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Abstract: The stochastic actor-oriented model (Snijders, Sociological Methodology, 2001) models the evolution of
networks over time, given panel data in a fixed group of actors, where at each panel wave the network between these
actors (a digraph structure) as well as attribute variables for these actors are observed. The parameters of this model
usually are estimated by a stochastic approximation version of the method of moments. Statistics that correspond to
the parameters in a natural way are used for fitting the model. Here we present an estimator based on the generalized
method of moments, i.e., using more statistics than parameters, for minimizing the distance between observed statistics
and their expected values. Again, the resulting equation is solved by stochastic approximation. Several algorithmic
issues arise that have to be solved in order to obtain a stable procedure. For some examples we study the resulting gain
in statistical efficiency.

Résumé : Le modèle stochastique orienté par l’acteur (Snijders, Sociological Methodology, 2001) modèle l’évolution
temporelle des réseaux, étant donné un panel dans un ensemble fixe d’acteurs, où à chaque vague de panel le réseau
entre ces acteurs (une structure de graphe orienté) ainsi que les attributs des acteurs sont observés. Les paramètres
de ce modèle sont, d’habitude, estimés par une version d’approximation stochastique de la méthode des moments.
Des statistiques qui correspondent aux paramètres d’une manière naturelle sont utilisés pour l’ajustement du modèle.
Nous présentons ici un estimateur basé sur la méthode généralisée des moments, utilisant plus de statistiques que de
paramètres, pour minimiser la distance entre les statistiques observées et leurs espérances mathématiques. Ici encore,
l’équation résultante est résolue par approximation stochastique. Plusieurs questions algorithmiques surviennent qui
doivent être résolues afin d’obtenir une procédure stable. Pour quelques exemples, nous étudions le gain résultant de
l’efficience statistique.

Keywords: Stochastic actor-oriented models, social networks, generalized method of moments, stochastic approxima-
tion algorithm
Mots-clés : Modèles stochastiques orienté par l’acteur, réseaux sociaux, méthode des moments généralisées, algo-
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1. Introduction

Network analysis provides methods to describe and analyse one or more relations between actors.
When dealing with networks, relational or dyadic variables —referring to the ties existing among
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actors— are collected in addition to the classical monadic variables describing actor characteristics.
These variables together define the network data.

Various methods have been proposed in the past (Wasserman and Faust, 1994; Carrington
et al., 2005; Scott and Carrington, 2011) to analyse network data, including methods of statistical
inference. An important class is constituted by models that take networks as the dependent variable
and aim to explain why actors are related in a certain way. In this article we consider such models
for longitudinal data, collected by observing network data over time in a panel design.

Doreian and Stokman (1997) classified studies focusing on network longitudinal data into
three categories: studies that predict attributes from structural information (Robins et al., 2001a,b;
Doreian et al., 1984; Leenders, 2002); descriptive studies of network change (Freeman, 1984);
and studies where the observed networks are perceived as the outcome of an unobserved process
going on between several time points (Wasserman and Iacobucci, 1988; Wasserman, 1980a,b).
Following the general framework suggested by Holland and Leinhardt (1977), the evolution
process is often modelled as a continuous-time Markov chain.

Stochastic actor-oriented models (SAOMs) (Snijders, 1996, 2001; Snijders et al., 2010b) are
models for longitudinal network data based on continuous-time Markov chains. One intuitively
convenient interpretation of these models relies on the general idea that ties are both beneficial
and costly for actors. Consequently, expensive ties are likely to be terminated, whereas beneficial
ties are likely to be maintained or created by the actors. The decisions of actors of creating or
dissolving links are modelled according to a random utility model, requiring the specification
of a utility function depending on a set of explanatory variables and parameters. This is only an
interpretation; the real assumption made is a Markov chain model with transition matrix defined
by (1) and (2) below.

In SAOMs, the most often used procedure for parameter estimation is the method of moments
(MoM), which estimates the parameters using one observed statistic for each estimated parameter.
Due to the complexity of the model, the system of moment equations cannot be solved analytically,
and the Robbins-Monro algorithm is used in order to approximate such a solution. This was
elaborated in Snijders (2001).

Here we propose estimation by a procedure including more information, using more statistics
than parameters. The result is that the principle of the MoM gives rise to an over-identified
system of equations, so that the regular MoM cannot be applied. A suitable method then is
the generalized method of moments (GMoM; Hansen, 1982), an estimation technique mainly
used in econometrics, and potentially more efficient than the MoM. Like the regular MoM, the
GMoM is based on the differences between the expected values of the statistics and their sample
counterparts, but the GMoM involves the minimization of a quadratic function of these differences
rather than setting all differences to zero. In order to solve such a minimization problem, the
Robbins-Monro algorithm is modified and adapted.

The remainder of the paper is organized as follows. In Section 2 we present the model, the
MoM estimator, and the stochastic algorithm used to approximate the solution of the system of
moment equations. Then, in Section 3, we introduce the idea of using new statistics, we define the
GMoM estimator and discuss the related computational problems. Section 4 and Section 5 report
results of a small simulation study and of an empirical example, respectively. These results and
further development are then discussed in Section 6.
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2. Stochastic-actor oriented models

2.1. Model formulation

Stochastic actor-oriented models are a class of models for the analysis of network panel data.
Let N = {1,2, . . . ,n} be a set of actors over which a dichotomous directed relation R is defined
and observed at M+1 time points t0, . . . , tM . Let Xi j(tm) denote the tie indicator variable between
actors i and j, taking value 1 if there is a tie from i to j at tm and 0 otherwise. The matrix X(tm)
with cells Xi j(tm) is the adjacency matrix of the network at tm.

Monadic and dyadic variables are also part of the network panel data. While monadic variables
describe the characteristics of the actors and are measured on nodes, dyadic variables describe the
characteristics of dyads and therefore are defined over pairs of actors. We denote by V the matrix
of monadic covariates, and by R the array of n×n matrices describing the dyadic covariates.

The network panel data, denoted by Y , are then defined as the time series of networks
{X(t0), . . . ,X(tM)}, together with the matrix V and the array R. In the following, the observed
values of these quantities will be denoted by small letters.

The time series represents the dependent variable of the model and it is assumed to be the
outcome of a continuous-time Markov chain {X(t), t ∈ [t0, tM]}, observed only for t = t0, . . . , tM.
The Markovian property means that for any point in time, the next state of the network is
probabilistically determined by the current state, and there are no additional effects of previous
states. The continuous time assumption allows to consider the observed panel data as the result of
a sequence of unobserved changes, happening between two consecutive observation time points
tm−1 and tm.

In order to model such a series of changes, it is assumed that at any single moment only
one probabilistically selected actor has the opportunity to make a change. Such an opportunity
for change is called a micro-step. The selected actor can decide either to change one of his/her
outgoing ties or maintain the current configuration of the network. Consequently, only one tie
variable can change at any time point. This assumption that no more than one tie variable can
change at any given point was proposed by Holland and Leinhardt (1977), and yields a great
simplification in modelling. It follows that each micro-step is defined by the moment at which
it occurs, the actor having the opportunity to make a change, and the change itself. As a result,
the network change process can be decomposed into two sub-processes: the change opportunity
process modelling the time between two opportunities of change, and the change determination
process modelling the particular choice made by the actor who gets the opportunity to modify one
of his/her outgoing ties.

Due to the Markov assumption the waiting times between consecutive changes must be
exponentially distributed. We assume that for each actor, the waiting times between consecutive
opportunities for change by this actor are exponentially distributed with parameter ρm, for
tm−1 ≤ t < tm. In this paper we assume that ρm is constant across actors; for models with variable
waiting times see Snijders (2001) and Snijders et al. (2010a).

At any moment t, for all actors independent exponentially distributed waiting times are gen-
erated with parameter ρm, and the minimum of these is the time for the next micro-step (the
others are disregarded). It follows that the waiting time until the next micro-step by any actor is
exponentially distributed with rate parameter nρm, and the conditional probability that it is actor
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i who gets the opportunity to make a change between two consecutive time points, given that a
micro-step is made at this time point by anybody, is 1/n.

The particular change that takes place at a micro-step is regarded as the result of a choice
made by the actor i. In this sense the model is actor-oriented. One way of presenting this is
a rational choice model, where actors choose their best action depending on their preferences
among all feasible actions according to a random utility model. Suppose that an individual faces a
alternatives, so that A = {1, . . . ,a} is the set of the feasible actions. According to random utility
models a decision maker i chooses the action a ∈ A providing the highest reward. Suppose actors
are myopic, i.e., they consider only the utility that will be the immediate result of their choice,
and the reward associated to an action a is modelled by a utility function ui(a)

ui(a) = fi(a)+ εi(a)

composed of two terms: fi(a) is the deterministic part of the utility capturing all the factors that
are observed, while εi(a) is a random term accounting for all the factors that are not included
in fi(a), e.g., because the researcher did not collect them. Assuming that the random terms are
independent and identically distributed as a standard type I extreme distribution (the standard
Gumbel distribution), the probability that an individual i chooses action a is expressed in a closed
form (Luce and Suppes, 1965; McFadden, 1974) by

P(i chooses a) =
e fi(a)

∑
b∈A

e fi(b)
.

Suppose that actor i has the opportunity to make a change. The set of the feasible choices consists
of either creating or terminating one outgoing tie or doing nothing (i.e., not making any changes).
The deterministic part of the utility function associated to each possible choice is modelled by the
network evaluation function

fi(β ,x,v,r) =
K

∑
k=1

βk sik(x,v,r)

which is defined as a linear combination of statistical parameters βk and so-called effects sik(x,v,r),
which are functions of the current state x and covariates v, r, computed from the point of view
of the actor i. It is assumed that actors have the knowledge required to compute the network
evaluation function for each possible choice. We denote by x(i j) the network resulting from
the decision of i to change the outgoing tie variable towards actor j, i.e., replace xi j by 1− xi j,
and formally define x(i i) = x as the result of doing nothing. The conditional probability that
the network changes to state x(i j), given that actor i makes a micro-step and the current is
state x(t) = x, then is given by

P
(
x changes to x(i j)

)
= pi j(x,β ) =

e fi(β ,x(i j),v,r)

∑
h∈N

e fi(β ,x(i h),v,r)
. (1)

It is further assumed that actors in a network follow the same decision rule and thus the de-
terministic part of the evaluation function has the same mathematical formulation for every
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actor, allowing for differences between the actors’ covariates. This implies that the parameters
βk are homogeneous with respect to actors. Furthermore, it is assumed that the decision rule
defined by the evaluation function is constant over time. Consequently, the parameters βk are also
time-homogeneous.

The definitions given above imply that the model is a continuous-time Markov chain with
transition matrix defined for x 6= x′ by

Q(x,x′) =

{
ρm pi j(x,β ) if x′ = x(i j)

0 if ∑h,k | xhk− x′hk |≥ 2 .
(2)

2.2. Examples of effects

The effects sik(x,v,r) are local patterns of ties and covariates used to explain the choices made by
the actors, and are the focus of practical modelling for the SAOMs. In fact, each actor occupies
a certain position in a network and being embedded in a particular pattern of ties (also called a
local structure or configuration) might be more rewarding than being involved in a different one.
According to the model’s interpretation of actor-oriented optimization, when an actor gets the
opportunity to make a change, he struggles for improving his position in the network, i.e., for
being part of local structures particularly beneficial to him and for avoiding to be involved in those
local configurations that are more cumbersome. The reward deriving from each local structure
is measured by the parameter βk. If βk is high and positive (or low and negative), then the local
configuration described by sik(x(i ·),v,r) is (or is not) appealing to i.

The effects are specified on the grounds of theories or previous knowledge and they may
depend only on the network, or also on monadic or dyadic covariates. Here we present a list of
commonly used effects, in particular, those occurring in the later examples (for a complete list
available in the RSiena package see Ripley et al., 2015). Next to the mathematical formulation of
each effect, we provide its graphical representation. A solid arrow denotes an existent tie; a dashed
arrow represents an outgoing tie from i and indicates the tie that, when i has the opportunity to
make a change, may be created if it does not yet exist or may be maintained if it does.

Some examples of network effects are outdegree, reciprocity, transitivity, and three-cycle.
While outdegree and reciprocity are defined within dyads, transitivity and three-cycle involved a
third actor and therefore model a more complex dependence assumption.

The outdegree effect measures the tendency for actors to create ties and is defined as the number
of outgoing ties of actor i

si,outd(x) = ∑
j

xi j . i j

Usually the corresponding parameter βoutd is negative since networks tend to be sparse (i.e., they
have a low density). In the actor-oriented perspective this means that the cost of having a tie
overcomes its benefit, unless there are special reasons for having this tie such as expressed by the
following.
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The reciprocity effect indicates the tendency to reciprocate incoming ties and is determined by
the number of mutual dyads in which actor i is involved

si,rec(x) = ∑
j

xi j x ji . i j

Since a lot of social relations show a tendency towards reciprocation, the associated parameter βrec
often assumes positive values. This suggests that even though the cost of creating or maintaining a
tie is higher than its benefit, creating a tie that reciprocates an existing tie might lead to a positive
reward for the actor i. This follows the general principle according to which ties should bring
some benefits in order to overcome their costs and incentivize actors to create new ties.

The transitive triplets effect models the tendency towards triadic closure, i.e., the tendency to
relate to those others to whom actor i is related indirectly through an intermediary. This effect is
defined as the number of transitive triplets in which an actor i is involved

si,trans(x) = ∑
j,h

xi j xih xh j .

i j

h

i j

h

The three-cycle effect is a sort of generalized reciprocity which involves three actors i, j and h. It
expresses the idea that it may be not important if j directly reciprocates the tie from i, but it is
important that j sends a tie to some actor h who has an outgoing tie towards i. This means that the
tie between i and j is indirectly reciprocated through actor h. The effect is defined as the number
of 3-cycles in the network:

si,cycle(x) = ∑
j,h

xi jx jhxhi .

i j

h

Examples of effects depending on monadic covariates are the covariate-related activity, the
covariate-related popularity, the same covariate, and the covariate-related similarity. These effects
express the idea that creation and termination of ties in the network do not only depend on the
position of actors in the network but also on their attributes. These effects, therefore, are defined
as interactions between network variables and monadic covariates.

The covariate-related activity (or covariate-ego) effect indicates whether an attribute v affects
the activity of actors in creating ties, i.e., whether actors with higher values of v tend to increase
the number of their outgoing ties more rapidly than actors with lower values of v:
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si,ego(x,v) = ∑
j

xi j vi . i j

By contrast, the covariate-related popularity (or covariate-alter) effect measures whether actors
tend to establish ties towards others showing a particular value of v, i.e., whether the indegree
of actors with higher values of v increases more rapidly than the indegree of actors with lower
values of v:

si,alter(x,v) = ∑
j

xi j v j . i j

The same covariate and the covariate-related similarity model homophily. The former is specifi-
cally defined for categorical covariates and investigates whether ties between actors with exactly
the same value of v are more likely to exist. The latter is defined for continuous (or at least ordinal)
covariates and measures the tendency of actors to establish ties with others who are similar to
themselves:

si,same(x,v) = ∑
j

xi j1{vi = v j}

si,sim(x,v) = ∑
j

xi j

(
1−

∣∣vi− v j
∣∣

maxi j
∣∣vi− v j

∣∣
)

.

i j

The above is the description of the simplest formulation of the SAOM. For the sake of com-
pleteness, it is worth mentioning that there are several extensions that render the SAOM more
flexible and applicable in a large variety of situations. For instance, in the evaluation function
the gain of creating a tie is the opposite of the loss of terminating a tie. In reality creating or
terminating a tie might be evaluated in a different way by the actors. To model such a difference
the creation and the endowment functions might be used next to the evaluation function (Snijders
et al., 2010b). A further development of the SAOM allows the simultaneous modelling of the
evolution of networks and behaviours (Steglich et al., 2010). The main idea is that actors in a
network may adjust their behaviours to that of the people they are connected to and therefore
actors can change their behaviour next to their ties. Other extensions are described in Lospinoso
et al. (2011); Koskinen and Edling (2012); Snijders et al. (2013); Greenan (2015).

2.3. Estimating the parameter of SAOMs

2.3.1. The method of moments estimator

Let θ = (ρ1, · · · ,ρM,β1, · · · ,βK) be the P = (M +K)-dimensional vector of parameters corre-
sponding to a particular specification of the SAOM. Estimating θ allows inferences about whether
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certain mechanisms drive the network evolution. Estimation is performed conditional on the
first observation of the network, i.e., x(t0) is not modelled but considered as given. Therefore,
no model assumptions concerning the mechanisms that might have generated x(t0) need to be
formulated. Moreover, the estimated parameters refer exclusively to the evolution of the network
in the time interval [t0, tM].

Several estimation procedures might be used to estimate θ . Snijders (2001) proposed to use
the method of moments (MoM), a Bayesian procedure was presented by Koskinen and Snijders
(2007), and Snijders et al. (2010a) proposed maximum likelihood estimation procedures (MLE).
Since the likelihood function of the SAOM cannot be computed explicitly, Bayesian and ML
estimations are very time-consuming and the MoM is the most used estimation method in practice.

The logic of this method is quite straightforward and is based on the idea that the expected
values of statistics depend on the parameters of the distribution. Specifically, let us assume that
X is a random variable whose probability distribution depends on a parameter θ ∈ RP. We are
interested in estimating θ . The MoM requires a P-dimensional vector of statistics S = (S1, . . . ,SP),
one for each parameter θp (1 < p < P), and estimates θ by the value θ̂MoM for which the expected
values equal their sample counterparts,

Eθ [S] = s ,

where s = (s1, . . . ,sP) is the observed value of S.
The statistics Sp are usually chosen using a formal method such as the reduction by sufficiency.

When applying the MoM to the estimation of the parameter of the SAOM, however, this method
cannot be invoked because of the complexity of the model. Therefore, the statistics are chosen
in a heuristic way. The requirement is that they are sensitive to the parameter θ in the sense that
higher values of the parameter θp will lead to higher expected values of the statistic Sp, i.e.,

∂

∂θp
Eθ [Sp]> 0 .

Snijders (2001) proposed to use the following statistics.
The rate parameter models the frequency at which actors get an opportunity to make a change.

When this frequency is higher, the total observed number of changes between two consecutive
observations will tend to be higher. Therefore, a relevant statistic for ρm is the Hamming distance
between X(tm) and the previous observation X(tm−1),

Sρm =
n

∑
i=1

n

∑
j=1

∣∣Xi j(tm)−Xi j(tm−1)
∣∣ .

A further motivation for the use of Sρm is that it is a sufficient statistic for ρm when ties are changed
totally at random by the actors in the network (i.e., when β = 0).

For parameters such as βk, which are assumed to be constant for all M periods, an adaptation of
this prescription is used. Functions Sk(x) are used (with an implicit possible dependence also on
V and R), with observed values Sk

(
x(tm)

)
for m = 0, . . . ,M, and the MoM equation for these Sk is

M

∑
m=1

Eθ

[
Sk
(
X(tm)

)
| X(tm−1) = x(tm−1)

]
=

M

∑
m=1

Sk
(
x(tm)

)
.
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For any given k, higher values of βk will presumably lead to higher expected values of the
corresponding function sik

(
X(t)

)
for t > t0 and all i ∈ N, and a sensitive statistic for the parameter

βk is therefore

Sk
(
X(tm)

)
=

n

∑
i=1

sik
(
Xi j(tm)

)
.

Summarizing, the estimator θ̂MoM for θ is the solution of the system of M+K moment equations:
Eθ

[
Sρm | X(tm−1) = x(tm−1)

]
= sρm m = 1, . . . ,M ,

M
∑

m=1
Eθ

[
Sk
(
X(tm)

)
| X(tm−1) = x(tm−1)

]
=

M
∑

m=1
sk
(
x(tm)

)
k = 1, . . . ,K ;

(3)

where sρm is the observed value of Sρm .

In the following, we will use the more compact notation

Eθ [S]− s = 0 (4)

Application of the delta method (Lehmann, 1999, p.315) allows the approximation of the covari-
ance matrix of θ̂MoM according to the following formula (Bowman and Shenton, 1985):

Σ
θ̂MoM

= D−1
θ

ΣS (D−1
θ
)
′

(5)

where

Dθ =

(
∂

∂θ
Eθ [S]

)
(6)

is the matrix of partial derivatives of the expected values of the statistics and

ΣS = covθ (S)

is the covariance matrix of the statistics.

2.3.2. Stochastic approximation

Analytical and usual numerical procedures cannot be applied to solve the system of moment
equations in (4), since the expected values of the statistics cannot be computed explicitly except
for some trivial cases (Snijders and van Duijn, 1997). For this reason, a stochastic approximation
algorithm is used.

The algorithm is an iterative procedure consisting of two main steps: i) simulations of network
evolution for a given value θi of θ ; ii) update of the value of θ according to the multivariate
version of the Robbins-Monro step (Robbins and Monro, 1951)

θi+1 = θi−aiD̃−1
0 (Si− s)
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where Si is the value of the statistics generated in step (i) for θ = θi; D̃−1
0 is the diagonal matrix

(Ruppert, 1988; Polyak, 1990) of the matrix of partial derivatives in (6), measuring the sensitivity
of the expected value of Sp to perturbation of the parameter θp; ai is a sequence of positive
numbers slowly converging to 0 and controlling for the convergence of the algorithm. The final
estimate is a tail average of the values θi (Ruppert, 1988; Polyak, 1990).

The algorithm as implemented (Ripley et al., 2015) consists of three phases and can be sketched
as follows (for more details see Snijders (2001)). Let θ0 be an initial value of θ . In the first phase
a small number n1 of simulations is used to obtain a rough estimate of (6). Either the finite
difference method or the score function method (Schweinberger and Snijders, 2007) can be used
for estimating the derivatives. At the end of the first phase the initial parameter value is updated
using the Newton-Raphson step

θ1 = θ0−a0 D−1
0 (S− s)

where S is the mean of the simulated values of the statistics and thus a Monte Carlo approximation
of the expected values of the statistics.

The second phase determines the estimate of θ via a small number (usually four) of sub-phases.
Each sub-phase h consists of n2h iterations of the steps i) and ii) as defined previously. The number
of iterations n2h is bounded by a minimum value n2h and a maximum value n2h. Each sub-phase
ends when either the upper bound n2h is reached; or the first order autocorrelation of the sequence
Si is negative for all i (Pflug, 1990), and also the lower bound n2h was reached. At the end of each
sub-phase the value of θ is estimated using the mean for this subphase of the sequence θi.

In the third phase the network evolution is simulated a large number n3 of times using the value
of θ determined at the end of the second phase to estimate the covariance matrix of the estimator
Σ

θ̂MoM
; and to check the convergence of the algorithm. According to (5), the matrix of partial

derivatives D and the covariance matrix ΣS should be estimated to compute Σ
θ̂MoM

. The former is
estimated as in phase 1, while the latter using its direct Monte Carlo approximation.

The check of convergence of the algorithm is based on the deviations between simulated
values of the statistics and their observed values, i.e., the observed left hand side of (4). These
deviations should be equal to 0 because of the logic of the MoM. However, since the algorithm
only approximates the solution of the system of moment equations, the deviations are small but
not exactly equal to 0 when the process has properly converged. Consequently, the convergence
of the algorithm is tested using the ratio between the mean simulated values of the statistics and
their standard deviations. As a rule of thumb, when all these ratios are in absolute value lower
than 0.1 (0.15) the convergence is excellent (reasonable).

The Robbins-Monro algorithm for the parameter estimation of the SAOM is implemented in
the R package RSiena (Ripley et al., 2015).

3. The generalized method of moments

3.1. New statistics

The definition of the statistics Sk used in (3) for the MoM depends only on the network at time
tm. However, the network observed at time tm−1 can provide valuable information on how the
configurations observed at time tm originated.
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b)

c)

“Reciprocation”

“Complete creation”

“Maintenance”

X(tm−1) X(tm)

FIGURE 1. Different situations from which a reciprocal dyad can originate.

For instance, let us assume that actors i and j constitute a reciprocal dyad at time tm (Figure 1).
The mutual dyad noticed at tm may have originated from different configurations existing between
i and j at time tm−1. In particular, three situations are possible. a) At time tm−1 an asymmetric
dyad was observed. Then, actor i decided to reciprocate the tie from j. b) At time tm−1 a null
dyad existed. Then, it may be that i sent a tie towards j and, later on, j decided to reciprocate the
relation. Vice versa, it may also be that j was first the sender and then the receiver of the two ties.
c) A mutual dyad was already observed at time tm−1 and both ties between actors i and j remained
unchanged. It follows that the mutual dyad observed at tm may be the result of “reciprocation”
(a), “complete creation” (b) or “maintenance” (c).

These three situations contribute in a different way to the reciprocity effect. Although the real
sequence of tie changes is unknown (the process is observed only at discrete time points), situation
a provides the reciprocity effect with more evidence than situations b and c. Therefore, it seems
reasonable to include the information deriving from the starting configuration of a dyad in the
estimation procedure of the reciprocity parameter.

A new statistic S∗rec depending on both networks observed at tm−1 and tm is defined to this
end. The statistic counts the number of mutual dyads originated according to a mechanism of
reciprocation

S∗rec(X(tm),X(tm−1)) =
M

∑
m=1

n

∑
i, j=1

(1−Xi j(tm−1))X ji(tm−1)Xi j(tm)X ji(tm)

A similar argument applies to transitive triplets. Let us assume that we observed a transitive triplet
at time tm among the actors i, j and h (right side of Figure 2). Taking into account the configuration
of ties existing between i, j and h at time tm−1, there are eight different situations from which the
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observed transitive triplet could have originated (left side of Figure 2). Due to the actor-oriented
perspective of the model and the evidence provided to the mechanism of transitivity, the most
interesting situations are a and b. In the former, the transitive triplet observed at tm is the result
of the closure of a two-path between i and j. In the latter the transitive triplet derives from the
agreement between i and h on j.

As a result, two new statistics are defined for the estimation of the parameter related to the
transitive triplets. One statistic refers to the closure mechanism

S∗clos(X(tm),X(tm−1)) =
M

∑
m=1

n

∑
i, j=1

(1−Xi j(tm−1))Xih(tm−1)Xh j(tm−1)Xi j(tm)Xih(tm)Xh j(tm)

and the other to the agreement mechanism

S∗agr(X(tm),X(tm−1)) =
M

∑
m=1

n

∑
i, j=1

Xi j(tm−1)(1−Xih(tm−1))Xh j(tm−1)Xi j(tm)Xih(tm)Xh j(tm) .

Similar arguments apply to all the effects that can be included in the evaluation function. Thus,
we can specify new statistics for each effect according to the information provided by the network
observed at tm−1.

At this point, it is important to make the following remark. In the SAOM every statistic Sk
corresponds to an effect in the evaluation function and thus to a parameter βk. The new statistics
are not part of the evaluation function, but they are only used during estimation. As a result, there
is no parameter uniquely associated to them, and one should think about them only as additional
information to improve the parameter estimation.

The new statistics can be included in the estimation process using the principle of the MoM.
This means that further MoM equations based on the new statics are added to the system in (4).
This operation results in an over-identified system of equations



Eθ

[
Sρm | X(tm−1) = x(tm−1)

]
= sρm m = 1, . . . ,M

M
∑

m=1
Eθ

[
Sk
(
X(tm)

)
| X(tm−1) = x(tm−1)

]
=

M
∑

m=1
sk
(
x(tm)

)
k = 1, . . . ,K

M
∑

m=1
Eθ

[
S∗l
(
X(tm),X(tm−1)

)
| X(tm−1) = x(tm−1)

]
=

M
∑

m=1
s∗l
(
x(tm),x(tm−1)

)
l = 1, . . . ,L

(7)

defined by more equations (Q=M+K+L) than unknowns (P=M+K); these equations take the place
of equations such as (3). In the following, we use the more compact notation

Eθ [S∗] = s∗

where S∗ is the Q-dimensional vector comprised of both the new and the old statistics.
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FIGURE 2. Different situations from which a transitive triplet can originate.
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From mathematical theory it follows that such a system has no solution unless there are linearly
dependent equations that can be neglected so that the number of equations corresponds to the
number of unknowns. If this does not happen, the usual methods for solving a system do not work
and approximated solutions are the only alternative.

In system (7), the equations are not linearly dependent and therefore an approximated solution
must be calculated. When there are more moment conditions than parameters the regular MoM
cannot be applied, but its generalization can be used. This generalization is the generalized method
of moments.

3.2. The generalized method of moments estimator

The generalized method of moments (GMoM) refers to a class of estimators introduced into the
econometric literature by Hansen (1982) and developed contemporaneously and independently by
Burguete et al. (1982). Since then, the GMoM has become very popular both in applications and in
theoretical analysis for some main reasons. First, the GMoM supplies a way to estimate parameters
of partially specified models where maximum likelihood estimation is not feasible. Second, the
GMoM can be applied under very weak conditions on the process that may have generated the
observed data, thereby allowing wide application in cross-sectional, panel, and time-series data.
Third, the GMoM offers computational advantages. Even in fully specified models, the MLE
can be cumbersome to compute, whereas the GMoM provides a method of obtaining consistent
and asymptotically normal estimators of parameters in non-linear dynamic models. Finally, the
GMoM is a very general framework for statistical analysis, since it subsumes least squares (LS),
instrumental variables (IV) and maximum likelihood (ML) estimation techniques as special cases.

Let X be a random variable whose probability distribution depends on a P-dimensional param-
eter θ = (θ1,θ2, . . . ,θP). Let S∗ = (S1, . . . ,SQ) be a Q-dimensional vector (Q ≥ P) of statistics
relevant to the estimation of θ . Like the MoM, the GMoM is based on the differences between
the expected values of the statistics and their sample counterparts, but the GMoM involves the
minimization of a quadratic function of these differences rather than setting all differences to zero.
Let

f (θ ,S∗) = (Eθ [S∗]− s∗)′W (Eθ [S∗]− s∗)

be the quadratic function of these differences and W a (symmetric) semi-positive definite Q×Q
matrix. The restriction on W ensures that the quadratic form f (θ ,S∗) is a meaningful measure
of distance between the expected values of the statistics and their sample counterparts. It can be
proved (Hansen, 1982; