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Markov chains can be used for the modeling of complex longitudinal network data.
One class of probability models to model the evolution of social networks are stochas-
tic actor-oriented models for network change proposed by Snijders. These models are
continuous-time Markov chain models that are implemented as simulation models. The
authors propose an extension of the simulation algorithm of stochastic actor-oriented
models to include networks of changing composition. In empirical research, the com-
position of networks may change due to actors joining or leaving the network at some
point in time. The composition changes are modeled as exogenous events that occur at
given time points and are implemented in the simulation algorithm. The estimation of
the network effects, as well as the effects of actor and dyadic attributes that influence
the evolution of the network, is based on the simulation of Markov chains.
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1. INTRODUCTION

Social network analysis is concerned with the study of relationships
among social actors (e.g., persons, organizations, countries, etc.). The
relations refer to thecollectionof ties (of aspecifickind)betweenpairs
of actors from a set of actors, for instance, friendship ties between
individuals or trade agreements between companies. These dyadic
relations are not necessarily symmetric. Many relations are direc-
tional, in which ties are ordered from one actor to another.
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A network consisting of directed relations can be represented by
a directed graph (digraph) and an accompanying adjacency matrix
(sociomatrix) X = [Xij ]. The element [Xij ] is the tie variable from
actori to j . In this article, all ties within a given set ofn actors are
considered. The relation is supposed to bedichotomous: Theelements
of the adjacency matrix are eitherXij = 1, if there is a tie from
i to j , orXij = 0 if there is not such a tie.
The elements of the adjacency matrixX hang together in a com-

plicated dependence structure because each elementXij refers to two
actorsi andj instead of one, and ties with and between other actors.
Other actors can also have a bearing on the ties betweeni and j .
These dependencies are called network effects, and stochastic social
network models have to represent these network effects. Therefore,
such models cannot be built on broad independence assumptions (as
is usually done in statistical modeling), which makes the statistical
analysis of social networks complicated. Some interesting network
effects (i.e., dependencies) are the following (e.g., seeWassermanand
Faust 1994). They are defined from the point of view of one actor,i,
and will return in later sections (see also Snijders 2001).

• Density effect—the dependence between elements in a row ofX, that
is, the tendency of matrix elementsXij to be 1 rather than 0.

• Reciprocity effect—the dependence within the dyad(Xij , Xji),
defined by the number of reciprocated relations, indicating the pref-
erence for reciprocated relations.

• Transitivity effect—the dependence within triads (triplets of actors
and the ties among them), defined by the number of transitive patterns,
indicating the preference for transitive relations.

• Balance—the dependence between outgoing relations of an actori

(rowXi of X) and outgoing relations of others to whomi is related,
indicating the preference for others who make the same choices asi.

• Indirect relations effect—the dependence between two actorsi and
k via one intermediary actorj , defined by the number of actors to
whomi is indirectly related (at distance 2).

• Popularity—thedependencebetweenanelementXij and theelements
in a columnXj ofX, defined by the sumof the indegrees of othersj to
whom actori is related, indicating the preference for popular others.

• Activity—the dependence between an elementXij and the elements
in a rowXj of X, defined by the sum of the outdegrees of othersj to
whom actori is related, indicating the preference for active others.
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Modeling longitudinal network data is difficult because models
for the social network have to represent the dependencies of the
network effects. Moreover, network effects are typically endoge-
nous feedback effects in which, on one hand, the actions of the
actors (changing their relationships with others) constitute each
other’s changing environment while, on the other hand, the chang-
ing network acts as a dynamic constraint on the actors’ behavior
(cf. Zeggelink 1994). This makes modeling network evolution even
more complicated (see Doreian and Stokman 1997 and Stokman and
Doreian 2001 for collections of papers about modeling longitudinal
network data).
Snijders (1996, 2001) proposed a probability model for social net-

work change in which network dynamics is treated as an endogenous
dynamic process that evolves in continuous time (even though it is
observed only at discrete observationmoments). Thismodel, referred
to as astochastic actor-oriented model, is implemented as a stochas-
tic simulationmodel and is based on the idea that actors evaluate their
position in the network and strive for the “best” possible configura-
tion of relations. All actors are assumed to have full knowledge of
the present state of the network, and given this state, all actors are
assumed to behave independently. The evaluation of the configura-
tion is defined as a function of the actor’s position in the network
and depends on parameters that can be estimated from the data by a
Markov chain Monte Carlo procedure.
This study is concerned with the statistical analysis of longitudinal

network data of which the composition changes over time. In a longi-
tudinal study of the evolution of a network, some actor, or a group of
actors, may join or leave the network. If analysis of the network has
to be restricted to the subset of actors for whom data are available at
all time points, valuable information may be lost and results may be
less reliable or even biased. Moreover, statistical analysis then even
could become impossible because the number of completely observed
actors may be too small.
Stochastic actor-oriented models offer the opportunity to model

network evolution for networks of stable composition. The mod-
els are based on simulating Markov chains of networks (adjacency
matrices) between each pair of consecutive observations, which are
used in a stochastic approximation procedure to estimate the model
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parameters. In this article, an extension of the simulation algorithm
used to generate theMarkov chains is proposed to include networks of
which the composition changes. These changes due to actors joining
or leaving the network are treated as exogenous events that occur at
fixed (known) time points. The proposed algorithm generatesMarkov
chains of networks between two time points that represent observa-
tion times, times of composition change, or both.
Section 2 gives a brief introduction to stochastic actor-oriented

network models. The basic model ingredients are discussed, as well
as themodel specification and estimation procedure. In Section 3, the
procedure to simulate the network evolution with Markov chains is
presented. The implementation of a changing set of (active) actors
is described, as well as the simulation algorithm. To investigate the
performance of the algorithm, we performed a small simulation study
in which the simulated networks are based on a friendship network
of university freshmen (Van de Bunt 1999). The design of the study
and the results are presented in Section 4. Also, the algorithm is used
to analyze a real-life longitudinal data set consisting of friendship
relations between children in a elementary school class observed at
two time points (Van Rossem et al. 2000). A discussion is given in
the last section.

2. STOCHASTIC ACTOR-ORIENTED MODELS

Snijders (1996) proposed a class of dynamic network models for
repeated observations of a network, represented by a directed graph.
These models combine random utility modeling and continuous-
time Markov processes. Holland and Leinhardt (1977a, 1977b) and
Wasserman (1977) already proposed to use continuous-time Markov
models for longitudinal network data, and this was further elabo-
rated for dichotomous networks by Wasserman (1977, 1979, 1980)
and Leenders (1995) in a basic Markov chain model, the reciprocity
model. This model, which represents only reciprocity as a network
effect, was extended by Leenders (1996) to include similarity effects.
The actor-oriented model of Snijders (1996) was elaborated by
Snijders and Van Duijn (1997) and Snijders (2001) and can include
arbitrary network effects (see also Snijders 2003).
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In the stochastic actor-oriented model, the actors try to attain a
rewarding configuration of the network by individually optimizing
their utility (objectives) based on the present state of the network and
under the constraints of their environment. The objective functions
are modeled as random utility models (cf. Maddala 1983) and are
implemented as stochastic (Markov chain) simulation models. The
simulations form the basis of a Markov chain Monte Carlo procedure
to estimate themodel parameters. This section summarizes themodel
and estimation procedure proposed in Snijders (2001).

2.1. MODEL SPECIFICATION

The outcome space for stochastic actor-oriented network models
consists of the following basic elements.

• A continuous time parametert ∈ T . We consider longitudinal
data, that is, a time series observed atM ordered observation times
t1 < · · · < tm < · · · < tM . These observation times are embedded in
the setT = [t1, tM ] = {t ∈ R

+ : t1 ≤ t ≤ tM}, and the process is
modeled as evolving in continuous time, although being observed at
discrete time pointstm,m = 1, . . . , M.

