is given by ϵ λi .
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Network Dynamics Specification

Specification: evaluation function

‘what is the direction of change?’

The evaluation function fi(β, x) indicates
preferred ‘directions’ of change.
β is a statistical parameter, i is the actor (node), x the network.

When actor i gets an opportunity for change,
he has the possibility to change one outgoing tie variable Xij ,
or leave everything unchanged.

By x (±ij) is denoted the network obtained
when xij is changed (‘toggled’) into 1 − xij .
Formally, x (±ii) is defined to be equal to x .
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Network Dynamics Specification

Conditional on actor i being allowed to make a change,
the probability that Xij changes into 1 − Xij is

pij(β, x) =
exp

(
fi(β, x (±ij))

)
n∑

h=1

exp
(
fi(β, x (±ih))

) ,

and pii is the probability of not changing anything.

Higher values of the evaluation function indicate
the preferred direction of changes.
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Network Dynamics Specification

One way of obtaining this model specification is to suppose
that actors make changes such as to optimize
the evaluation function fi(β, x)
plus a random disturbance that has a Gumbel distribution,
like in random utility models in econometrics:

myopic stochastic optimization,
multinomial logit models.

Actor i chooses the “best” j by maximizing

fi
(
β, x (±ij)) + Ui(t , x , j) .

⇑

random component

(with the formal definition x (±ii) = x).
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Network Dynamics Specification

Differences between creation and maintenance of ties
If there are differences between the parameters for creating a new tie
and for maintaining existing ties,
we can use the more general notion of the objective function.

The objective function is the sum of:

1 evaluation function expressing satisfaction with network;

2 creation function
expressing aspects of network structure
playing a role only for creating new ties

3 maintenance = endowment function
expressing aspects of network structure
playing a role only for maintaining existing ties

If creation function = maintenance function,
then these can be jointly replaced by the evaluation function.
This is usual for starting modelling.
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Network Dynamics Specification

Evaluation, creation, and maintenance functions are modeled as
linear combinations of theoretically argued components
of preferred directions of change. The weights in the linear
combination are the statistical parameters.

This is a linear predictor like in generalized linear modeling
(generalization of regression analysis).

Formally, the SAOM is a generalized linear statistical model
with missing data (the microsteps are not observed).

The focus of modeling is first on the evaluation function;
then on the rate and creation – maintenance functions;
often, the latter are not even considered.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 42 / 93



Network Dynamics Specification

The evaluation function does not reflect the eventual ’utility’
of the situation to the actor, but short-time goals
following from preferences, constraints, opportunities.

The evaluation, creation, and maintenance functions express
how the dynamics of the network process
depends on its current state.
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Network Dynamics Specification

Summary: Stochastic Actor-oriented Model

The SAOM is a Markov process, and can be defined by the micro-step
(aka mini-step) which operates by changing the current network X .

This definition can be given (for mathematicians) by the Q matrix
and equivalently by the computer simulation algorithm.
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Network Dynamics Specification

Stochastic process formulation

For the mathematicians....

This specification implies that X follows a
continuous-time Markov chain with intensity matrix

qij(x) = lim
dt ↓ 0

P
{

X (t + dt) = x (±ij) | X (t) = x
}

dt
(i ̸= j)

given by
qij(x) = λi(α, ρ, x)pij(β, x) .
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Network Dynamics Specification

Computer simulation algorithm
for arbitrary rate function λi(α, ρ, x)

1 Set t = 0 and x = X (0).

2 Generate S according to the
exponential distribution with mean 1/λ+(α, ρ, x) where

λ+(α, ρ, x) =
∑

i

λi(α, ρ, x) .

3 Select i ∈ {1, ...,n} using probabilities

λi(α, ρ, x)
λ+(α, ρ, x)

.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 46 / 93



Network Dynamics Specification

Computer simulation algorithm
for arbitrary rate function λi(α, ρ, x)

1 Set t = 0 and x = X (0).

2 Generate S according to the
exponential distribution with mean 1/λ+(α, ρ, x) where

λ+(α, ρ, x) =
∑

i

λi(α, ρ, x) .

3 Select i ∈ {1, ...,n} using probabilities

λi(α, ρ, x)
λ+(α, ρ, x)

.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 46 / 93



Network Dynamics Specification

Computer simulation algorithm
for arbitrary rate function λi(α, ρ, x)

1 Set t = 0 and x = X (0).

2 Generate S according to the
exponential distribution with mean 1/λ+(α, ρ, x) where

λ+(α, ρ, x) =
∑

i

λi(α, ρ, x) .

