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Glossary

Actors The social actors who are represented by the nodes of the network, and
indicated by a label denoted 7 or j in the set 1, ..., n.

Behavior An umbrella term for changing characteristics of actors, considered
as components of the outcome of the stochastic system: e.g., behavioral
tendencies or attitudes of human actors, performance, etc. Each behavior
variable Z; is assumed to be measured on an ordinal discrete scale with
values 1,2, ..., M, for some M, > 2. The value of behavior variable 7},
for actor ¢ is denoted Z;;,.

Change determination process The stochastic model defining the probability
distribution of changes, conditional on the event that there is an opportu-
nity for change.

Change opportunity model The stochastic process defining the moments where
tie indicators can change. This can be either fie-based, meaning that an
ordered pair of actors (i, 7) is chosen and the possibility arises that the tie
variable from ¢ to j is changed; or actor-based, meaning that an actor ¢ is
chosen and the possibility arises that one of the outgoing tie variables from
actor ¢ is changed.

Covariates Variables which can depend on the actors (actor covariates) or on
pairs of actors (dyadic covariates), and which are considered to be determin-
istic, or determined outside of the ‘stochastic system’ under consideration.

Effects Components of the objective function.

Influence The phenomenon that change probabilities for actors’ behavior depend
on the network positions of the actors, usually in combination with the cur-
rent behavior of the other actors.

Markov chain A stochastic process where the probability distribution of future
states, given the present state, does not depend on past states.

Method of moments A general method of statistical estimation, where the pa-
rameters are estimated in such a way that expected values of a vector of
selected statistics are equal to their observed values.

Network A simple directed graph representing a relation on the set of actors with
binary tie indicators .X;; which can be regarded as a state which can change,
but will normally change slowly.



Objective function Usually denoted by f;; the informal description is that this
is a measure of how attractive it is to go from an old to a new state. More
formally, when there is an opportunity for change, the probability of the
change is assumed to be proportional to the exponential transform of the
objective function.

The objective function has a similar role as the linear predictor in general-
ized linear models in statistics, and is specified here as a linear combination
of effects.

Rate function Usually denoted by A, the expected number of opportunities for
change per unit of time.

Selection The phenomenon that change probabilities for network ties depend on
the behavior of one or both of the two actors involved.

Tie indicator A variable X;; indicating by the value X;; = 1 that there is a tie
1 — j, and by the value O that there is no such tie. Also called tie variables.

I. Definition

Social networks represent the patterns of ties between social actors. To analyze
empirically the mechanisms that determine creation and termination of ties, es-
pecially if several mechanisms that may be complementary are studied simulta-
neously, statistical methods are needed. This chapter is aimed at the case that
network panel data are available to the researcher, and treats recently developed
statistical models for such data, with corresponding estimation methods. To rep-
resent the feedback processes inherent in network dynamics, it is helpful to regard
such panel data as momentary observations on a continuous-time stochastic pro-
cess on the space of directed graphs. Tie-oriented and actor-oriented stochastic
models are presented, which can reflect endogenous network dynamics as well
as effects of exogenous variables. These models can be regarded as agent-based
models, and they can be implemented as computer simulation models. To estimate
the parameters of the model, stochastic approximation methods can be used. So-
cial networks are especially interesting because they are important influences on
individual behavior — and in turn the network ties are influenced by individual be-
havior. This two-way influence can be represented by models for the co-evolution
of networks and changeable actor attributes. Such models, and statistical methods
to analyze panel data on networks and behavior, are also treated. An extensive
example is discussed about friendship among teenagers in a school setting.



II. Introduction

When we think of social networks, it is quite natural to think of them as being
dynamic. Ties are established, gain in strength, they can blossom and decay, and
they may wither or be terminated with a bang. This applies to all kinds of relations
— friendship or collaboration between humans, joint ventures between companies,
bilateral agreements between countries, and so on. (Note that all these are exam-
ples of ‘positive’ ties; ‘negative’ ties are not dealt with in this chapter). It is also
natural to think of such changes as being dependent on characteristics of the nodes
— inclinations and abilities of humans, resources of companies, locations and ca-
pacities of countries — and on characteristics of pairs of nodes such as similarity
or spatial proximity, as well as on the existing network structure — reciprocation
of friendships, transitive closure of friendships (which is the case when friends of
friends become friends), group formation of companies or countries. Finally, we
are not surprised when such network changes have repercussions — friendships are
often thought to have good or bad influences on the individuals concerned, agree-
ments between companies and between countries will have consequences for the
performance of the companies and for how the countries fare. Indeed, in the cases
of the companies and countries, the links often are created with the purpose of
having beneficial consequences for the companies or countries, respectively.

This sets the stage for this chapter, which is concerned with inferential data
analysis for network dynamics. The focus is on social networks, and the nodes, or
vertices, in the network will be referred to as (social) actors. Data analysis means
that methods will be presented for analyzing empirical data on network change.
Inference means that the aim is to have methods for testing hypotheses about
mechanisms that may drive the network dynamics, and for estimating parameters
that figure in such mechanisms. As usual in statistical inference, the ‘mecha-
nisms’ will be expressed as probability models, also called stochastic models.
For hypothesis testing it must be possible to play off one theory against another,
which means that when we have theories, or mechanisms, 7} and 75, that are not
contradictory but could occur together, we need models which can express both
mechanisms simultaneously and reflect each mechanism in a set of parameters.
The mechanism operates if some of its parameters are nonzero. Then we can test
the null hypothesis that 77 operates but not 75, against the alternative hypothesis
that both mechanisms operate; in other words, we can test for 7, while control-
ling for 7). This requires flexibility of the stochastic models being used: what was
stated above implies that it must be possible to specify the models in diverse ways,
e.g., with some parameters for effects of actor characteristics and others for effects
of various aspects of the existing network structure, and these parameters being
estimable from observed data. For data consisting of independent observations
the elaboration of these principles of statistical inference in the linear regression
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model and its generalizations is well known. Network data have the complicating
feature that they are not composed of independent observations: the occurrence,
creation, or termination of one tie is highly dependent on the existence of other
ties. Therefore more complex statistical models are needed, giving an adequate
representation of the mutual dependence between the existence of various ties be-
tween the actors in the network. But readers who are acquainted with generalized
linear statistical models will see that, although the models treated in this chap-
ter have this greater complexity, many elements known from generalized linear
models do play a role.

Social network analysis is concerned with diverse types of networks which can
be represented by diverse data structures: simple graphs and their generalizations.
In line with the current state of the statistical methodology for network dynamics,
this chapter is restricted to data structures where the changing network is a chang-
ing simple directed graph, where the arcs represent social ties that can be regarded
as states rather than events. This means that, although changeable, the ties have in-
ertia, a tendency to endure. Friendship between humans and agreements between
companies are examples of states; conversations and momentary transactions are
events. For networks where ties are states, the dependence between ties can be
represented by assuming that changes in the network are dependent upon the ex-
isting network structure. In mathematical terms, this is to say that it is reasonable
to assume that — given the available ‘independent’ or ‘explanatory’ variables — the
network is a Markov chain. A Markov chain is a stochastic process where the
probability distribution of future states, given the present state, does not depend
on the past states. Such models were first proposed for network dynamics by [22]
and elaborated by [59]. For some sociological applications outside the realm of
networks, see [2, 10]. For a network of events (e.g., the network of conversa-
tions ongoing at each given moment) the assumption of a Markov chain would
be untenable. For a network of states (e.g., the network of joint ventures between
companies) the Markov assumption is usually not totally realistic but can be used
as a first approximation, and in many cases is the best assumption one can make
given the limitation of the available data. This assumption often can be made more
plausible by using relevant explanatory variables.

In the start of this introduction, ties were portrayed as possibly gaining in
strength or decaying. It would be attractive to reflect this by measuring the ties on
an ordinal scale. This is not considered here: we are dealing with simple and not
with valued directed graphs, and the fie indicators, which are the variables X;;
indicating how actor ¢ is tied to actor j, are constrained to having the values 0 or
1, indicating, respectively, absence and presence of the tie ¢ — j. The restriction
to binary tie variables is in line with traditional network analysis, but extensions
to valued ties are important and are the subject of current work. The Markov
assumption will often be more reasonable for valued than for binary ties.
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The assumption that we are dealing with a network of relational states must
be reflected by the way in which the ties are measured. Measurement in social
network analysis is a subject which tends to receive too little attention, and this
chapter is no exception. In practice, ties will have to be measured in such a way
that observing a tie is a good indicator for the relational state being investigated,
such as friendship or collaboration. When the relation under study is a type of
communication, which usually has an ephemeral nature, it will be necessary to
aggregate the communication over a sufficiently long time interval, so that the
resulting variable can be regarded as indicative of a relational state. For example,
[25] aggregated email communication to the binary tie variable defined by at least
one email being sent over a 60-day period. In other situations, shorter or longer
periods may be relevant.

III. Stochastic models for network dynamics

This section presents stochastic models for use in statistical modeling. The in-
ferential aspects (parameter estimation and testing of hypotheses) are treated in
Section IV. These models were applied, e.g., to the testing of theories about dy-
namics of friendship networks [12, 55, 57], of trust networks in firms [56], of
artistic prestige [13], and of ties between venture capital firms [8].

The network is represented by the node set {1,...,n} with tie variables x;;,
where x;; = 1 or 0 indicates whether the tie ¢« — j is present or absent. The tie
variables are collected in the n X n adjacency matrix © = (xw) Self-ties are
excluded, so that z;; = 0 for all 2. The concepts of network (directed graph) and
matrix (its adjacency matrix) will be used interchangeably, depending on what is
most convenient. In accordance with the usual notation in probability and statis-
tics, random variables will be indicated by capitals; and observations, or other
non-random variables, by small letters. The ties are assumed to be outcomes of
time-dependent random variables, denoted by X;;(¢) and collected in the time-
dependent random matrix X ().

In addition to the network X (¢), which can be regarded as the dependent vari-
able of the model, there can be other variables regarded as independent or ex-
planatory variables in the sense that their values are not modeled but accepted as
given, and they may influence the network. Such variables are called covariates
and when depending on the actors they are denoted v;, while if they depend on
pairs of actors (dyads) the notation is w;;. Examples are the age of actors (actor
variable) and their spatial proximity (dyadic variable).



Basic model definition
The following basic assumptions are made.

1. Time, denoted by ¢, is a continuous variable.
This does not mean that it is assumed that observations are made continu-
ously; in most practical cases, observations are made at a number (perhaps
a small number) of discrete time moments. However, it is natural and math-
ematically convenient to assume that there is an underlying process X ()
(which may be observed only partially) which proceeds in continuous time.

2. X(t) is a Markov process.

This means that the conditional distribution of future states depends on the
past only as a function of the present. In other words, to predict the future
it is sufficient to know the present state of the network, and knowledge of
past states will not improve predictability. This assumption was discussed
above. It can be expressed by saying that the network represents a state,
and usually goes together with inertia, i.e., the tendency of ties to remain in
existence unless something special happens.

3. At any given moment ¢, no more than one tie variable X;(¢) can change.
This assumption, first proposed by [22], means that changes of ties are
not directly coordinated, and ties are mutually dependent only because tie
changes will depend on the current total configuration of ties. This is an
important simplifying condition and excludes, for example, partner swap-
ping and the coordinated formation of groups. Changes of several ties are
decomposed as sequences of changes of single ties.

These assumptions still allow an extremely wide array of probability models, and
further specification is necessary. In network change, two aspects can be distin-
guished: the frequency of tie change, which may depend on the actors involved;
and the network structures that tend to be formed by the tie changes — the ‘di-
rection” of change. Examples of the former are that younger individuals might
change their friendship ties more frequently than older individuals, or that more
central actors might change their ties more frequently than peripheral actors. Ex-
amples of the latter are tendencies toward tie reciprocation, and toward transitive
network closure. These two aspects will be represented by distinct components of
the model and distinct parameters, which allow the inference about the one aspect
to be relatively undisturbed by inference about the other aspect. The first com-
ponent is the change opportunity process, the second the change determination
model.



Change opportunity process.

Two specifications of the change opportunity process are given. They use the
concept of a Poisson process, which is a stochastic process of events occurring at
a certain rate A\, which means that the probability that an event occurs in the time
interval from ¢ to £+ ¢, where € is a small positive number, is given (in the limit for
¢ tending to 0) by Ae. One could say that the rate is the probability of occurrence
per unit of time (in short time intervals).

Two specifications of the opportunity process are given here.

1. Tie-based change opportunities.

For each tie variable X;;, opportunities for change
occur according to a Poisson process with rate \;;.

2. Actor-based change opportunities.

For each actor 7, opportunities to establish one new outgoing tie
t — j, or dissolve one existing tie ¢ — 7,
occur according to a Poisson process with rate \;.

The rates A\ can be constant, or depend on covariates or functions of the cur-
rent state of the network; if they are not constant, they are called rate functions.
Tie-based rates \;;, for example, could depend on the proximity between actors
or on their joint embeddedness such as the current number of common friends
> n Xin(t) X;n(t). Actor-based rates \; could depend on actor variables or on
positional variables such as actor ¢’s current outdegree » _; Xi;(t).