• A set of actorsI = {1, . . . , n}.
• An outcome space of possiblenetworks of relationsbetween the
actors,X . The networks are represented by time-dependentn × n

adjacency matricesx(t) = [xij (t)], wherexij (t) represents the exis-
tence of a tie from actorsi to j ∈ I at timet ∈ T . Dichotomous rela-
tions are considered, in which a tie from actori to j is either present,
xij (t) = 1, or absent,xij (t) = 0. Self-relations are not considered.

• Actor-dependentattributesV and pair-dependent (dyadic) attributes
W . These actor attributes can be time-dependent (i.e., changeable,
like attitudes):V (t), t ∈ T .

The approach is methodologically individualistic; that is, the driv-
ing force behind the dynamics is constituted by the actor’s actions
(Snijders 1996). This means that the actors are assumed to “control”
their outgoing relations, which are given in the row vectors of the
adjacency matrixx(t). At stochastic times, the actors are allowed to
change their outgoing relations. The occurrence of these changes is
governed by arate function, and the actors act independently, given
the current state of the network at timet , x(t) = x. One at a time,
the actors are allowed to change one tie variablexij into the opposite
1− xij by either withdrawing or initiating an outgoing tie.
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The actors try to attain a positively evaluated configuration of the
network. They evaluate the present network configuration by maxi-
mizing a function of the network. This function consists of three parts:
an objective function, a gratification function, and a random com-
ponent. The first two functions represent the two “goals” the actors
are assumed to pursue: attaining a configuration of the network that
is rewarding for the actors and instantaneous gratification inherent
in making a specific change. The random component represents the
preferences of the actors that are not explicitly modeled.
The specification of the stochastic actor-oriented network models

is given by the three basic functions: the rate function, the objective
function, and the gratification function. All functions depend on the
current state of the network and aK-dimensional statistical parameter
θ = (ρ, β, γ ).

1. Therate function, indicating the rate at which actori may change one
of his or her outgoing relations in the time periodtm ≤ t < tm+1:

λi(ρ, x, m), i ∈ I, x ∈ X , m = 1, . . . , M − 1.

This functioncaneither beconstant or dependonactor-specific covari-
ates or on network effects. In the remainder of this article, we restrict
the exposition to constant rate functions:λi(ρ, x, m) = ρm. See Sni-
jders (2001) for examples of nonconstant rate functions.

2. Theobjective function(or utility function), indicating the preference
of actori for a given state of the networkx(t) = x:

fi(β, x), i ∈ I, x ∈ X .

The objective function contains the substantive ingredients of the
model (i.e., the network effects, the actor-dependent covariate effects,
and the dyad-dependent covariate effects):

fi(β, x) =
L∑

k=1
βksik(x), (1)

with the weightsβk the statistical parameters indicating the strength
of the effectsik(x), controlling for other effects, andL the number
of included effects. The effectssik(x) are relevant functions of the
adjacencymatrix and the attributes that are supposed to determine the
evolutionof thenetwork.SeeSnijders (2001) orSnijders andHuisman
(2003) for lists of possible effects. The effects that are included in
the model have to be determined from (social network) theory and
experience with modeling network dynamics.
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3. The gratification function, indicating the instant gratification
experienced by an actori when changing the relation with an actorj ,
given the current state of the networkx(t) = x:

gi(γ, x, j), i, j ∈ I, j �= i, x ∈ X .

This function is motivated by the experience that a given effect may
be stronger (or weaker) for initiating new relations than for breaking
existing relations (Van de Bunt 1999 describes the gratification effect
of initiating and breaking reciprocated relations). Like the objective
function, the gratification function is a weighted sum of network and
attribute effects:

gi(γ, x, j) =
H∑

h=1
γhrijh(x), (2)

with γh the statistical parameters indicating the strength of the effect
rijh(x) andH the number of included effects. The effectsrijh(x)

always include a factorxij (reflecting the effect of breaking a relation)
or 1− xij (reflecting the effect of initiating a relation). See Snijders
(2001) for examples of possible effects.

The choice made by an actor to perform an action is based on the
function

r(θ, i, j, x) = fi(β, x(i � j)) + gi(γ, x, j), (3)

where x(i � j) denotes the state of the network after actori

changed the outgoing relation to actorj : xij changed into 1− xij ,
with i, j ∈ I andj �= i. The actor tries to optimize this function plus
a random component; that is, actori chooses to change his or her
relation with that actorj such that

r(θ, i, j, x) + Ui(t, x, j) (4)

is maximized. The random variablesUi(t, x, j) are assumed to be
independent and identically distributed for alli, j , x, andt , having
the Type I extreme value distributionwithmean 0 and scale parameter
1. This assumption is commonly made in random utility modeling in
econometrics (Maddala 1983). Given this distribution, the probability
that a given actori chooses actorj and changes the relationxij is

pij (θ, x) = exp(r(θ, i, j, x))∑n

l=1,l �=i exp(r(θ, i, l, x))
, j �= i. (5)
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This is themultinomial logit formof a randomutilitymodel (Maddala
1983:60).

2.2. ESTIMATION

In the model specification with constant rate functionsρm

and the objective function and gratification function given by
(1) and (2), respectively, the statistical parameter isθ =
(ρ1, . . . , ρM−1, β1, . . . , βL, γ1, . . . , γH ), with dimensionK = M −
1+ L + H . The data consist of repeated measurements of adjacency
matricesx(t), observed at time pointst = t1, . . . , tM (M ≥ 2), and
the covariatesV (t) andW included in the objective and gratification
functions. The parametersβk andγh remain the same in the periods
between the observations, only the basic change rateρm is different
in each period(tm, tm+1).
TheK-dimensional parameterθ is estimated from the datawith the

method of moments (see Bowman and Shenton 1985). Themethod of
moments is based on the intuitive idea that sample moments (statis-
tics) are the natural estimators of population moments (expected val-
ues of the statistics). For the method of moments, a statisticZ should
be chosen that captures the variability of the data accounted for by
the parameters. The parameter estimates are obtained by equating the
observed values (sample) and expected values (population) ofZ, that
is, as the solution inθ of theK-dimensional moment equation

Eθ [Z] = z, (6)

with z the observed value of the statisticZ.
A suitable definition of a vectorZm depending onX(tm−1) and

X(tm), of which the distribution is sensitive to the parameter vector
θ , is proposed in Snijders (2001). The statistic used for fitting is
Z = ∑M

m=2Zm.
The systemof equations (6), however, cannot be solvedanalytically

or numerically. Therefore, a stochastic approximation procedure was
proposed by Snijders (1996, 2001) based on the method of Robbins
and Monro (1951; see Pflug 1996 for an introduction to the Robbins-
Monro algorithm). This procedure approximates the moment
estimates by simulating random adjacency matrices with the desired
distributions.Thesolutionof themomentequation (6) isobtainedwith
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an iterative procedure in which the parameter estimates are updated
by repeatedly simulating adjacency matrices.
Updating steps are generated as follows. The simulation process

is carried out using the current provisional estimate of the parameter
θ̂N , which is used to generate a Markov chain of adjacency matrices
in the time interval(tm, tm+1), given the statex(tm) of the network
at observation momenttm. For both the simulated networkX(tm+1)
and the observed networkx(tm+1) at time pointtm+1, the statistic
Zm is computed. The difference between the simulated and observed
statistics is used to update the estimate ofθ until convergence, with
updating formula

θ̂N+1 = θ̂N − aND−1
0 (ZN − z), (7)

whereZN is the statistic in stepN of the estimation procedure based
on the simulated network andz is the observed statistic. The vector
aN slowly tends to 0, andD0 is a matrix not depending onN (for
details, see Snijders 2001; Pflug 1996).
The procedure of simulating adjacency matrices is discussed in

Section 3, as well as an extension of the simulation procedure to
include networks of changing composition.
An extension of the model is proposed by Snijders (2003) to

includeadistributionof theoutdegrees.Becausedegrees refer directly
to the individual actors, they have an important position combin-
ing structural and individual relevance. Snijders argues that the
degree distribution is a primary characteristic for the structure of
networks, but structural featuresarealso important; he suggests a two-
stepmodel inwhich the determination of the distribution of the outde-
grees is separated from the determination of the structural aspects of
the network dynamics. This extension of the model offers the oppor-
tunity to assess the fit of the model by comparing the observed and
fitted degree distributions. Unfortunately, other goodness-of-fit mea-
sures (e.g., “variance explained”) are not (or not yet) available.

