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Multiple Parallel Networks Sample from a population of networks

Traditionally, network analysis tended to consist of
cases studies of single networks.

However, it is preferable to generalize to
a population of networks.

This is permitted, in principle, by
multilevel network analysis in the sense of analyzing
multiple similar networks, mutually independent.

This was proposed by Snijders & Baerveldt
(J. Math. Soc. 2003).

Also see Entwisle, Faust, Rindfuss, & Kaneda (AJS, 2007)
who also gave on overview of empirical work
involving multiple networks.

.
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Multiple Parallel Networks Sample from a population of networks

Sample from Population of Networks

Suppose we have a sample indexed by j = 1, . . . ,N
from a population of networks,
where the networks are ‘replications’ of each other
in the following sense:

they all are regarded as realizations of
processes obeying the same model,
but having different parameters θ1, . . . , θj, . . . , θN .

.
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Multiple Parallel Networks Sample from a population of networks

Several approaches are possible for combining such data:

1 Meta analysis: no population assumption:
Fisher combination of independent tests.

2 Meta analysis: population assumption ∼ random effects,
no distributional assumptions:

two-stage meta analysis.

3 Meta analysis: population assumption ∼ random effects,
assume multivariate normal distribution for θj :
integrated hierarchical approach.

.
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Multiple Parallel Networks Fixed effects

Meta-Analysis ∼ Fixed Effects Model:

θ1, . . . , θj, . . . , θN are arbitrary values,
no assumption about a population is made.

two-stage procedure:

estimate each θj separately, combine the results by
Fisher’s procedure for combining independent tests:

‘is there any evidence for a hypothesized effect?’

.

© the SIENA crew Multilevel Networks 4 / 28



Multiple Parallel Networks Fixed effects

Meta-Analysis ∼ Fixed Effects Model:

θ1, . . . , θj, . . . , θN are arbitrary values,
no assumption about a population is made.

two-stage procedure:

estimate each θj separately, combine the results by
Fisher’s procedure for combining independent tests:

‘is there any evidence for a hypothesized effect?’

.

© the SIENA crew Multilevel Networks 4 / 28



Multiple Parallel Networks Fixed effects

Meta-Analysis ∼ Fixed Effects Model (contd.):

For coordinate k of the parameter, test null hypothesis

H0 : θkj = 0 for all j

against alternative hypothesis

H1 : θkj = 0 for at least one j .

(Two-sided variants also are possible; SIENA manual.)

Procedure: see, e.g., Snijders & Bosker Section 3.7.

Mercken, Snijders, Steglich, & de Vries (2009)
applied this in a study of smoking initiation:
7704 adolescents in 70 schools in 6 countries.

.
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Multiple Parallel Networks Random effects: two-stage procedure

Meta-Analysis ∼ Random Effects Model:
θ1, . . . , θj, . . . , θN are drawn randomly
from a population P[net] of networks,
no further distributional assumptions are made.

Two-stage procedure:

estimate each θj separately,
combine the results in a meta-analysis (Cochran 1954),
(‘V-known problem in multilevel analysis)
which allows testing hypotheses about P[net]

such as, for a coordinate k ,

Htotal
0 : all θkj = 0;

Hmean
0 : E{θkj} = 0;

H
spread
0 : var{θkj} = 0.

.

© the SIENA crew Multilevel Networks 6 / 28



Multiple Parallel Networks Random effects: two-stage procedure

Meta-Analysis ∼ Random Effects Model:
θ1, . . . , θj, . . . , θN are drawn randomly
from a population P[net] of networks,
no further distributional assumptions are made.

Two-stage procedure:

estimate each θj separately,
combine the results in a meta-analysis (Cochran 1954),
(‘V-known problem in multilevel analysis)
which allows testing hypotheses about P[net]

such as, for a coordinate k ,

Htotal
0 : all θkj = 0;

Hmean
0 : E{θkj} = 0;

H
spread
0 : var{θkj} = 0.

.
© the SIENA crew Multilevel Networks 6 / 28



Multiple Parallel Networks Random effects: two-stage procedure

The input for the meta-analysis consists of
estimates θ̂j and their standard errors s.e.j.