Tie-based change opportunities were proposed by Robins and Pattison (per-
sonal communication), and correspond to the Gibbs sampling and Metropolis-
Hastings procedures for simulating exponential random graph models, see [42].
Actor-based change opportunities were proposed by [46].

When an opportunity for change occurs, there is, in each opportunity model, a
set of potential new networks that could be the result of the change. Denoting the
current network by x°, for the tie-based opportunity model this set can be denoted
by C;;(x°). This is the set of the two possible matrices 2z where all elements other
than x;; are equal to those in the current matrix 2%, and where x;; itself can be
either O or 1. In the actor-based opportunity model actor ¢, when confronted with
an opportunity for change, chooses one of his outgoing tie variables and changes
this into its opposite value, changing O to 1 (creating a new tie) or changing 1 to 0
(terminating an existing tie). Therefore the set of potential new networks here is
the set composed of z° itself together with the n — 1 matrices which are equal to
2° except for exactly one non-diagonal element in line i which is replaced by its

opposite, z;; = 1 — ;.



The set of new possible states is denoted in shorthand applicable to either case
by C(x°). Since it is allowed that the current situation is continued, it always holds
that z° € C(2).

Change determination model.

The choice of the new state of the network is dependent on what is called the
objective function, which is a function f;(z°, x,v,w) depending on the current
state of the network 2, the potential new state x, the actor 7, and the covariates
summarized here as v (actor covariates) and w (dyadic covariates). The objective
function can be interpreted informally as a measure of how attractive it is for actor
i to change from state 2° to state .

When actor 7 has the opportunity to change some outgoing tie variable
X;, given that currently X (¢) = a°,

the set of possible new states of the network is denoted C(x?).

All z € C(P) differ from x° by at most one element z;; for some j.
When there is an opportunity for change from the current state z°,
the probabilities of the values of the next state z € C(z°)

are proportional to exp ( fi(2° v, w))

The models can be summarized as follows. For the tie-oriented model, when
an opportunity for change occurs, it refers to some pair (4, j); opportunities for
changing X;; occur at a rate \;; for each pair (7, j). When such an opportunity
occurs, the probability that 2° changes to the different state x is given by
P{X (t) changes to = | (, j) has a change opportunity at time ¢, X () = 2°}
exp (fi(mo,:v,v,w)) (1
exp (fi(:vo, 29, v, w)) + exp (fi(xo, x,v, w)) ’

= pi;(2°, 2,0, w) =
where z and 2 are identical except for z;; = 1 — ;.

For the actor-oriented model, opportunities for change occur for actors 7. Op-
portunities for actor ¢ to change one of the outgoing tie variables X;; (j = 1,...,n;j #
1) occur at a rate ;. The set of permitted new states, following on a given cur-
rent state x°, is C(2°). The probability that the new state is z, provided that z is
permitted (i.e., z € C(z2)), is given by

P{X (t) changes to = | i has a change opportunity at time ¢, X (¢) = 2°}
exp (fi(2%, 2, v, w)) @)
Zm’EC(mO) exXp (f,‘(l’o,]}/,l),w)) '

= pi<x0a z,v, U)) =
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The two model components can be put together by giving the transition rate ma-
trix, also called ()-matrix, of which the elements are defined by

P{X(t+dt) =z | X(t) =2"}

= 1 0
qz0 d%% dt (LU 7& T )

(see textbooks on continuous-time Markov chains, such as [34]). Note that the
assumptions imply that

¢, = 0 whenever z;; # x?j for more than one element (i, j).

For digraphs z and 2° which differ from each other only in the element with index
(i, 7), the elements of the ()-matrix are given for the tie-based opportunity process
by

Q00 = Nij (:UO, v, W) Dij (xo, T, v, W) 3)

and for the actor-based opportunity process by

Qo = )\i(:to,v,w)pi(xo,m,v,w) ) 4)
Tie-based models with constant change rates and objective functions defined as
f(x,v,w) (not depending on the preceding state x° or on the actor ) can be re-
garded as Metropolis-Hastings dynamics (cf. [34]) for obtaining random draws
from the digraph probability distribution with probability function

¢ exp (f(x, v, w))

where c is a normalizing constant. In statistical mechanics f(x,v,w) then will be
called a potential function, see [32]. When f(x, v, w) is a linear combination as
in (6) below, the distribution is an exponential random graph model for which the
Metropolis-Hastings algorithm is treated in [42].

The actor-based opportunity model was proposed in [46] and, for a different
data structure, in [45], as a stochastic actor-oriented model. In this model, the
network dynamics is regarded as being driven by the social actors. Actors are
assumed to control their outgoing ties, subject to inertia and the current network
structure. This point of view is in accordance with the methodological approach of
structural individualism [54, 60], where actors are assumed to be purposeful and to
behave subject to structural constraints. The purposes and constraints of the actors
are summarized in the objective functions. One way to obtain the probabilities (2)
is to assume that at each opportunity for change, actor ¢ myopically optimizes the
objective functions plus a random term, under the constraint that only one tie can
change at a time. The myopia means that the actor only optimizes the state of the
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network that will be the immediate result of this change, without considering later
network structures that might result in the future further ahead. The random term
expresses otherwise unmodeled purposes and constraints. When the random terms
have independent Gumbel distributions (the precise mathematical form of which
does not matter for the present exposition), the choice probabilities are given by
(2) (cf. [30, 45, 46]).

Simulation.

The Markov process defined above can be iterating by the following algorithm.
The various steps in the algorithm can be derived using basic properties of Poisson
processes and conditional probabilities (see [34]).

1.

2.

3a.

3b.

4,

The process starts with a given time ¢ and current state X (t) = 2°.

For the tie-based opportunity process define A = ) . ; Aij» and for the actor-
based opportunity process A = ) . \;.

Let U be an independently drawn random number, uniformly distributed
between 0 and 1, and let At = —In(U) /. Note that A ¢ has the exponential
distribution with parameter .

Change t into t + At.

In the case of the tie-based opportunity process, choose a random pair (4, j)
(with i # j) with probabilities \;;/X. With probability given by (1), change

Xw(t> intol — .T?]

In the case of the tie-based opportunity process, choose a random actor ¢
with probabilities A; /.

To have a way for denoting the permitted new digraphs which are elements
of C;(x?), define by 2°(i ~ j) for j # i the digraph which is equal to z°
except only that (2°(i ~ j)),. = 1 — af}; define 2°(i ~ i) = 2°. Then
choose a random j with probabilities

exp (fi(2®, 2°(i ~ ), v, w))
Zx/eC(xO) eXp (fi(x()’ ', w)) ,

S

pi<xoax0(i ~ j>7vvw) =

which is just the same as (2). If j # i, change X;;(¢) into 1 — ;.

Go to step 1.

The stochastic process on the space of digraphs can be defined by this simulation
algorithm just as well as by the ()-matrices (3) and (4), respectively.
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Specification of the change determination process

The changes can be regarded for tie-based opportunities as determinations of new
values for X;; according to a binary logistic regression model (see [23]); and for
actor-based opportunities, according to a multinomial logistic regression model
(see [29]). In the further elaboration the parallel with logistic regression is fol-
lowed because the objective function f; is specified as a linear combination

fi(xo,:c,v,w) :Zﬁk Ski(x0,$,U,W) (6)
k

where the functions si; are so-called effects driving the network dynamics while
the weights [ are parameters indicating the force of these effects and which can
be estimated from the data.

The specification of the model will be the choice of a limited set of such effects
for use in (6). A list of some effects is the following. In the formulae, replacing an
index by a + means that a sum is taken over this index. Many examples of effects
do not depend on x° or on v or w, and these arguments are then dropped from the
notation.

Outdegree effect $1:(T) = iy = Y _; Ty

This effect models the tendency to have ties at all; this tendency will also be
influenced by all other effects, and therefore the interpretation of its parameter
is conditional on the further selection of effects included in the model. In many
models this is the only effect to which those actors j contribute who have no
reciprocal link to ¢ nor any links with any others to whom : is linked. In such
models, its weight 51 can be interpreted as the ‘value’ for actor ¢ of a tie to such
an other actor who is further completely isolated from #’s personal network.

Reciprocity effect $2i1() = D0, wij x5
This is the number of reciprocated ties for actor 7. It models the tendency

toward reciprocation of choices. Thus, a higher value for its parameter F5 will
imply a higher tendency to forming reciprocated ties.
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Degree distribution. The following three effects are related to modeling the dy-
namics of the degree distribution. Since the data are directed graphs, three distinct
aspects of the degree distribution are the variability of indegrees, variability of
outdegrees, and association between in- and outdegrees. Sometimes the term of
preferential attachment is used [1, 40] for the increased attractiveness of ties to
nodes that already have high degrees. In our model these three aspects of pref-
erential attachment can be expressed by including in the objective function terms
depending on in- and out-degrees. The precise functional form for the effects is de-
termined also by the requirement that the resulting model be amenable to statistical
inference. Experience shows that using the square root of the degrees often leads
to more stable estimation of the parameters than using the raw (untransformed) de-
grees. This suggests that, for many empirical networks, the models with squared
roots of the degrees are better descriptions of reality than the models with untrans-
formed degrees. Therefore only the models using the square roots are presented
here.
Popularity effect (square root measure) ss;(z) = > i Tij \/Thj
This effect is defined by the sum of the square roots of indegrees of the others
to whom ¢ is tied. In other words, popularity of other actors is measured by the
square root of their indegree. The root-popularity effect models the tendency
to form ties to those actors who have high indegrees already (the Matthew ef-
fect in networks; see the chapter on GRAPH THEORETICAL APPROACHES
TO SOCIAL NETWORK ANALYSIS). This will be reflected by the dispersion
of the indegrees.

Activity effect (square root measure) 54i(T) = 32 Ty /Tiy
This effect is defined by the sum of the square roots of outdegrees of the others
to whom ¢ is tied. The effect models the tendency to form ties to those actors

who have high outdegrees already. This will be reflected by the association
between indegrees and outdegrees.

Own outdegree, power 1.5, effect syu(z) =" i Tij A/Tiy = z)P
The first expression show that each new tie has a ‘value’ equal to the actor’s
outdegree, comparing to a unit ‘value’ for the outdegree effect. This effect ex-

presses that actors who already have many outgoing ties have a higher propen-
sity to establish new ties. This will lead to a greater dispersion of outdegrees.
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Network closure. The following two effects are related to network closure, also
called transitivity or clustering: for friendship networks, this expresses that friends
of friends tend to become friends. In addition to the two effects mentioned here,
tendencies toward structural balance [7] and tendencies to avoid geodesic distances
equal to 2 can also be implemented as effects that will lead to transitivity; also see
[46, 47].

Transitive triplets effect ssi(x) = ih Tij Tih Tjh
This formula represents the number of transitive patterns in ¢’s ties as
indicated in the figure below. A transitive triplet for actor ¢ is a configuration
(1,7, h) in which all three of the ties ¢ — j,7 — h,i — h are present (and
irrespective of whether there are also other ties between these three actors).

@\ 1 Transitive triplet

This models the tendency toward network closure, where (for a positive pa-
rameter) formation of the tie 7« — h becomes increasingly likely when there
are more indirect connections (‘two-paths’) ¢ — j — h.
Transitive ties effect sei(x) = >, Tin, max; (x5 xjp)

This is the number of actors 7 to whom ¢ is directly as well as indirectly tied,
i.e., for which there exists at least one A such that (7, j, h) is a transitive triplet.
The transitive triplets and transitive ties effects are two distinct ways of mod-
eling tendencies toward network closure. For the effect on the probability of
forming the tie ¢ — h, the number of two-paths ¢ — j — h makes no dif-
ference for the transitive ties effect, as long as there is at least one indirect
connection; for the transitive triplets effect the contribution to the objective
function increases linearly with the number of two-paths.

Three-cycle effect sri(x) =] b Tij Tjh Thi
This is the number of three-cycles « — 7 — h — 7 in which actor ¢ is involved.
This effect models the tendency toward forming three-cycles, which is the

simplest form of generalized exchange [3, 27] (z gives to j, 7 gives to h, and h
gives to 7) and which is opposed to hierarchy.
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Covariate effects. Actor covariates v can influence the propensities to form or
terminate ties in different ways, because this propensity might be influenced by
the value for the sender or the receiver of the tie, or by some combination of these
two values.

v-related popularity $8i(T,0) = D, Tij v
The v-related popularity effect is defined by the sum of the covariate over all
actors to whom 7 is tied. Positive parameter values will imply that ties to actors
with high v values are more attractive. This will lead to a tendency toward a
correlation between v; and the indegree of .

v-related activity Soi(x,v) = v; Ty
In words, this is v; times ¢’s outdegree. Positive parameter values will imply

that actors with high v values tend to make more ties. This will lead to a
tendency toward a correlation between v; and the outdegree of :.

v-related similarity s10,i(x,v) = i Tij sim, (i, 7)
Here sim, (7, j) indicates the similarity between actors ¢ and j defined by
sim,(Z,7) = 1 — (|v; — v;|/A), where A = max;, . |v, — v is the observed
range of the covariate v. Thus, the effect is is the sum of similarities between

¢ and the others to whom he is tied. Positive parameter values will imply that
there is a preference for ties between actors with similar values of v; and v;.

v ego-alter interaction s11,i(T,v) = D, w45 v v;
This product interaction is an alternative to the similarity effect for expressing
that the propensity for a tie to exist depends on the combined values of the v
for the sending actor (‘ego’, ¢) and the receiving actor (‘alter’, 7).

Main effect of w 81211‘(1’, U)) = Zj Tij Wij
For a dyadic covariate w, this is defined by the sum of the values of w;; for all
other actors j to whom ¢ is tied.

It is clear that the list can be extended indefinitely, and that researchers have to
make a limited choice reflecting theoretical and content-matter knowledge and
interest. The potential complexity of network dynamics justifies to have many
candidate effects that may be used to model the network dynamics. For instance,
when a researcher wishes to estimate a model for testing whether there is a prefer-
ence for choosing network partners with similar v values, while controlling for the
tendency to have ties, and the tendencies for reciprocation and transitive closure,
then effects sq, so, S5 and/or sg, and s1¢ should be included in the model (6). Since
transitive closure could be expressed by effects s; as well as sg, there may be no
strong prior arguments for choosing between these two ‘control’ effects, and em-
pirical grounds could be used to choose either one or both. If there are grounds
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to suspect that the v; values may also be associated with in- or outdegrees, the
popularity and activity effects sg and s9 may also be included.

Specification of the change opportunity process

For the model specification it should be noted that the ‘social time’ which de-
termines the speed of change of the network is not necessarily the same as the
physical time elapsing between consecutive observation moments. Given the ab-
sence of an extraneous definition of this ‘social time’, it is not a restriction to set
to 1 the total time elapsed between each pair of consecutive observations. If there
are M > 3 observation moments, it is advisable to specify distinct rate parame-
ters p,, governing the frequency of opportunities for change between ¢,,, and ¢,,, 1,
and allow p1, po, etc., to be different. If the change rate further is constant (inde-
pendent of actors), p,, then represents the expected number of opportunities for
change between t,, and ¢,, 1. This is the expected number per ordered pair (i, )
in the case of tie-based opportunities, and per actor ¢ in the case of actor-based
opportunities. The symbol p will denote the vector (p1, ..., par—1)-

In the more general case the rate function can be defined, e.g., for the actor-
based model, by a function depending on actor covariates and positional charac-
teristics of the actors. When, for example, a dependence on one covariate v; and
the current out-degree ! . 1s considered, a logarithmic link function could be used
giving a model such as

Ai(2°,0) = pm exp (alvi + ozzxzqr).

In general the symbol v will be reserved for parameters indicating dependence of
the rate function on covariates and network characteristics.

IV. Statistical estimation and testing

The most usual type of longitudinal network data is panel data, where for M > 2
time points, an observation x(t¢,,) is available of the network on the same set
{1,...,n} of actors.

These models can be simulated on computers in rather straightforward ways
(the algorithm is written out in [47]). Parameter estimation, however, is more
complicated, because the likelihood function or explicit probabilities can be com-
puted only for uninteresting models. This section presents the Method of Mo-
ments (MoM) estimates proposed in [46]. Maximum Likelihood (ML) estimators
are presented in [48]. In the current implementation, ML estimators are more
time-consuming than MoM estimators, and can be used only for relatively small
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data sets. For the more straightforward models (dynamics of networks only, no en-
dowment functions), the MoM method is hardly less efficient than the ML method.
For more complicated models, where it is important to squeeze every bit of infor-
mation out of the data, it can be useful to employ ML methods. In the following
description of the estimation method, the parameter vector (p, a, 3) is denoted by
6.

It is undesirable to make the restrictive assumption that the distribution of the
process is stationary. Instead, for each observation moment ¢, (m =1,..., M —
1) the observed network x(%,,) can be used as a conditioning event for the distri-
bution of X(¢,,+1). The Method of Moments requires that a vector of statistics
Ups1 = U(X(tm), X(tm1)) is utilized, such that the expected value

is sensitive to the parameter #. Given the conditioning on the preceding observa-
tion, the moment equations, or estimating equations, can then be written as

i Eo{U (X (tm), X(tms1)) | X(tm) = x(tm)} = i U (x(tm), X(tms1)) -

It turns out that suitable statistics are the following. The number of changed
ties between consecutive observations,

> X (tme) — Xij(tm)] |
i

is especially sensitive to the rate of change p,,. A vector of statistics sensitive
especially to /3 is the sum of the individual objective functions

Z fi(X(tms)) -

To solve the estimating equation (7), in the absence of ways to calculate ana-
lytically the expected values, stochastic approximation methods can be used. Vari-
ants of the Robbins-Monro [9, 41] algorithm have been used with good success.
This is a stochastic iteration method which produces a sequence of estimates §(")
which is intended to converge to the solution of (7), and which works here as fol-
lows. For a given provisional estimate (™), the model is simulated so that for
eachm = 1,...,M — 1, a simulated random draw is obtained from the condi-
tional distribution of X(¢,,11) conditional on X(¢,,) = x(t,,). This simulated

network is denoted X()(t,,1,). Denote U = U(x(t), XN (t,11)) and
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U = Z%;ll ™) and let u be the right-hand side of (7). Then the itera-

tion step in the Robbins-Monro algorithm for obtaining the Method of Moments
estimate is given by

9(N+1) — e(N) — ay Dfl (U(N) _uobs) : (8)

where D is a suitable matrix and ay a sequence of positive constants tending to
0. Tuning details of the algorithm, including the choices of D and ay, are given
in [46]. The experience with the convergence of this algorithm is quite good. The
standard errors can be computed using the standard formulae of standard errors
for the Method of Moments, based on the delta method, and applying simulation
methods; such simulation methods are discussed in [44]. Bayesian estimators for
these models are presented in [24] and Maximum Likelihood estimators in [48].

V. Example: dynamics of adolescent friendship

As an example, the adolescent friendship network is considered of a year cohort
at a secondary school in Glasgow (Scotland), studied in the Teenage Friends and
Lifestyle Study [36, 38]. This data set was collected at three measurement points
t1,t2,t3 in 1995-1997, at intervals of roughly one year, starting when the pupils
were 12-13 years old. Here the network is studied that is formed by the 129 (out of
160) pupils who were present at all three measurement waves. Sex (boys scored as
1, girls as 2) and drinking behavior are used as actor variables, drinking (alcohol
consumption) being measured on a 5-point scale ranging from 1 (not at all) to 5
(more than one a week). Both variables are centered around the mean, which is
1.43 for sex and 2.60 for drinking (averaged over ¢; and ¢5). The data set is used
as an illustration; more wide-ranging analyses are presented in [37, 52, 53].

Three models are presented. Rate parameters are assumed constant within
periods between observation moments, and the duration of the periods is (arbi-
trarily but without loss of generality) set at 1. The first model contains only the
most basic dyadic and triadic effects: outdegree, reciprocity, transitive triplets,
and three-cycles. The second adds to this the three effects to model more pre-
cisely the degree distribution. The third model adds to these structural effects the
effects of two covariates: gender and alcohol consumption.

Parameter estimates are approximately unbiased and normally distributed; for
this assertion there is no mathematical proof yet, but it is supported by simulation
studies. Therefore, effects can be tested by referring the studentized estimates (or
t-ratios, i.e., estimate divided by standard error) to a standard normal distribution.
When the ¢-ratio exceeds 2 in absolute value, the effect can be interpreted as being
significant at the significance level of 5 %.
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Table 2: Parameter estimates for modeling evolution of friendship network, Glas-

gow school cohort. Standard errors between parentheses.

Model 1 Model 2 Model 3
Effect par. (s.e.) par. (s.e.) par. (s.e.)
Rate 1 11.82  (1.00) | 12.05 (1.15) | 12.19 (1.13)
Rate 2 9.23  (0.83) 9.05 (0.79) 9.09 (0.77)
Outdegree -2.697 (0.047) | -0.16  (0.34) | -0.18 (0.41)
Reciprocity 2.38  (0.10) 248  (0.12) 222 (0.12)
Transitive triplets 0.459 (0.033) | 0.569 (0.036) | 0.544 (0.034)
Three-cycles -0.57 (0.10) | -0.55 (0.11) |-0.44 (0.11)
Popularity (sq. root) - 0.223 (0.095) | 0.184 (0.093)
Activity (sq. root) - -0.89 (0.14) |-092 (0.17)
Own outdegree, power 1.5 - -0.560 (0.084) | —0.587 (0.094)
Sex (F) popularity - - -0.16  (0.11)
Sex (F) activity - - 0.12 (0.12)
Sex similarity - - 0.904 (0.097)
Drinking popularity - - -0.026 (0.030)
Drinking activity - - —0.086 (0.038)
Drinking ego x alter - - 0.107 (0.024)

The table present first the estimated rate parameters. These indicate that the
pupils had about 12 opportunities for changes in the first period (¢, — ¢5), and about
9 in the second period (t5 — t3).

The parameters for the objective function, which the table shows next, are

more important for the interpretation. There are strong tendencies toward reci-
procity and transitivity, and a tendency away from three-cycles. This is the case
in all three models, although the parameter estimates are slightly different. This
indicates that the structural features of transitive closure and of local hierarchy
(the interpretation of the negative three-cycle effect) cannot be ‘explained away’
by tendencies in tie formation and dissolution that are associated to degrees, sex,
or alcohol consumption.

The degree effects in Models 2 as well as 3 show that there is a positive popu-
larity effect — with a borderline significance at the 5% level in Model 3; there is a
negative activity effect; and a negative effect of own outdegree raised to the power
1.5. The positive popularity effect suggests that differential values in in-degrees
tend to be self-sustaining, leading to rather strongly dispersed in-degrees. The
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other two, negative, degree-related effects indicate that differences in out-degrees,
as well as correlations between in- and out-degrees, tend to be self-correcting,
leading to relatively low dispersions of out-degrees and low in-degree — out-degree
correlations.

Of the three gender-related effects, only the similarity effect is significant.
In this age range, a strong preference for same-sex friendships is to be expected
(the interest which perhaps exists in the other sex is not reported as friendship).
For alcohol consumption, the interaction effect shows that those who drink more
themselves have a higher preference for friends who also drink more; and the
activity effect shows that those drinking more tend to mention less friends, for
friends of average drinking habits (where the contribution of the interaction is
nil). This is most clearly expressed by jointly considering the three contributions
related to drinking behavior that can be made by the tie ¢« — 7. In a formula,
this is represented by the coefficient of the variable y;; in the objective function.
Recall that the actor variables are centered around the mean. Using the formulae
for effects sg, Sg, and s1; and filling in the coefficients in Table 1 yields

with v = 2.60. The following picture illustrates the contributions to the objective
function made by ego’s drinking behavior v; and alter’s drinking behavior v;.

1_
Uizl
0 1\'\/. vj
1 2 5
UZ‘:E)
-1t

Figure 1. Contributions of drinking behaviors v;, v; to the objective function for
friendship.

It can be concluded that those who do not drink alcohol (v; = 1), prefer friends
who drink no or little alcohol, while the reverse is true for those who drink a lot
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of alcohol. The range of this contribution is 0.8 for those with v; = 1 and 0.9 for
those with v; = 5, which is comparable to the value 0.9 of the gender similarity
effect. Thus, for those with the highest and the lowest values of alcohol use,
the importance of the alcohol use of potential friends, when comparing potential
friends with the minimum and the maximum alcohol use, is approximately as
great as the importance of their gender. On the other hand, for those with medium

values of alcohol use, the alcohol use of potential friends plays virtually no role at
all.

VI. Models for the co-evolution of networks and behavior

The importance of networks derives, for an important part, from the effects of
networks on the behavior and performance of the actors. This can be, for exam-
ple, because of influence between friends or between collaborating partners [16],
because of exchange of resources [28], or because of structural advantages [4].

A few examples drawn from the many studies in this field are concerned with
influence of friends of adolescents on smoking behavior [14, 37, 52], effects of ac-
quaintances on labor market outcomes [17], competitive advantage of firms [18],
effects of friends on delinquency [6, 19], effects of position in patent citation net-
works on growth rates of companies [39], and job performance [51].

This type of changing individual attributes, which might range from, e.g., be-
havioral tendencies and attitudes of individuals to performance of companies, will
be briefly referred to as ‘behavior’. When the ties in the network are influenced
by the behavior and the behavior, in turn, is influenced by the network, a mu-
tual feedback arises between the network and the behavior. The network structure
of the ties between the actors together with their behavior constitute the endoge-
nously changing environment for each of the actors [61].Thus, this approach is
well-suited to study macro-micro-macro questions of the type discussed by [11].