2.3. EXAMPLES

The evolution of friendship networks of university freshmen was
studied by Van de Bunt (1999); Van de Bunt, Van Duijn, and Snijders
(1999); and Van Duijn et al. (2003). The network data were collected
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at seven time points during the academic year and are repeated
measures of a friendship network of 32 university freshmen in the
same discipline at a university in the Netherlands.
VandeBunt (1999)andVandeBuntet al. (1999) includeeffects that

represent theoretical mechanisms that are expected to be important in
friendship formation, such as the principle of diminishing returns, the
tendency toward reciprocated relations, and the preference for rela-
tions with similar others. Van Duijn et al. (2003) consider a range
of proximity, similarity, and network opportunity effects and use a
stepwise model selection procedure with the aim of including only
the important effects. They find that proximity and similarity vari-
ables (e.g., study program and gender) determine change in the net-
work structure in the early stages of friendship development and that
network opportunity (e.g., balance, popularity) is important during
all stages.
Another example of stepwise model selection is given by Snijders

and Baerveldt (2003), who study the effects of delinquent behavior
on friendship evolution. Effects that are found to be relevant are struc-
tural effects such as reciprocity and transitivity and covariate effects
of ethnicity and gender. Controlling for these effects, they found evi-
dence for an effect of similarity in delinquent behavior on friendship
evolution. Snijders (2003) gives an example of the dynamics of a net-
work of political actors in which the degree distribution is modeled
separately fromstructural effects (reciprocated ties, indirect relations,
and gender popularity).

3. SIMULATING NETWORK EVOLUTION

The stochastic actor-oriented models are implemented as Markov
chain simulation models. In this section, the generation of a
continuous-time Markov chain of adjacency matrices is described,
and a procedure is presented to include network evolution in which
the actors are allowed to join or leave between two observation times.

3.1. MARKOV CHAINS OF ADJACENCY MATRICES

Closed social networks withn actors are represented byn×n adja-
cencymatrices of directed and dichotomous relations. The class of all
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matrices, denoted byX, has 2n(n−1) elements. Consider the stochastic
process{X(t) : t ∈ T } of network evolution. This process has a finite
state spaceX; elements of the state space are denotedxk andxl.
The network evolution process is modeled as a continuous-

time Markov chain. Recall that for any adjacency matrixx, the
symbolx(i � j) denotes the matrix obtained by changingxij into
1−xij and leaving all other elements unchanged. Since the adjacency
matrixX(t) can change only by one element at a time, the Markov
chain can be specified completely by the functions

q(xk, xl) = qij (x) = lim
dt↓0

P[X(t + dt) = x(ij)|X(t) = x]

dt
, (8)

for i �= j , with xk = x andxl = x(i ; j). The functionsq(xk, xl) can
be interpreted as transition rates or change intensities of going from
network statexk to network statexl, where

q(xk, xk) = −
∑

xl �=xk

q(xk, xl) = −
∑

i

∑

j �=i

qij (x). (9)

Further defineq(xk) = −q(xk, xk), which indicates the rate of leaving
statexk. The functionsqij (x) are collected in the matrixQ = Q(x).
The Markov process{X(t) : t ∈ T } can also be defined in terms of

its jump chain, the consecutive states visited by theMarkov chain, and
holding times, the timesbetween theconsecutive changes.Writing the
Markovchainas thecombinationof adiscrete-time jumpprocess{Yτ :
τ ∈ Z

+} and the corresponding holding timesSτ corresponds with
the idea that actors change their relations at discrete time points and
that, in between these points, the network structure remains constant.
The process is modeled to be right continuous, which means that
for all t ≥ 0, there exists anε > 0 such thatX(t) = X(tm) for
tm ≤ t < tm + ε.
The Markov property implies that for eachτ ≥ 1, conditional on

Y0, . . . , Yτ−1, the holding timesS1, . . . , Sτ are independent exponen-
tial random variables with parametersq(Y0), . . . , q(Yτ−1), denoted
Sτ ∼ Exp(q(Yτ−1)) (Norris 1997). The parameters of the exponen-
tial distributions equal

q(Yτ−1) = q(X(Jτ−1)) =
∑

i

∑

j �=i

qij (X(Jτ−1)), (10)
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whereJτ = ∑τ

i=1 Si is the time at which the process jumps from one
state to another (i.e., the jump time). The parameters (10) are the rates
of leaving stateX(Jτ−1).
Section 2 gives the rate of change for each single actor as

λi(ρ, x, m). The holding timeSτ of theMarkov chain, however, is the
minimum, over all actors, of the hypothetical holding timesSi

τ before
the next change by a single actori. A basic property of the exponen-
tial distribution implies that thisSτ is exponentially distributed with
parameter

λ+(ρ, x, m) =
n∑

i=1
λi(ρ, x, m) =

∑

i

∑

j �=i

qij (x). (11)

In the case of constant rate functions, this parameter equalsnρm.
The probability that, in a very short time interval(t, t +dt), actori

changes his or her relation with actorj is equal toqij (x)dt (equation
(8)). This probability can be written as the total probability that an
event occurs betweent and t + dt , that the actor who may change
one relation is actori, and that this actor chooses to change his or her
relation with actorj , given the current state of the network. Given
that an event occurs, the probability that it is actori who may change
an outgoing relation is (see Norris 1997:72)

P[Si
τ < Sj

τ for allj �= i|Sτ ≤ t, X(t) = x] = λi(ρ, x, m)

λ+(ρ, x, m)
. (12)

Therefore, given that the probability that an event occurs is governed
by Sτ , and given the probabilitypij that a given actori chooses actor
j to change his or her relation with.

qij (x) dt = P[Sτ ≤ dt, Si
τ < Sj

τ for allj �= i,

X(t + dt) = x(i � j)|X(t) = x] + o(dt)

= (λ+(ρ, x, m)dt

+o(dt))
λi(ρ, x, m)

λ+(ρ, x, m)
pij (θ, x) + o(dt)

= λi(ρ, x, m)pij (θ, x)dt + o(dt), (13)

with Sτ = mini Si
τ andSi

τ the holding time for actori at time pointτ .
The symbolo(dt) represents a function such thato(dt)/dt tends to 0
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for dt ↓ 0. This impliesqij (x) = λi(ρ, x, m) pij (θ, x). For constant
rate functionsρm, qij (x) is given byqij (x) = ρmpij (θ, x) for time
period(tm, tm+1).

3.2. SIMULATION OF NETWORK EVOLUTION

AMarkov chain of adjacencymatrices for the timeperiod(tm, tm+1)
can be constructed from the initial stateX(0) = x(tm), the observed
configuration of the network attm, by generating a jump process{Yτ :
τ ∈ Z

+} and randomly drawing holding timesSτ . The simulation
algorithm consists of the following steps:

I. Begin with an initial statex(tm) = X(0) = Y0.
II. Set t = 0 and complete the following steps forτ = 0,1,2, . . . until

t ≥ tm+1 − tm.