The meta analysis is constructed based on the model

θ̂j = μ + Uj + Ej ,

where μ is the population mean,
Uj is the true effect of group j,
and Ej is the statistical error of estimation.

Uj and Ej are independent residuals with mean 0,
the Uj are i.i.d. with unknown variance,
and var(Ej) = s.e.2

j
(‘V–known’).

Implemented in MLwiN, HLM, R package Metafor,
RSiena function siena08.

.
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Multiple Parallel Networks Random effects: integrated procedure

Meta-Analysis ∼ Integrated Random Effects Model:
θ1, . . . , θj, . . . , θN are drawn randomly
from a population P[net] of networks,
and are assumed to have
a common multivariate normal N (μ,Σ) distribution,
perhaps conditionally on network-level covariates.

Integrated procedure:

Estimate μ and Σ and consider the
‘posterior’ distribution of θj given the data.

Advantage:
The analysis of the separate networks draws strength from
the total sample of networks by regression to the mean.

Useful especially for many small networks.

.
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Multiple Parallel Networks Random effects: integrated procedure

Meta-Analysis ∼ Integrated Random Effects Model (contd.)

New developments
for the stochastic actor-oriented model for network dynamics,
implemented in the SIENA program.

Recall that this is a model for network dynamics,
where the dynamics is
an unobserved sequence of ‘micro steps’
and the parameters are estimated from network panel data.

This is elaborated following a likelihood-based approach;
see Koskinen & Snijders (JSPI 2007),
Snijders, Koskinen & Schweinberger (AAS 2010),
Schweinberger (PhD thesis 2007, Chapters 4 and 5).

.

© the SIENA crew Multilevel Networks 9 / 28



Multiple Parallel Networks Random effects: integrated procedure

Meta-Analysis ∼ Integrated Random Effects Model (contd.)

New developments
for the stochastic actor-oriented model for network dynamics,
implemented in the SIENA program.

Recall that this is a model for network dynamics,
where the dynamics is
an unobserved sequence of ‘micro steps’
and the parameters are estimated from network panel data.

This is elaborated following a likelihood-based approach;
see Koskinen & Snijders (JSPI 2007),
Snijders, Koskinen & Schweinberger (AAS 2010),
Schweinberger (PhD thesis 2007, Chapters 4 and 5).

.
© the SIENA crew Multilevel Networks 9 / 28



Multiple Parallel Networks Random effects: integrated procedure

Here we discuss a Bayesian approach, where the parameters
μ,Σ have a prior distribution. We assume the conjugate prior,

Σ−1 swishartp(Λ−1
0 , ν0), and conditionally on Σ

μ | Σ s Np(μ0,Σ/κ0) .

Thus, the parameters of the prior are Λ0, ν0, κ0.

For the ‘basic rate parameters’ ρ, normal distributions
are assumed after transforming to

p
ρ,

representing the greater relative uncertainty at higher levels
(with pragmatic truncation to ensure positivity).

.
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Multiple Parallel Networks Random effects: integrated procedure

The joint p.d.f., for data y1, . . . , yj, . . . , yN, is

fInvWish
�

Σ | Λ−1
0 , ν0
�

ϕp
�

μ | μ0,Σ/κ0
�

prior

×
∏N

j=1 ϕp(θj | μ,Σ) hierarchical model

×
∏N

j=1 pSAOM(yj | θj) network model

Since pSAOM(yj | θj) cannot be calculated directly,
we employ data augmentation (Tanner & Wong, 1987):
augment the network panel data by the sequence vj
of all microsteps connecting the consecutive observations.

.
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Multiple Parallel Networks Random effects: integrated procedure

The joint p.d.f., for data y1, . . . , yj, . . . , yN,
using data augmentation, is the sum over vj of

fInvWish
�

Σ | Λ−1
0 , ν0
�

ϕp
�

μ | μ0,Σ/κ0
�

prior

×
∏N

j=1 ϕp(θj | μ,Σ) hierarchical model

×
∏N

j=1 pSAOM(vj | θj, yj) . network model

The posterior distribution can be sampled
by Markov chain Monte Carlo (MCMC).
The unknown random variables are

μ,Σ; θ1, . . . , θN; v1, . . . , vN

and these are sampled in turn, as follows.