3 Select i ∈ {1, ...,n} using probabilities

λi(α, ρ, x)
λ+(α, ρ, x)

.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 46 / 93



Network Dynamics Specification

4 Select j ∈ {1, ...,n}, j ̸= i using probabilities pij(β, x).

5 Set t = t + S and x = x (±ij).

6 Go to step 2
(unless stopping criterion is satisfied).

Note that the change probabilities depend always on
the current network state, not on the last observed state!
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Network Dynamics Specification

Model specification :
Simple specification: only evaluation function;
no separate creation or maintenance function,
periodwise constant rate function.

Evaluation function fi reflects network effects
(endogenous) and covariate effects (exogenous).

Covariates can be actor-dependentor dyad-dependent.

Convenient definition of evaluation function is a weighted sum

fi(β, x) =
L∑

k=1

βk sik (x) ,

where the weights βk are statistical parameters indicating
strength of effect sik (x) (‘linear predictor’).
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Network Dynamics Effects

Effects

Effects sik (x) are functions of the network and covariates.

These can be anything; in practice, effects are local,
i.e., functions of the network neighborhood of the focal actor
— this could also be the neighborhood at distance 2.

The RSiena software contains a large collection of effects,
all listed in the manual.
This collection is increased as demanded by research needs.
Effects are indicated in RSiena by their shortNames,
indicated below in square brackets such as [density] .

The following slides mention just a few effects.
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Network Dynamics Effects

Some network effects for actor i :
(others to whom actor i is tied are called here i ’s ‘friends’)

1 out-degree effect [density] , controlling the density / average
degree,
si1(x) = xi+ =

∑
j xij

2 reciprocity effect [recip] , number of reciprocated ties
si2(x) =

∑
j xij xji
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Network Dynamics Effects

Various potential effects representing transitivity = network closure.

These differ with respect to the dependence of the evaluation function
for the tie i → j on the number of intermediate connections i → h → j :

how many
two-paths

from i to j ?
i

j

h1 h2 hs• •

3 transitive triplets effect [transTrip] ,
linear dependence (number of intermediaries);

4 transitive ties effect [transTies] ,
step function: 0 versus ≥ 1;

5 intermediate: geometrically weighted edgewise shared partners
(‘GWESP‘ [gwespFF] ; cf. ERGM), concave increasing function.
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Network Dynamics Effects

GWESP is intermediate between transitive triplets (α = ∞)
and transitive ties (α = 0).

0 1 2 3 4 5 6

0

2

4

6

s

G
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E
S

P
w

ei
gh

t

α = ∞
α = 1.2
α = 0.69
α = 0

Weight of tie i → j for s =
∑

h xihxhj two-paths.
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Network Dynamics Effects

Differences between network closure effects:

transitive triplets effect: i more attracted to j
if there are more indirect ties i → h → j ;

transitive ties effect: i more attracted to j
if there is at least one such indirect connection ;

gwesp effect: in between these two;

balance or Jaccard similarity effects (see manual):
i prefers others j who make same choices as i .

Non-formalized theories usually do not distinguish
between these different closure effects.
It is possible to ’let the data speak for themselves’ and see
what is the best formal representation of closure effects.
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Network Dynamics Effects

6 three-cycle effect [cycle3] ,
number of three-cycles in i ’s ties
(i → j , j → h, h → i)
si6(x) =

∑
j,h xij xjh xhi

i

h

j

three-cycle

This represents a kind of generalized reciprocity,
and absence of hierarchy.
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Network Dynamics Effects

7 reciprocity × transitive triplets effect [tran-
sRecTrip] ,
number of triplets in i ’s ties
combining reciprocity and transitivity
as follows
(i ↔ j , i → h, h → j)
si7(x) =

∑
j,h xij xji xih xhj

i

h

j

reciprocity ×
trans. triplet

Simultaneous occurrence of
reciprocity and network closure
(see Per Block, Social Networks, 2015.)
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Network Dynamics Effects

Degree-related effects

Degrees (distinguished in in-degrees and out-degrees)
are important characteristics of actor’s network positions.

Direct degree effects are about
how indegrees and outdegrees affect themselves and each other.

Degree assortativity effects are about the association
between the in/out-degrees of the nodes at either side of a tie.
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Network Dynamics Effects

8 in-degree related popularity effect [inPop] , sum friends’ in-degrees
si8(x) =

∑
j xij x+j =

∑
j xij

∑
h xhj

related to dispersion of in-degrees

9 out-degree related popularity effect [outPop] ,
sum friends’ out-degrees
si9(x) =

∑
j xij xj+ =

∑
j xij

∑
h xjh

related to association in-degrees — out-degrees;
10 Outdegree-related activity effect [outAct] ,

si10(x) =
∑

j xij xi+ = x2
i+

related to dispersion of out-degrees;
11 Indegree-related activity effect [inAct] ,

si11(x) =
∑

j xij x+i = xi+ x+i

related to association in-degrees — out-degrees;

(These effects can also be defined with a √ sign [...Sqrt] .)
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Network Dynamics Effects

12 Assortativity effects:
Preferences of actors dependent on their degrees.
Depending on their own out- and in-degrees,
actors can have differential preferences for ties
to others with also high or low out- and in-degrees.
Together this yields 4 possibilities:

out ego - out alter degrees [outOutAss]
out ego - in alter degrees [outInAss]
in ego - out alter degrees [inOutAss]
in ego - in alter degrees [inInAss]

All these are product interactions between the two degrees.
Here also the degrees could be replaced by their square roots.
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Network Dynamics Effects

How to specify structural part of the model?

1 Always: outdegree effect (like constant term in regression)

2 Almost always: reciprocity

3 Triadic effects: transitivity, reciprocity × transitivity, 3-cycles, etc.

4 Degree-related effects:
inPop, outAct; outPop or inAct;
perhaps √ versions; perhaps assortativity.

Of course, there are more.
Model selection:
combination of prior and data-based considerations
(Goodness of fit; function sienaGOF).
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Network Dynamics Effects

Effects of Covariates

Covariates can be

⇒ monadic: attribute of actors

⇒ dyadic: attribute of pairs of actors.

This is linked to the fundamental multilevel nature of networks, where
the levels of actors and of nodes are necessary and inseparable.

Monadic variables can have effects for incoming and for outgoing ties;
also similarity and other interaction effects.

Dyadic variables can have direct but also reciprocal effects,
effects through row or columns sums, etc. (cf. multilevel analysis).
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Network Dynamics Effects

For the effects of monadic covariates vi , a transformation
from the actor level to the tie (dyadic) level is necessary.

13 covariate-related popularity, ‘alter’ [altX]
sum of covariate over all of i ’s friends
si13(x) =

∑
j xij vj ;

14 covariate-related activity, ‘ego’ [egoX]
i ’s out-degree weighted by covariate
si14(x) = vi xi+;

15 For a binary or other categorical variable:
same covariate, ‘same’ [sameX]
number of i ’s ties to alters with same covariate
si15(x) =

∑
j xij I{vj = vi},

where I{vj = vi} = 1 if vj = vi and else 0.
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Network Dynamics Effects

16 For homophily, covariate-related similarity [simX] ,
sum of measure of covariate similarity
between i and his friends,
si16(x) =

∑
j xij sim(vi , vj)

where sim(vi , vj) is the similarity between vi and vj ,

sim(vi , vj) = 1 −
|vi − vj |

RV
,

RV being the range of V ;

17 Another type of combination is the product interaction,
covariate-related interaction, ‘ego × alter’ [egoXaltX]
si17(x) = vi

∑
j xij vj ;
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Later on, I will discuss how to treat the specification
of effects of for numerical actor variables
(‘beyond homophily’ )
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Evaluation function effect for dyadic covariate wij :

18 covariate-related preference [X] ,
sum of covariate over all of i ’s friends,
i.e., values of wij summed over all others to whom i is tied,
si18(x) =

∑
j xij wij .

If this has a positive effect, then the value of a tie i → j
becomes higher when wij becomes higher.

Here no transformation is necessary! It’s all dyadic.

Of course, more complicated effects are possible.

(E.g., for W = ‘living in the same house’, the ‘compound’ effect
‘being friends with those living in the same house as your friends’.)
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The evaluation function is defined in a myopic model,
considering only the immediately following state.

It does not reflect the eventual ’utility’
of the situation to the actor, but short-time goals
following from preferences, constraints, opportunities.

The evaluation, creation, and maintenance functions express
how changes in the network depend on its current state:
not the last observed state, but
the current state in the unobserved continuous-time process.
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Example

Data collected by Gerhard van de Bunt:
group of 32 university freshmen,
24 female and 8 male students.

Three observations used here (t1, t2, t3) :
at 6, 9, and 12 weeks after the start of the university year.
The relation is defined as a ‘friendly relation’.

Missing entries xij(tm) set to 0
and not used in calculations of statistics.

Densities increase from 0.15 at t1 via 0.18 to 0.22 at t3 .
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Very simple model: only out-degree and reciprocity effects

Model 1

Effect par. (s.e.)

Rate t1 − t2 3.51 (0.54)
Rate t2 − t3 3.09 (0.49)

Out-degree −1.10 (0.15)
Reciprocity 1.79 (0.27)

rate parameters:
per actor about 3 opportunities for change between observations;

out-degree parameter negative:
on average, cost of friendship ties higher than their benefits;

reciprocity effect strong and highly significant (t = 1.79/0.27 = 6.6)

(test using the ratio parameter estimate / standard error).
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Evaluation function is

fi(x) =
∑

j

(
− 1.10 xij + 1.79 xij xji

)
.

This expresses ‘how much actor i likes the network’.

Adding a reciprocated tie (i.e., for which xji = 1) gives

−1.10 + 1.79 = 0.69.

Adding a non-reciprocated tie (i.e., for which xji = 0) gives

−1.10,

i.e., this has negative ‘benefits’.

Gumbel distributed disturbances are added:
these have standard deviation

√
π2/6 = 1.28.
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Conclusion: reciprocated ties are valued positively,
unreciprocated ties negatively;
actors will be reluctant to form unreciprocated ties;
by ‘chance’ (the random term),
such ties will be formed nevertheless
and these are the stuff on the basis of which
reciprocation by others can start.

(Incoming unreciprocated ties, xji = 1, xij = 0 do not play a role
because for the objective function
only those parts of the network are relevant
that are under control of the actor,
so terms not depending on the outgoing relations of the actor
are irrelevant.)
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For an interpretation, consider the simple model
with only the transitive ties network closure effect. The estimates are:

Structural model with one network closure effect

Model 3

Effect par. (s.e.)

Rate t1 − t2 3.86 (0.60)
Rate t2 − t3 3.04 (0.48)

Out-degree −2.13 (0.36)
Reciprocity 1.57 (0.28)
Transitive ties 1.29 (0.40)
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Example: Personal network of ego.

ego

A

B

C

D

E

F

G

for ego:

out-degree xi+ = 4
#{recipr. ties} = 2,
#{trans. ties } = 3.
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The evaluation function is

fi(x) =
∑

j

(
− 2.13 xij + 1.57 xij xji + 1.29 xij max

h

(
xih xhj

))
(

note:
∑

j xij maxh
(
xih xhj

)
is #{trans. ties }

)
so its current value for this actor is

fi(x) = −2.13 × 4 + 1.57 × 2 + 1.29 × 3 = −1.51.
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Guideline for the next page:
For each change from ’current’ to x , the probability for this change is

prob. this =
exp(this gain)∑

all options exp(gains for option)

where the denominator includes all potential steps,
including the ‘do nothing’ step;
and exp denotes exponentiation (raising e to the power ‘gain’).
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Options when ‘ego’ has opportunity for change:

out-degr. recipr. trans. ties gain prob.

current 4 2 3 0.00 0.071

new tie to C 5 3 5 +2.02 0.532
new tie to D 5 2 4 –0.84 0.031
new tie to G 5 2 4 –0.84 0.031
drop tie to A 3 1 0 –3.30 0.003
drop tie to B 3 2 1 –0.45 0.045
drop tie to E 3 2 2 +0.84 0.164
drop tie to F 3 1 3 +0.56 0.124

The actor adds random influences to the gain (with s.d. 1.28),
and chooses the change with the highest total ‘value’.
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Model with more structural effects

Effect par. (s.e.)

Rate 1 3.90 (0.62)
Rate 2 3.21 (0.52)
Out-degree –1.46 (0.39)
Reciprocity 2.55 (0.52)
Transitive ties 0.51 (0.40)
Transitive triplets 0.62 (0.14)
Transitive reciprocated triplets –0.65 (0.23)
Indegree - popularity –0.18 (0.07)
convergence t ratios all < 0.08.