1. Setx = Yτ .
2. Conditional onYτ = x, Sτ+1 ∼ Exp(λ+(ρ, x, m)). Randomly
draw a holding timeSτ+1 from this exponential distribution.

3. Randomly draw an actori from I using probabilities (12).
4. Randomly draw an actorj �= i from I using probabilities

pij (θ, x).
5. Sett = t + Sτ+1 andYτ+1 = x(i � j).

Conditional onYτ = x, Yτ+1 has distribution

πij (x) = λi(ρ, x, m)

λ+(ρ, x, m)
pij (θ, x), (14)

that is, the probability that the new state equalsx(i � j). Sτ+1 and
Yτ+1 are independent, as well as independent ofY0, . . . , Yτ and
S1, . . . , Sτ .

3.3. NETWORKS OF CHANGING COMPOSITION

Up to now, only closed networks were considered, withn actors
from a set of actorsI who are present at every time pointt ∈ T.
In empirical research, however, the composition of networks may
change as actors join or leave the network at some point in time. For
example, the structure of a school class can change because children
move to other cities, thereby leaving one network (school class) and
joining another. Longitudinal data of networks of changing composi-
tion canbemodeledusing stochastic actor-orientedmodels byextend-
ing the simulation procedure. The evolutionary process is simulated
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so that, at eachmoment, the composition (i.e., the set of actors) of the
simulated network is equal to the actual composition at that moment.
Composition changes are modeled as exogenous events. This

means that actors are allowed to join or leave the network at fixed time
points and that neither the events nor the event times are determined
by the model. To model these exogenous events, the outcome space
of stochastic actor-oriented models is extended and now consists of
the following basic elements.

• A continuoustime parametert ∈ T = [t1, tM ]. The data are a time
series of networks observed at ordered observation timest1 < · · · <

tm < · · · < tM .
• A total set of actorsI = {1, . . . , n}. This set is the collection of all
actors that are part of the network on at least one observation time.
The number of time points where actors join or leave the network is
denoted byE, the number of events.

• A time-dependent set of active actorsIa(t) ⊆ I. This set consists of
thena(t) actors that are part of the network at some timet ∈ T , that
is, the time-dependent set of actors who have already joined and did
not (yet) leave the network.

• A set of times of composition changeTe = {te,1, . . . , te,E} ⊂ T . This
is the ordered set of fixed time points at which the exogenous events
occur, that is, theE time points at which actors join or leave the
network:t1 < te,1 < · · · < te,E < tM . The setTe can be deduced from
Ia(t), t ∈ T .

• An outcome space of possiblenetworks of relationsX . The networks
are represented byn × n time-dependent adjacency matricesx(t),
t ∈ T . The variablesxij (t) are defined only fori, j ∈ Ia(t). The
treatment of the variables fori, j /∈ Ia(t) is discussed later.

• Actor and pair-dependentattributesV (t), t ∈ T , andW , respectively.

In Figure 1, an example is given of a network of which the com-
position changes. The total set of actors isI = {A,B,C,D,E,F}, and
the time-dependent sets of active actors areIa(tm) = {A,B,C,D} and
Ia(tm+1) = {A,B,D,E}, where Actor C left the network in the time
period(tm, tm+1) and Actor E joined the network in the time period.
Actor F did leave the network before observation timetm, will join
the network after time pointtm+1, or both.
At each time point t ∈ T, only active actorsi ∈ Ia(t) are

allowed to change their outgoing relationsxij (t) by initiating or
withdrawing relations with other active actorsj ∈ Ia(t). They
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Figure 1: Network Observed at Two Time Pointstm and tm+1, Where Actor C Leaves
the Network Between the TwoObservation Times, Actor E Joins the Network,
and Actor F Either Joins After tm+1 or Has Left Before tm

cannot change relations with nonactive actors. Nonactive actors are
not allowed to change their outgoing relations. Changed relations
at time point t lead to a new state of the network,x(i � j), with
i, j ∈ Ia(t) andj �= i. The utility and probability functions (4) and
(5) are calculated over the set of active actors.
Exogenousevents that occur in the timeperiod(tm, tm+1)divide that

period into several parts. IfE′ events occur in the current time period,
E′ + 1 new, consecutive periods will emerge:(tm, te,k), (te,k, te,k+1),
. . . , (te,k+E′, tm+1), with te,k the first time of composition change in the
total period(tm, tm+1). Denote these new time periods by(tm′, tm′+1) ⊆
(tm, tm+1). The set of actorsIa(t) is constant fortm′ ≤ t < tm′+1.
In each of these time periods, a continuous-time Markov chain of

adjacencymatrices is constructed from the initial stateX(0) = x(tm′)

by generating a jump process and holding times. Because only active
actors can act, the set of active actorsIa(tm′) has to be determined at
the beginning of each time period(tm′, tm′+1).
The continuous-time Markov chains of adjacency matrices in the

periods(tm′, tm′+1) have aQ-matrix depending on the setIa(tm′).
Although the outcome spaceX was defined in terms of the total
set of actors,I, the Q-matrices change at each exogenous event
because some states cannot be reached anymore. This means that for
i or j /∈ Ia(tm′), the corresponding elementsqij (x) are set to 0. Also,
some of the nonzero elements ofQ have changed because new states
can be reached from the changed present state with different rates of
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leaving. These changes inQ can be expressed in terms of changes in
the probabilitiespij (θ, x) (equation (5)). This is in agreement with
the change in the group of actorsj from which an actori can choose
one actor to change the relations with; a joining actor was added or
a leaving actor removed. In the period(tm′, tm′+1) ⊆ (tm, tm+1), the
probabilities equal

pij (θ, x) = exp(r(θ, i, j, x))∑
l∈Ia(tm′ ),l �=i exp(r(θ, i, l, x))

,

i, j, l ∈ Ia(tm′), j �= i. (15)

Furthermore, the parameter of the holding timesSτ of the Markov
chain is different in the different time periods. The time until the
next change of any actor is exponentially distributed with parameter
λ+(ρ, x, m), defined in equation (11). In the period(tm′, tm′+1), this
parameter equals

λ+(ρ, x, m′) =
∑

i∈Ia(tm′ )

λi(ρ, x, m), (16)

where we assume that the individual change rates of actors,
λi(ρ, x, m), are determined for the total period(tm, tm+1) and remain
the same in the subperiods(tm′, tm′+1). In the case of constant rate
functions, this parameter equalsλ+(ρ, x, m′) = na(tm′) ρm, and given
that some actor is allowed to act, the probability that actori may
change one of his or her outgoing relations is equal to

λi(ρ, x, m)

λ+(ρ, x, m′)
= 1

na(tm′)
. (17)

In time period(tm, tm+1), the Markov chain starts from the initial
stateX(0) = x(tm) and continues until the first time of composi-
tion change,te,k, is reached. At this point, the network configuration
changesand theMarkovchain startsanew from the last simulatedstate
of the network to which a joining actor is added or fromwhich a leav-
ingactor is removed.Becauseof thememorylessproperty of theexpo-
nential holding times and the Markov chains (see Norris 1997: 93),
conditional onX(te,k), the process{X(te,k + t) : 0< t < te,k+1− te,k}
is a Markov chain with generator matrixQ depending onIa(te,k)

and is independent of{X(s) : s < te,k}.
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3.4.1. Simulation With Composition Change

The simulation algorithm described in the previous section is
used to generate Markov chains from a given valueθ . Consider the
ordered set of times{tm, te,k, . . . , te,k+E′, tm+1} with E′ the num-
ber of exogenous events in the period(tm, tm+1). Denote this set by
{tm′, . . . , tm′+(E′+1)}, and complete the following steps for each time
period(tm′, tm′+1) ⊆ (tm, tm+1):

I. Determine the set of active actorsIa(tm′), the value of the parameter
λ+(ρ, x, m′), and the probabilitiespij (θ, x).

II. Begin with an initial statex(tm′) = X(0) = Y0.
III. Set t = 0 and complete the following steps forτ = 0,1,2, . . . until

t ≥ tm′+1 − tm′ .