.
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Multiple Parallel Networks Random effects: integrated procedure

1 For all j make some Metropolis Hastings steps
sampling vj | yj, θj,
as in Snijders, Koskinen & Schweinberger (2010).
This is implemented already for the Maximum Likelihood
estimation procedure in SIENA.
Works well, but time consuming.

2 For all j make one or more Metropolis Hastings steps
sampling θj | vj, μ,Σ,
using a random walk proposal distribution
(Schweinberger 2007, Ch. 5.4;
Koskinen & Snijders 2007, Sect. 4.4).
Covariance matrix for proposals obtained as
covariance matrix of groupwise MoM estimators
approximated at quick and easy initial values,
and scaled to obtain ∼ 40% acceptance rates.

.
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Multiple Parallel Networks Random effects: integrated procedure

3 Sample (μ,Σ) | θ1, . . . , θN,Λ0, ν0, κ0

from the full conditional distribution
(Gibbs sampling step).

This requires tuning to obtain good mixing – as usual.

Still time-consuming.

.
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Example: Andrea’s data

Example: data Andrea Knecht
As an example,
we use friendship networks in 21 school classes
from the study by Andrea Knecht (PhD thesis Utrecht, 2008);
see Knecht, Snijders, Baerveldt, Steglich, & Raub,
‘Friendship and Delinquency:
Selection and Influence Processes in Early Adolescence’,
Social Development, 2010.

We consider a model for a longitudinal study with 2 waves,
and with 9 parameters:
rate of change; outdegree; reciprocity; transitive triplets;
3-cycles; delinquency ego, alter, ego × alter; sex similarity.

.
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Example: Andrea’s data

The Bayesian MCMC procedure produces, if there is
convergence
(i.e., hopefully, after a burn-in period),
a sample from the posterior distribution of all the parameters,
both the θj referring to the individual sampled networks,
and μ and Σ referring to the population of networks.

The inference is based on these sampled posterior
distributions.

Two kinds of plot will be given:

1 trace plots, representing successive draws from the
posterior distribution (after thinning),

2 density plots, representing the plausible values of the
parameters, given the observed data.

.
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Example: Andrea’s data

For the MCMC algorithm, we used:

1 groupwise number of MH iterations for sampling
micro-steps varies between 75–500 depending on
distance between observed networks;

2 2,000 iterations sampling θj, μ,Σ for warmup

3 20,000 iterations sampling θj, μ,Σ for estimation,
with a thinning ratio of 1:20.

.
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Example: Andrea’s data

Trace plots for (e.g.) group 3, structural effects:

.
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Example: Andrea’s data

Trace plots for group 3, covariate effects:

.
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Example: Andrea’s data

Trace plots average posterior θ̄.: structural effects

.
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Example: Andrea’s data

Trace plots average posterior θ̄.: covariate effects

.
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Example: Andrea’s data

Trace plots of posterior μ: structural effects

.
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Example: Andrea’s data

Trace plots of posterior μ: covariate effects

.
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Example: Andrea’s data

Trace plots of posterior σk: structural effects

.
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Example: Andrea’s data

Trace plots of posterior σk: covariate effects

.
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Example: Andrea’s data

Density plots for del. ego × del. alter; groups 3,4

.

© the SIENA crew Multilevel Networks 26 / 28



Example: Andrea’s data

Density plots for sex similarity; groups 3,4

.
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The End

Conclusion

The method seems to work well.

It is promising for analyzing collections of small networks;
however, time-consuming.

Note the much larger posterior uncertainty for μ
compared to θ̄. ;
this is a general feature of multilevel modeling,
more apparent for small numbers of highest-level units.

.

© the SIENA crew Multilevel Networks 28 / 28


	Multiple Parallel Networks
	Sample from a population of networks
	Fixed effects
	Random effects: two-stage procedure
	Random effects: integrated procedure

	Example: Andrea's data
	The End