Overall maximum convergence ratio 0.13.

Conclusions:

Reciprocity, transitivity;
negative interaction
transitivity – reciprocity;
negative popularity effect;
transitive ties not needed.
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Add effects of gender & program, smoking similarity
Effect par. (s.e.)

Rate 1 4.02 (0.64)
Rate 2 3.25 (0.52)
outdegree (density) –1.52 (0.41)
reciprocity 2.35 (0.46)
transitive triplets 0.61 (0.13)
transitive recipr. triplets –0.58 (0.21)
indegree - popularity –0.16 (0.07)
sex alter 0.72 (0.27)
sex ego –0.04 (0.26)
same sex 0.42 (0.23)
program similarity 0.69 (0.26)
smoke similarity 0.29 (0.19)
convergence t ratios all < 0.1.

Overall maximum convergence ratio 0.12.

Conclusions:
men more popular
(minority!)
program similarity.
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Extended model specification

1. Creation and maintenance effects

tie creation is modeled by
the sum evaluation function + creation function;

tie maintenance is modeled by
the sum evaluation function + maintenance function.

(‘maintenance function’ = ‘endowment function’)

Estimating the distinction between creation and maintenance
requires a lot of data.
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Add maintenance effect of reciprocated tie
Effect par. (s.e.)

Rate 1 5.36 (0.97)
Rate 2 4.13 (0.74)

outdegree –1.68 (0.37)
reciprocity: evaluation 1.27 (0.50)
reciprocity: maintenance 3.58 (1.02)
transitive triplets 0.55 (0.10)
transitive reciprocated triplets –0.59 (0.22)
indegree - popularity –0.14 (0.06)
sex alter 0.65 (0.26)
sex ego –0.21 (0.28)
same sex 0.39 (0.23)
program similarity 0.83 (0.25)
smoke similarity 0.37 (0.18)
convergence t ratios all < 0.06.

Overall maximum convergence ratio 0.16.

Transitive ties
effect omitted.
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Evaluation effect reciprocity: 1.27
Maintenance reciprocated tie: 3.58

The maintenance effect is significant.

The overall (combined) reciprocity effect was 2.35.
With the split between the evaluation and maintenance effects,
it appears now that the value of reciprocity
for creating a tie is 1.27,
and for withdrawing a tie 1.27 + 3.58 = 4.85.

Thus, there is a very strong barrier
against the dissolution of reciprocated ties.
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Extended model specification
2. Non-constant rate function λi(α, ρ, x) .

This means that some actors change their ties
more quickly than others,
depending on covariates or network position.

Dependence on covariates:

λi(α, ρ, x) = ρm exp(
∑

h

αh vhi) .

ρm is a period-dependent base rate.

(Rate function must be positive; ⇒ exponential function.)
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Dependence on network position:
e.g., dependence on out-degrees:

λi(α, ρ, x) = ρm exp(α1 xi+) .

Also, in-degrees and ♯ reciprocated ties of actor i may be used.

Dependence on out-degrees can be useful especially if there are
large ‘size’ differences between actors, e.g., organizations;
then the network may have different importance for the actors
as indicated by their outdegrees.

Now the parameter is θ = (ρ, α, β, γ).
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Continuation example

Rate function depends on out-degree:
those with higher out-degrees
also change their tie patterns more quickly.

Keep the maintenance function depending on tie reciprocation:
Reciprocity operates differently for tie initiation than for tie withdrawal.
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Parameter estimates model with rate and maintenance effects

Effect par. (s.e.)

Rate 1 4.382 (0.781)
Rate 2 3.313 (0.582)
outdegree effect on rate 0.027 (0.027)
outdegree (density) –1.611 (0.394)
reciprocity: evaluation 1.320 (0.514)
reciprocity: maintenance 3.439 (1.100)
transitive triplets 0.518 (0.101)
transitive reciprocated triplets –0.569 (0.219)
indegree - popularity –0.145 (0.062)
sex alter 0.629 (0.272)
sex ego –0.207 (0.283)
same sex 0.395 (0.235)
program similarity 0.859 (0.260)
smoke similarity 0.386 (0.185)
convergence t ratios all < 0.18.

Overall maximum convergence ratio 0.21.
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Conclusion:

non-significant tendency that actors with higher out-degrees
change their ties more often (t = 0.027/0.027 = 1.0),
and all other conclusions remain the same.
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3. Non-directed networks

The actor-driven modeling is less straightforward
for non-directed relations,
because two actors are involved in deciding about a tie.

See chapter by Snijders & Pickup in
Oxford Handbook of Political Networks (2017).

Various modeling options are possible:

Always, the decision about the tie is taken on the basis of
the objective functions fi , fj of one or both actors.
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1 D.1: Forcing model:
one actor takes the initiative and unilaterally imposes
that a tie is created or dissolved.

2 M.1: Unilateral initiative with reciprocal confirmation:
one actor takes the initiative and proposes a new tie
or dissolves an existing tie;
if the actor proposes a new tie, the other has to confirm,
otherwise the tie is not created.
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3 M.2: Pairwise conjunctive model:
a pair of actors is chosen and reconsider whether a tie
will exist between them; a tie will exist if both agree.

4 D.2: Pairwise disjunctive (forcing) model:
a pair of actors is chosen and reconsider whether a tie
will exist between them;
the first one (randomly chosen) decides about the tie change.

5 C.2: Pairwise compensatory (additive) model:
a pair of actors is chosen and reconsider whether a tie
will exist between them; this is based
on the sum of their ‘evaluations’ for the existence of this tie.
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Option D.1 is close to the actor-driven model for directed relations.

In options M.2, D.2, C.2, the pair of actors (i , j) is chosen
depending on the product of the rate functions λi λj

(under the constraint that i ̸= j ).

This means that the numerical interpretation of the rate function
differs between options D.1, M.1 compared to M.2, D.2, C.2.

The choice between these models is done by
parameter modelType in sienaAlgorithmCreate.

The default in RSiena is modelType=2, which is D.1;
but modelType=3, which is M.1, often is preferable!
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Change and the Stochastic Actor-oriented Model

Parameters in the actor-oriented model determine how change occurs,
but are not directly reflected by changes in network features.

Note that even though the conditional probabilities
as determined by the objective function are constant
(unless the model contains time-dependent covariates),
the network itself may and usually will be changing
in the direction of some dynamic equilibrium
(like all Markov processes).

‘Constant transition distribution, changing marginal distribution’
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Change and the Stochastic Actor-oriented Model (2)
Example : a positive transitivity parameter means that
there is a systematic tendency favoring transitivity;
but it does not mean that on average, transitivity is increasing,
because there also are random tendencies away from transitivity.

For a network that starts with little transitive closure
a positive transitivity parameter will imply increasing transitivity;
but for a network that starts highly transitive,
a positive transitivity parameter may go together
with decreasing transitivity.

Next page shows a simulation example, combining
two different parameters and two different starting networks,
of which one is observed and the other artificial (reduced transitivity).
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β3 = 0.25, observed starting network
β3 = 0.25, artificial starting network
β3 = 0, observed starting network
β3 = 0, artificial starting network

Artificial initial network:
reduced transitivity
(light colors)

β3 = transitivity parameter
in simulations
(blue/red: 0.25; green: 0)

Blue/red curves have same parameters but different starting networks;

green curves likewise.
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Model specification
For a good model specification, we need to start with reflection about
what might influence the creation and disappearance of network ties,
balancing between what is theoretically likely or possible
and what is empirically discernible.

But we still know little about network dynamics.

outdegree effect: balances between creation-termination of ties;
reciprocity: ‘always’ there;
transitivity: also ‘always’ there,
but has several possible representations;
degree effects:
outdegrees vary because of (e.g.) response tendencies or
resource differences, indegrees vary because of (e.g.) popularity
or status differences, should be included by default.

© Tom A.B. Snijders Groningen & Oxford Methods for Network Dynamics A February, 2024 92 / 93



Model specification

Model specification: continued

For larger networks, the structure of the environment
and the associated meeting opportunities must be represented;
e.g., ‘same classroom’, distance, ‘same sector’.

Interactions are possible, also between covariates and structure.

Some checks for the model specification can be obtained
by studying goodness of fit for distributions of indegree / outdegrees,
triad census, distribution of geodesic distances.

It is currently unknown how robust results are for misspecification.

Further see the slides Model specification recommendations for Siena
http://www.stats.ox.ac.uk/~snijders/siena/Siena_ModelSpec_s.pdf
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