1. Setx = Yτ .
2. Generate a holding timeSτ+1 ∼ Exp(λ+(ρ, x, m′)).
3. Randomly draw an actori from Ia(tm′) with probability (17).
4. Randomly draw an actorj �= i from Ia(tm′) with probability

pij (θ, x) (given in equation (15)).
5. Sett = t + Sτ+1 andYτ+1 = x(i � j).

3.4.2. Relations of Joiners and Leavers

The simulation algorithm described above allows actors to join and
leave the network more than once. Although this may be plausible in
some specific cases, we restrict the procedure (for software program-
ming reasons) to actors who join or leave the network only once. This
means that actors can “behave” in five different ways:

1. present in the whole time periodT = [t1, tM ];
2. joining: not present in the period [t1, te,k) and present in(te,k, tM ];
3. leaving: present in the period [t1, te,k) and not present in(te,k, tM ];
4. joining and leaving: not present in the period [t1, te,k), present in

(te,k, te,l), and not present in(te,l , tM ], M > l > k; and
5. leaving and joining: present in [t1, te,k), not present in(te,k, te,l), and

present in(te,l , tM ], M > l > k.

The networks are represented by time-dependentn × n adja-
cency matrices with relationsxij (t) between all actors inI (including
active and nonactive actors). Not all relations between actors inI are
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specified at the beginning and end of each time period(tm, tm+1)
because the nonactive actors are not present in the network. Figure
1 shows examples of the relations that are not specified: all relations
from and to Actor E (joiner) at time pointtm, all relations from and
to Actor C (leaver) at time pointtm+1, and all relations from and to
Actor F. It is assumed that these relations cannot be observed and,
therefore, will not contribute to the statisticZ and the parameter esti-
mation. This problem is dealt with by imputing values for the joining
and leaving actors in the adjacency matrices.
The following is proposed. In the period before joining, the rela-

tions of joining actors are given the value 0. That is, ifi /∈ Ia(t) for
t1 ≤ t < te,k andi ∈ Ia(t) for te,k ≤ t ≤ tM , thenxij (t) = xji(t) = 0
for all j ∈ I and all t1 ≤ t < te,k. These imputations assume that
joining actors do not have relations with members of the network
before entry. However, prior information may be available on the
relations between joining actors and network members. If such
information is available, it can be used by giving the relations the
corresponding values instead of the value 0.
In the period after leaving, the relations of leaving actors are given

the value equal to their last observation. That is, ifi ∈ Ia(t) for
t1 ≤ t < te,k andi /∈ Ia(t), for te,k ≤ t ≤ tM , thenxij (t) = xij (tobs(i))

andxji(t) = xji(tobs(i)) for all j ∈ I and allte,k ≤ t ≤ tM , with tobs(i)

the time actori was last observed,tobs(i) ∈ [t1, te,k).
These values are imputed to minimize the influence of leav-

ing actors on the calculation of the statistics. By imputing the last
observed values, leavers only indirectly affect the evolution of the net-
work (i.e., the modeling of the evolutionary process) via the relations
they havewith other networkmembers. These relations affect the val-
ues of the utility and probability functions (4) and (15) and, therefore,
the actions of other actors. The estimation process will not be directly
affected because the contribution of the leavers to the statisticZ has
not changed. Imputing the value 0 for the relations after an actor
left would suggest that the changes (some relations will change from
1 to 0) are due to endogenous effects influencing the evolutionary pro-
cess (network effects and attribute effects). This would not be correct
under the exogeneity assumption for composition changes.
If an actor first joins the network and then leaves again, the impu-

tations described above apply. If an actor first leaves the network
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and then joins again, the last observed values of that actor before
leaving are imputed. That is, ifi ∈ Ia(t) for t1 ≤ t < te,k and for
te,l ≤ t ≤ tM , andi /∈ Ia(t) for te,k ≤ t < te,l, thenxij (t) = xij (tobs(i))

andxji(t) = xji(tobs(i)) for all j ∈ I and allte,k ≤ t < te,l, with tobs(i)

the time actori was last observed,tobs(i) ∈ [t1, te,k).
The exogeneity assumption of the composition changes cannot be

assessed in practice. It is assumed that the researcher has substan-
tial knowledge of the network data to assess the plausibility of the
assumption. This means that the times of joining or leaving should
be known, as well as knowledge on the causes of joining or leaving.
The network of children in a primary school class discussed in Sec-
tion 5 is an example of such a situation. Here the joining or leaving of
children is due to external events (moving to another city or school,
skipping classes, changes in the class composition due to school poli-
cies) that are not related to the relational variable that is studied—
namely, “plays with” or “likes to play with.”

4. A SMALL SIMULATION STUDY

The simulation algorithm is implemented as part of the estimation
procedure for stochastic actor-oriented models for network evolu-
tion. It is available in the freeware PC programSIENA (Simulation
Investigation forEmpiricalNetworkAnalysis) (SnijdersandHuisman
2003) to analyze repeated observations on social networks. The pro-
gram runs under Windows and is included in the freeware package
StOCNET for the advanced statistical analysis of social networks
(Boer et al. 2003). To investigate the proposed extension of themodel,
we performed a small simulation study. In this section, the design and
results of this study are presented.
Snijders (forthcoming) illustrates the stochastic actor-oriented

models using the freshmen networks collected and studied by Van de
Bunt (1999). The data were collected at seven time points during the
years 1994 and 1995 and consist of 24 female and 8 male students.
The students are grouped into three programs according to the length
of the study program: two, three, or four years. The relation studied
is defined as “at least a friendly relationship”; see Van de Bunt (1999)
for a precise definition. The second (t2) and third (t3) observations
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of this network are used in the simulation study. These consecutive
observation moments are spaced three weeks apart.

4.1. DESIGN

The actors in the freshmen network whowere completely observed
att2 are used in the simulation study (n = 29). From the results of Sni-
jders (forthcoming-a), it follows that a model for the evolution of this
network may contain the following parameters: constant rate, den-
sity, reciprocity, indirect relations, sex-related activity, and program-
related dissimilarity. This model was estimated using the networks of
then = 29 actors observed att2 andt3. Next, the estimated parameters
were treated as fixed (true) values and used to simulate the evolution-
ary process fromt2 up tot3. This results in a simulated network att3,
with known parameters of the evolutionary process. The fixed values
are−0.990, 2.254,−0.524,−0.755, and−0.363 for density up to
program-related dissimilarity, respectively. Thismeans that the actors
prefer reciprocated, direct relations with actors in the same program
and that women are more active in creating relations than men. The
observed network att2 and the simulated network att3 were used in
the simulation study.
There are two independent factors in the study: percentage of join-

ers/leavers and modeling procedure. Three levels of the first factor
were used: 10 percent (one joiner, two leavers), 21 percent (three join-
ers, three leavers), and 41 percent (six joiners, six leavers). Actors
were randomly drawn to be a joiner or a leaver until the desired num-
bers were reached. The order in which the actors joined or left is
determined by their position in the adjacency matrix.
As the composition changes are modeled as exogenous events, the

times of change have to be specified by the researcher. Specifying
different sets of timesTe results in different modeling procedures.
The second factor in the simulations, modeling procedure, is com-
posed of four levels: (1) the missing data procedure implemented
in theSIENA software; (2) the proposed procedure for composition
change in which the times of change are the same for all joiners and
leavers, that is,te,k = 0.25 for all eventsk; (3) the proposed procedure
for composition change in which the times of change are evenly dis-
tributed over the time period(t2, t3); and (4) the proposed procedure
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with te,k = 0.75 for all k. In the first option, the joiners and leavers
are consideredmissing and handled in a simple way tominimize their
influence on the estimation results. If an element is missing in the
adjacency matrix for the observation at the start and/or the end of the
time period, this element is set to 0 in both observations. This means
that for the calculation of the statistics used in the estimation process,
the missing element is not counted. In the course of the simulations,
however, the values are allowed to change from 0 to 1. This means
that there may be small indirect effects of the missing values in the
evolution of the network (see Snijders and Huisman 2003).

4.2. RESULTS

In each of the 3× 4 cells in the design, a model was estimated
containing the six parameters mentioned above. The estimation was
repeated 10 times (a small number in view of the long computer time
required for each run). In Table 1, the mean values of the param-
eter estimates and standard errors over the 10 replications are pre-
sented. Several things should be noted while interpreting the results
presented in Table 1. First, the parameter estimates for the complete
network (without generated joiners and leavers) are 3.546,−0.715,
2.025,−0.423,−1.154, and−0.362, respectively. When comparing
these valueswith the estimates obtainedwith themissing value proce-
dure, differences between the procedures are only due to the different
number of actors. For the composition change procedures, however,
differences between the estimates and the estimates obtained with the
complete data reflect not only differences in the number of (active)
actors but, more important, differences in the evolutionary process.
The exogenous events influence the importance of the effects in the
process because joiners generally start with no relations and the rela-
tion changes of the leavers are not counted.
Second, for the cells with small and moderate changes (p1 and

p2), the differences between the parameter estimates in the 10 repli-
cations are never larger than 0.017, which is small in comparison
to the standard errors. Furthermore, in all cells with large changes
(p3), the estimation algorithmdid not converge, and instable estimates
were found. Inspection of the estimation results showed that this was
mainly caused by the parameter for sex-related activity. Removing
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this parameter and reestimating the model resulted in convergence,
but not all parameters in all replications were found to be significant.
This means that the actual values of the parameters in the cells with
large changes cannot be directly compared with those in the other
cells, but the direction of the change in the parameters can.
Some general results are found in Table 1. First, the change rate

increases from left to right, that is, increases when the composition
changes occur later in time (at the end of the period). Treating the
composition changes as missing values reduces the number of actors
involved in the evolutionary process, and therefore the number of
relational changes will be smaller than in the three other procedures.
Also, the change rate increases when the proportion of leavers and
joiners increases. The more actors join and leave the network, the
more relational changes have to be made by the actors to “arrive at”
the network att3, especially when the exogenous events occur at the
end of the time period.
Second, the absolute value of the density parameter decreaseswhen

the number of joiners and leavers increases. Because the density
parameter acts as a control variable when other network effects are
included in the model, this decrease reflects an increase of the abso-
lute values of other parameters. This is generally the case, except
for the reciprocity and indirect relations effects when the joiner and
leavers join or leave late in the period (te = 0.75). This indicates that
first a certain number of relations have to exist before these effects
can emerge.
Third, the standard errors increase when the number of changes

increases (theonly exception is the variable program, inwhich the val-
ues are even slightly smaller forp2). Sometimes the increase is large,
resulting in insignificant parameter values (e.g., density), especially
when the proportion of joiners and leavers is large. As the failure to
model the effect of sex-related activity shows, the evolution of the
network is hard to model when there are many composition changes.
Comparison of the three composition change procedures shows

that the differences are relatively small for covariate-related effects
but can be large for network effects. Generally, the parameters for the
procedure withte = 0.25 have the largest absolute values, and the
parameters forte = 0.75 have the smallest absolute values, indicating
that the strength of the accompanying effects decreases when actors
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TABLE 1: Results of the Simulation of Network Evolution With Three Percentages of Leavers/Joiners (p1 = 10 percent,p2 = 21 percent,

p3 = 41 percent) and Four Methods of Handling the Composition Change: Average Parameter Values and Standard Errors
(Between Parentheses) Over 10 replications

Missing te = 0.25 te Even te = 0.75

Rate p1 3.736 (0.634) 3.999 (0.681) 4.080 (0.705) 4.156 (0.705)
p2 4.145 (0.779) 5.121 (0.900) 5.353 (0.939) 5.513 (0.944)
p3 4.091 (1.163) 5.375 (1.082) 6.046 (1.221) 6.770 (1.177)

Density p1 −0.793 (0.312) −0.779 (0.277) −0.775 (0.275) −0.754 (0.277)
p2 −0.711 (0.328) −0.733 (0.298) −0.726 (0.289) −0.638 (0.317)
p3 −0.706 (1.543) −0.399 (2.160) −0.386 (1.167) −0.135 (1.536)

Reciprocity p1 2.185 (0.387) 2.101 (0.356) 2.093 (0.356) 2.030 (0.354)
p2 2.004 (0.406) 2.283 (0.419) 2.216 (0.402) 2.000 (0.377)
p3 2.812 (2.608) 2.536 (0.976) 2.345 (1.374) 1.788 (0.663)

Indirect relations p1 −0.465 (0.142) −0.506 (0.156) −0.498 (0.153) −0.493 (0.161)
p2 −0.473 (0.143) −0.604 (0.187) −0.587 (0.184) −0.554 (0.198)
p3 −0.539 (0.341) −0.784 (0.269) −0.712 (0.297) −0.459 (0.333)

Sex: activity p1 −1.449 (0.449) −0.879 (0.372) −0.869 (0.365) −0.795 (0.359)
p2 −1.411 (0.468) −0.997 (0.391) −0.893 (0.380) −0.791 (0.379)
p3 – – – – – – – –

Program: dissimilarity p1 −0.295 (0.168) −0.324 (0.158) −0.323 (0.156) −0.328 (0.154)
p2 −0.295 (0.190) −0.510 (0.156) −0.515 (0.154) −0.539 (0.153)
p3 −0.365 (0.262) −0.595 (0.180) −0.654 (0.175) −0.658 (0.169)

NOTE: Forp3, the effect of sex-related activity was excluded from the model. Italicized numbers indicate significant effects. The dashes indicate the
exclusion of the corresponding effect.
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join or leave at a later time point. Comparing the composition change
procedures with the missing value procedure shows relatively large
differences, especially for the covariate-related values.

5. EXAMPLES

In this section, two illustrations will be given of the analysis of longi-
tudinal network data of changing composition with theSIENA pro-
gram. The first example uses the freshmen data (Van de Bunt 1999)
in which, artificially, joiners and leavers were created and illustrates
a case in which there are few composition changes (Section 5.1). The
second example is a case of real-life data from children in a primary
school class, with (relatively) many changes in the composition of
the network (Section 5.2).

5.1. AN EVOLVING NETWORK OF UNIVERSITY FRESHMEN

Two observations of the freshmen friendship network were used in
the simulation study above. In this example, the observed networks
at the second to fourth time point,t2, t3, andt4 (M = 3), are used. See
also Snijders (2001) for analyses of these data. The data are available
with theSIENA program.
In the original data, the composition of the network does not

change. A network of changing composition was artificially created
by using actors whose outgoing relations are missing at one or more
observation times due to nonresponse. These actors were treated as if
they had joined or left the network. In Table 2, the number of observed
and missing active actors at each observation time is presented. Also,
the gender of the joining and leaving actors is given, as well as the
times at which they join or leave the network. These times of com-
position change were randomly chosen fractions of the length of the
observation periods.
In the observation period [t2, t4], there are six joining actors and six

leaving actors—three joiners and three leavers in both periods [t2, t3]
and [t3, t4]. There are nine female actors (37.5 percent of the females)
and three male actors (37.5 percent of the males) who either join or
leave. One actor withmissing observations att3 was treated as regular
missing data.
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TABLE 2: Number of Observed and Missing Active Actors of the University Freshmen
Network (n=32) at the Beginning and Ending of Each Time Period and the
Created Joiners and Leavers (f = female, m = male) and Their Joining/
Leaving Time

Timea t2 1 2 3 4 5 6 7 8 9 t3 1 2 3 4 5 6 7 8 9 t4

Observed 26 25 26
Joined f f f f f m
Left f m f f f m
Missing 0 1 0

a. Decimal fraction of the time between two observations.

The estimated models are the same as those described by Snijders
(2001). Thefirstmodel includesonly networkeffects: thebasic effects
of density and reciprocity, the triadic effects of transitivity, rela-
tions at distance 2 (i.e., indirect relations), and balance. The density
effect should always be included because the other effects should be
controlled for density (for a more elaborate discussion of the den-
sity effect, see Snijders forthcoming). The second model includes
gender effects: gender-related popularity, activity, and dissimilarity.
The models are estimated in two ways: (1) the proposed procedure
for composition change (models labeled Change 1 and Change 2 in
Table 3) and (2) the missing data procedure implemented inSIENA
(models labeled Missing 1 and Missing 2 in Table 3).
Theestimated rateparameters,ρ̂1 = 3.64andρ̂2 = 5.19, inChange

1 show that the actors made 3.64 changes of relationships betweent2
andt3 and 5.19 changes betweent3 andt4. There are three significant
network effects (at the 5 percent level). The significance is tested
with t tests defined by the ratio of parameter estimate to standard
error (e.g., for the reciprocity parametert = 2.24/0.28= 8.00) (see
Snijders 1996, 2001). There is a strongly significant reciprocity effect
and a significant indirect relations effect, indicating a preference for
closed networks (high reciprocity, low number of indirect relations).
The other two triadic effects are not significant in Change 1. When
the model is reestimated without these effects, the reciprocity and
indirect relations effects become larger. See Snijders (forthcoming)
for a general discussion on the interpretation of the parameters.
In Change 2, three actor attribute effects were added to the signifi-

cant network effects: gender-related activity, popularity, and dissim-
ilarity. Before estimation, the means were subtracted from the values
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TABLE 3: Parameters for Models Estimated Using Observationst2, t3, and t4 of the Freshmen Data

Change 1 Missing 1 Change 2 Missing 2

Effect Parameter (SE) Parameter (SE) Parameter (SE) Parameter (SE)

Rate (Period 1) 3.64 3.86 3.57 3.86
Rate (Period 2) 5.19 3.29 5.08 3.26
Density −1.18 (0.31) −1.40 (0.28) −0.95 (0.18) −1.08 (0.17)
Reciprocity 2.24 (0.28) 1.91 (0.30) 2.27 (0.29) 2.43 (0.35)
Transitivity 0.10 (0.072) *0.20 (0.081) – –
Balance −0.79 (0.93) −0.21 (0.80) – –
Indirect relations −0.41 (0.094) −0.34 (0.079) −0.50 (0.12) −0.50 (0.083)
Gender popularity – – 0.45 (0.22) *0.61 (0.22)
Gender activity – – 0.16 (0.32) *−0.60 (0.27)
Gender dissimilarity – – −0.53 (0.26) *−0.40 (0.24)

NOTE: Parameters significant at the 5 percent level are italicized. Asterisks indicate important differences between the models Change and Missing.
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of gender (1 = female, 2 = male), giving new values−0.25 and 0.75,
respectively. Table 3 shows that the parameters for gender popular-
ity and dissimilarity are significant, indicating that men receive more
positive choices (positive popularity) and that men are inclined to
choose men and women to choose women (negative dissimilarity).
When the joining and leaving actors are treated as missing, the

parameter values of some effects change. The comparison ismade for
both models, and the estimated parameters are presented in Table 3
(Missing 1 and Missing 2, respectively). The transitivity effect in
Missing 1 is significant, indicating a preference for transitive relations
between actors (“a friend of a friend is also my friend”). Because of
this larger transitivity effect, the values of the other parameters are
smaller. In Missing 2, the (negative) gender activity effect is signif-
icant, making the dissimilarity effect nonsignificant. This indicates
that women are more active in initiating relations then men and that
there is no longer a significant liking for similar others (same sex).
The differences between the two procedures (composition change

and missing) are in line with the results of the simulation study
(21 percent joiners/leavers per period, evenly distributed times of
change), although care should be taken when comparing the results
because the models contain different effects. The estimated rate
parameter for the first period,̂ρ1, is somewhat smaller in the change
models than in the missing models, but the estimated rates for the
second period,̂ρ2, are much larger in the change models. Allowing
the actors to join or leave the network results in more changes in the
second period than treating them as missing values. Also, the indi-
rect relations effect and the effect of sex-related activity are similar
to those found in the simulations.

5.2. THE DEVELOPMENT OF SOCIAL COMPETENCE IN CHILDREN

Within the framework of a longitudinal study of social develop-
ment in primary school children (Utrecht Social Development Project
[USDP]) (Van den Oord and Rispens 1999), the structure of the rela-
tions between children in school classes was studied to gain insight
into children’s peer relations and the developmental importance of
these relations (Van den Oord et al. 2000; Van Rossem et al. 2000).
The networks of children are the classes of a sample of elementary
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TABLE 4: Number of Observed and Missing Active Actors of the Elementary School
Class Network (n=24) at the Two Observation Times and the Joiners and
Leavers (f = female, m = male; number between brackets) and Their
Joining/Leaving Time

Timea t2 0.25 0.50 0.75 t3

Observed 13 13
Joined f(2), m(3)
Left f(4), m(3)
Missing 6 4

a. Fraction of the time between two observations.

schools in the province of Utrecht in the center of the Netherlands.
The data were collected at three time points:t1, during the 1996-1997
school year, 94 kindergarten classes (ages four to five);t2, during the
1998-1999 school year, 71 first-grade classes (ages six to seven); and
t3, during the 2000-2001 school year, 65 third-grade classes (ages
eight to nine).
The data used in this example come from one class of 24 children

and are repeated measures of positive relations obtained at the time
pointst2 andt3. These positive relations are defined as “plays often
with” or “likes to play with” (see Van den Oord et al. 2000). The two
observation times (M = 2) are spaced two years apart.
The network of 24 children consists of 14 girls and 10 boys. The

compositionof theschool classchangedbetween the twoobservations
times. In Table 4, the number of observed andmissing active actors at
both observation times is presented, as well as the number of joining
and leaving children (female/male) and the times of change. There
are 5 children who join the network (2 girls and 3 boys) in the time
period [t2, t3], and there are 7 children who leave the class (4 girls and
3 boys). The times of composition change are the same for all leavers
and joiners. It was set at 0.75, the time at which the children go from
second grade to third grade (note that the data were collected during
the school year, that is,t2 is set halfway through first grade, andt3 is
halfway through third grade).
There is a considerable amount of missing data due to nonresponse

in the data set: 6 out of 19 active actors att2 (31.6 percent) and
4 out of 17 actors att3 (23.5 percent) are missing. Moreover, of the
6 missing actors att2, 1 actor leaves the network (and is therefore not
observed att3), and all 4 missing actors att3 are joiners (and therefore
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not observed att2). This means that the actual number of actors is
n = 19. The reason for the missing values of the 4 joiners att3 is
a combination of the data collection method and the joining itself.
Photographs of the children were used to generate the network data.
These were not always available for children who joined the network
at later times and, therefore, caused missing values.
Van den Oord et al. (2000) describe the networks att1 and Van

Rossem et al. (2000) describe the networks att1 and t2 in terms of
structural properties (e.g., outdegree, reciprocity, transitivity) and the
attributes gender and age. Here, the evolution of the network in the
time period [t2, t3] is modeled with the same structural and attribute
effects. Two models were estimated—one with only the network
effects density, reciprocity, and transitivity and the other with both the
network and attribute effects. As in the previous example, the mod-
els are estimated in two ways: (1) modeling the network composition
change and (2) treating the joiners and leavers as missing. The results
are presented in Table 5 asChange 1 andChange 2, aswell asMissing
1 and Missing 2, respectively.
Themodels Change 1 andMissing 1 are practically the same if dif-

ferences in parameter estimates are evaluated in terms of the standard
errors. Only the estimated rate parameterρ̂ shows that the second
model is more restrictive: Actors make less changes because they are
not included in the estimation procedure. There are some differences
between the parameters of both models, but none of the parameters is
significant. When attribute effects are included, the network effects
change but still are not significant. The attribute effects, however, are
different in the two models (only the significant attribute effects are
reported in Table 5). From Change 2, which uses the composition
change algorithm, it can be concluded that the children prefer rela-
tions with others of the same sex (t = −1.72/0.46= −3.74) and that
younger children receive more positive choices (t = −0.18/0.066=
−2.73). In Missing 2, these effects have the same direction but are
smaller and not significant. The same was found for the attribute
effects in the simulation study.
The results found in this (single) class of children show that the

evolution of the network is largely determined by the gender and
age of the children. Van Rossem et al. (2000) found evidence for the
network effects at the separate time points, but in the evolutionary
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TABLE 5: Parameters for Models Estimated Using Observationst1 and t2 of the Elementary School Data

Change 1 Missing 1 Change 2 Missing 2

Effect Parameter (SE) Parameter (SE) Parameter (SE) Parameter (SE)

Rate 7.52 5.41 7.59 6.15
Density 0.29 (1.03) −0.10 (0.96) 1.04 (1.79) 0.82 (0.76)
Reciprocity 0.84 (0.99) 0.11 (0.84) 0.73 (0.95) *−0.038 (0.82)
Transitivity 0.059 (0.36) 0.17 (0.26) −0.061 (0.25) −0.030 (0.22)
Gender dissimilarity – – −1.72 (0.46) *−0.68 (0.48)
Age popularity – – −0.18 (0.066) *−0.12 (0.10)

NOTE: Parameters significant at the 5 percent level are italicized. Asterisks indicate important differences between the models Change and Missing.
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process, these effects were found to be not significant for the single
class analyzed. It should be noted that the time period between
the observations is considerable (two years), which may cause the
measured network effects to be weak. Moreover, the amount of miss-
ingness is large. Also, the composition of the network changes con-
siderably, and this change occurs at one time point. Together, this can
make the results less stable.

6. DISCUSSION

In this article, a simulation algorithm was proposed to generate
Markov chains of adjacencymatrices for networks of which the com-
position may change due to actors joining or leaving the network.
The algorithm was implemented as part of the estimation procedure
for stochastic actor-oriented models for network evolution (Snijders
1996, 2001). This class of models provides a method for the statisti-
cal analysis of longitudinal social network data, in which actors are
allowed to join or leave the network (or even do both).
The changes in the composition are treated as exogenous events

that occur at given time points between two observation times. In
the simulation procedure, Markov chains with stationary transition
distributions are generated between the times of change (or between
an observation time and a time of change) based on the actors who are
part of the network at that time. Only these active actors are allowed
to change their outgoing relations with other active actors, leading to
a new state of the network. The choices of the actors are governed by
their objective and gratification function, of which the parameters are
estimated on the basis of the observed and simulated networks.
Theactor-orientedmodel for longitudinal networkdatawith chang-

ing composition is implemented in the freeware programSIENA
(Snijders and Huisman 2003), which is available within theStOC-
NET package (Boer et al. 2003). A small simulation study was per-
formed using observations on friendship networks of university fresh-
men to investigate the performance of the procedure. Also, examples
were presented of analyses of the freshmen network data and the net-
work of children in a primary school class. The simulations and the
examples show that including the joining and leaving actors in the
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estimation procedure results in different parameter estimates than
treating joiners and leavers as missing.
Modeling thecomposition changeassuggested in this articlemeans

that extra information on the relations of newly joined actors and of
actors who did not yet leave is included in the estimation procedure.
This results in higher change rates, indicating that more relational
changes were made by the actors. Also, differences in the structural
and covariate effects were found between the used procedures. Com-
parison of the composition change procedure and the missing value
procedure (simulations and examples) shows that the differences are
largest for covariate effects. The direction of the differences is, how-
ever, hard to predict because it varies between data sets (and per-
centage joiners/leavers) and estimated models (included effects). For
instance, the reciprocity effect is generally strongest for the missing
data procedure in the simulations, weakest for the same procedure in
the children example, and changes between the two procedures in the
freshmen example.
Knowledge of the times of composition change is very important

and has a large influence on the parameter estimates, especially in
case of few actors and/or many events. The simulations with the three
composition change procedures—that is, three different sets of times
of change—showed (sometimes large) differences between the esti-
mates. The differences are especially large for the two extreme cases
in which all actors join or leave the network at the same time, early
or late in the period between the observations. The estimated values
of the procedure in which the times of change are evenly distributed
always are between those obtained by the two other procedures. Apart
from the rate, which is always larger for procedures in which the
changes occur late in the period, the direction of the difference again
varies with number of changes and included effects.
The composition change procedure allows for more information to

be included in the estimation process in comparison to treating the
joining and leaving actors as missing. Given the assumptions, this
provides a better description of the evolutionary process, although
extra information is needed on the times of change.
It should be noted that the nature of the stochastic approximation

procedure of stochastic actor-oriented models causes the parameter
estimates to be slightly different each time themodel is (re)estimated.
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If the convergence of the model is good, these differences will be
small, but they make comparisons of the composition change models
and themissing valuemodels difficult. Large differences are certainly
due to differences between the two treatments, but the cause of small
differences cannot be attributed to the treatments with certainty. Also,
substantive changes in the composition of networks can lead to insta-
ble solutions and problems with the convergence of the estimation
algorithm. This was found to be the case in the simulations when the
number of joiners and leavers was extremely large (41 percent) and
in the children data, in which only a small model (containing few
effects) could be estimated.
Missing data due to composition changes or nonresponse are one

aspect of data quality, which plays an important role in modeling
network evolution. Another important aspect is the time between the
consecutive observations. In the freshmen data, the time between
two observations varied between three weeks and three months. The
periods between the first observations were shorter because in the
beginning, more changes in the network were anticipated, and later
observations were spaced further apart as the friendship network will
change less (Van de Bunt 1999). It is important that there is enough
time between the observations for relational changes to occur, but
observations should not be spaced too far apart because toomany rela-
tional changes will lead to instable solutions and problems with the
convergence of the estimation algorithm. This problem was encoun-
tered in the children data, in which the observations were spaced two
years apart. More research is needed to gain insight in the stability of
the solutions.
Further extensions of the simulation algorithm are possible. The

composition changes were modeled as exogenous events, but endo-
genous reasons for leaving the network may be found in the struc-
tural properties or attributes of the network or in the attributes of the
actors (e.g., isolates leaving a friendship network or children leaving
a school class because of bullying, modeled as a dyadic covariate).
This would require extra information on the reasons for composition
change, which then could be used to improve the analysis.
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