The vector of attributes for actor ¢ at time ¢ is denoted

zi(t) = (zil(t),...,ziH(t)) ,

where z;;,(t) denotes the R attribute of actor i. For the n actors these are stacked
in the matrix z(t), which is regarded as the outcome of a random matrix Z(t).

To model the co-evolution of networks and behavior, where the network and
the behavior influence one another dynamically, the stochastic process (X (t), Z(t))
is considered. This is treated in quite the same way as the stochastic process X ()
was treated above. It is assumed that z;(¢) represents an enduring, but change-
able, state of actor ¢ rather than a momentary behavior, so that it is a sensible
approximation to assume that (X t),Z (t)) i1s a Markov process in continuous
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time. Now the change probabilities of X (¢) will depend on the current state of
X(t) as well as Z(t). The fact that network change is co-determined by behav-
ior is called behavior-dependent selection, and will often be referred to briefly as
selection. Similarly, the change probabilities of Z(t) will depend on the current
state of Z(t) as well as X (¢), and this will be called influence. This terminology
was also used, e.g., by [14].

To remain close to the framework for network modeling, it is assumed that all
of the behavior variables z;;, are measured on a discrete ordinal scale, with values
coded as consecutive integers {0, 1, ..., M} for some M; > 1. The analogue of
the simplifying assumption (3) made above for network change is the following.
This decomposes the change between consecutive observations (z(t,), z(tm))
and (2(tm1), 2(tm11)) into a sequence of the smallest possible steps.

3’. Atany given moment ¢, no more than one of all the variables X;;(t), Z;;(t)
can change. When Z;;,(t) changes, at any given instant it can change only
to an immediate neighboring value, i.e., by a decrease or increase of 1 (per-
mitted only if this step does not take Z;;, outside of the permitted range from
0to M, h)-

This means that there is no direct coordination between changes in ties and
changes in behavior, and the dependence between networks and behavior is
brought about because both react to each other.

The model for the network is just like it was above, the rate function and
objective function now being denoted by A and f;*, and allowed to depend on
the current behavior Z(t), to represent behavior-dependent selection. For each of
the dependent behavior variables 7, there also is a rate function \?" driving the
frequency of changes and an objective function f#" defining the probabilities of
behavior changes when there is an opportunity of change. Their dependence on
the current network will represent influence.

For each actor 7, opportunities to change behavior Z,
occur according to a Poisson process with rate A",

When actor ¢ has the opportunity to change behavior Z;;, given that
currently (X (¢), Z(t)) = (2°, 2°), there are three possible new states
(2%, 2), where either z = 2° or the only difference between 2 and 2° is
that z;;, = 29, — 1 or 2z, = 23, + 1; unless one of these values is outside
the range {0, ..., M}, in which case there are only the two remaining
possible new states.

The probabilities of going from state (2, 2°) to state (z°, z) are
proportional to exp (fZ"(2°, z, 2%, v, w)).
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The change probabilities in this model are given by

P{Z(t) changes to z |7 has an opportunity to change Z;;, at time ¢,
X(t)=2°2(t) = 2"}
- exp (fiZh(ZO7Z7xO7U7w))

Zz’eCZh(zo) exXp (fiZh(Z0> 2 20,0, w)) 7

)

where C%"(20) is the set of two or three permitted new values for Z,.

The effects in the objective function f;* for network changes now are denoted
by s;X with weights 5%, and likewise the objective function for behavior changes
is assumed to be expressed as a linear combination of effects weighted by param-
eters,

S0, 220 0,0) =B ST 2,00, 0,w) (10)
k

A set of possible effects that could be included in the objective function for behav-
ior are the following. For simplicity of notation, it is assumed that there is only
one behavior variable, so that the index /A can be dropped from the notation. The
first two effects are used to define the shape of the objective function as a function
of z;, and other terms depending on z; could be added.

Linear shape effect s (z) = 2

Squared shape effect s%(z) = 22

The linear and squared shape effects together define what could be regarded
as a quadratic preference function on the behavior, 7 z; + $Zz2. The word
‘preference function’ is used with some reluctance, because it is used here only
as an easy shorthand term for the combined short-term result of preferences
and constraints, depending only on the actor’s behavior z; itself, net of the
other terms in the behavior objective function. If 82 < 0 this is a unimodal
function of z;. If B3 > 0, on the other hand, and if the minimum of the
quadratic function is assumed within the range of the behavior variable, then
the behavior is drawn to the extremes of the range, with actors already low on
z; being drawn to low values and actors already high on z; being drawn to high
values. This can represent, e.g., addictive behavior.

Other nonlinear functions of z; could, of course, also be included.

Indegree effect sf(z,m) = z; x4y
This represents that actors with a high indegree (‘popular’ actors) have a higher

tendency toward high values of the behavior.

23



Outdegree effect sZ(z,x) = z;wiy
This represents that actors with a high outdegree (‘active’ actors) have a higher
tendency toward high values of the behavior.

Total similarity effect s7(z,2) = > 2;sim. (i, j)
The dyadic similarity sim, is as defined above, now applied to the dependent
behavior Z. The total similarity effects adds the similarity values between ¢
and the actors toward whom 7 has a tie. This is the primary representation of
social influence: the preference for behavior which is close to that of one’s

network members.

z -1
Average alter effect  sj(z,2) = 22, > w5 2

The coefficient of z; is the average behavior of the actors to whom 7 is tied
(¢’s ‘alters’, j). The coefficient is defined as 0 when the outdegree z;, is 0.
This is another representation of social influence: the preference for behavior
depends on the average behavior of one’s network members.

The parameter estimation for this model is discussed in [49].

VII. Example: co-evolution of adolescent friendship and
alcohol use

As an example for the co-evolution of networks and behavior the data of the Glas-
gow school cohort is used again, but now the alcohol consumption is used as a
dependent, or endogenous, variable. In the treatment in Table 2 the alcohol con-
sumption was used as an exogenous variable, i.e., its values were accepted as if de-
termined by processes independent of the network. Now we follow a co-evolution
approach where it is assumed that the dynamics in alcohol consumption can be
co-determined by the network just as the network dynamics can be co-determined
by the alcohol consumption.
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Table 4: Parameter estimates for modeling co-evolution of friendship network and
alcohol consumption, Glasgow school cohort

Effect \ par. (s.e.)
Friendship dynamics
Rate 1 12.13  (1.26)
Rate 2 9.09 (0.97)
Outdegree -0.22  (0.43)
Reciprocity 2.19  (0.12)
Transitive triplets 0.529 (0.036)
Three-cycles -042  (0.10)
Popularity (sq. root) 0.193 (0.086)
Activity (sq. root) -0.92 (0.15)
Own outdegree, power 1.5 | —=0.581 (0.099)
Sex (F) popularity -0.16  (0.10)
Sex (F) activity 0.12  (0.13)
Sex similarity 090 (0.11)
Drinking popularity -0.026 (0.043)
Drinking activity -0.118 (0.057)
Drinking ego x alter 0.166 (0.043)
Alcohol consumption dynamics
Rate 1 1.48 (0.25)
Rate 2 222 (0.37)
Linear shape 0.36 (0.42)
Squared shape -0.34 (0.14)
Indegree 0.07 (0.12)
Outdegree -0.08 (0.17)
Sex (F) -0.02 (0.23)
Average alter 0.83 (0.35)
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To obtain interpretations of the numerical parameter values, it must be noted
that this table refers to the centered actor variables. The raw variable ranges from
1 to 5, with averages at the three observations rising from 2.5 through 2.7 to 3.1.
The overall mean, 2.8, is subtracted from the observations. We shall denote by z;
the raw value of actor ¢’s alcohol consumption scored 1-5, by Z the average equal
to 2.8, and by Zz; the average of the alcohol consumption of ¢’s friends.

The interpretation of the friendship dynamics is quite the same as in the anal-
ysis where alcohol was treated as an exogenous variable. For the dynamics of
alcohol consumption, the indegree, outdegree, and sex of the actor do not seem to
have an important influence. The effect of the average drinking behavior of the
friends of the focal actor does have a significant effect, however, with a ¢-value of
0.83/0.35 = 2.4. When we ignore the small and non-significant effects of outde-
gree, indegree, and sex, the remaining part of the objective function for drinking
behavior is

0.36 (2 — 2) + 0.83(% — 2))(2i — ) — 0.34(2; — 2)°
= (0.36 + 0.83(% — 2)) (2 — 2) — 0.34(2 — 2)*.

This is a quadratic function, unimodal, with a maximum at

083 . _ -

Zi = Z + m(%-Z) = —0.62 + 12221 .
Taking account of the integer values of z;, this implies that those with friends
with the smallest possible average of smoking behavior z; = 1 are drawn towards
the ‘preferred’ value of 1 themselves, while those having friends who have the
highest possible average z; = 5 are themselves also drawn toward this value 5
as a ‘preferred’ value. It can be concluded that the data provide support for the
existence, in the co-evolution of friendship and drinking tendencies, of selection
(tendency to choose friends with similar behavior) as well as influence (tendency
to change behavior in the direction of friends’ behavior).

VIII. Extensions

The basic model specifications defined above can be extended in various ways.
Above we already mentioned the possibility to let the rates of change depend on
covariates or on current network structure. Another possibility is to introduce an
asymmetry between the values of ties when they are formed and their values when
they are lost. E.g., for friendship dynamics, there is theoretical and empirical
evidence that the additional ‘value’ of a tie added by its being reciprocated is
higher when considering a potential loss of the tie than when considering the
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potential new formation of the tie. This asymmetry can be modeled by endowment
functions, see [49]. Technically, this means that the effects ski(xo, x,v,w) used
in (6) depend not only on the new state x but, unlike the examples given above,
also on the preceding state 2°. For example, the endowment effect of a tie being
reciprocal is expressed by

0
Ski = E Lij Lij Lji
J

which is sensitive to the number of #’s reciprocal ties only when they are candi-
dates to being terminated and not when they are candidates to being created.

Similarly, going upward on a behavior variable might be not the opposite of
going downward, which can be modeled by endowment effects in the objective
function for behavior.

IX. Future Directions

Although the statistical modeling of network dynamics started already with [22]
and [59], this area has been in rapid development only since recent years. Much
work remains to be done, however, to extend these methods to other types of
network data and to study their properties. The lists of effects that can be included
in the objective functions illustrate the flexibility of this model and its adaptability
to research questions and network data. The availability of methods for analysis
of network panel data has been a stimulus also for the further collection of such
data.

Plausible models and good methods for parameter estimation and testing have
now been developed, as summarized in this chapter, and they are available in
the SIENA (Simulation Investigation for Empirical Network Analysis) program.
This program is available as freeware with additional material on the website
http://www.stats.ox.ac.uk/~snijders/siena and has an exten-
sive manual [50]. The examples presented here were analyzed using this program.

The tests used in the examples, based on studentized parameter estimates, can
be regarded as Wald-type tests. Some limited simulation studies have supported
the validity of these tests. Score-type tests associated to the Method of Moments
estimators were developed in [43]. The examples in this paper underline the need
for methods to assess fit of models, and also to compare non-nested models. This
could be done formally based on estimated likelihoods, or informally based on
the comparison of observed and expected values of relevant statistics that are not
used for parameter estimation.

The open question of assessing fit also invites speculation about the robustness
of the results against the use of models of which the fit is not beyond doubt. There
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is an inherent tension between the complexity of processes of network dynamics,
and the limited amount of data that can in practice be observed concerning these
processes. One issue is that the models proposed here are Markov processes. For
two-wave data sets there are no clear alternatives to making such an assumption,
but the assumption is certainly debatable. Including more information in the state
space (by using covariates, by considering valued rather than dichotomous ties,
etc.) may relax the doubts concerning such an assumption.

Another issue is the difference between the tie-oriented and actor-oriented
models. Which type of model is to be preferred is a matter both of social science
theory and of empirical fit. It will be important to know, supported by simulation
studies and/or mathematical results, the extent to which results based on particular
models for network dynamics are robust to deviations from the precise assump-
tions made. In addition, it will be useful to develop still other models, e.g., models
accounting for actor heterogeneity (like were developed for non-longitudinal net-
work data, e.g., by [35, 20, 58]) or measurement error.

Other open questions are about mathematical properties of the estimators and
tests proposed. Simulation studies support the conjecture that the Method of Mo-
ments estimators have asymptotically normal distributions, but this has not been
proven. It is unknown if the solution to the moment equation (7), under certain
conditions, is unique. Similar questions can be asked about the Maximum Like-
lihood estimators. All this indicates that there is ample scope for future work on
methods of statistical inference for network dynamics.
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FURTHER READING

For further reading, basic concepts of continuous-time Markov processes can be
found in [34]. The basic definition of the model presented here and of the statisti-
cal estimation methods for network dynamics based on panel data can be studied
in [46, 47]. The approach to the co-evolution of networks and behavior is pre-
sented in [49, 52]. Some examples of the methods presented in this chapter can
be found in [6, 53, 55, 56, 57].
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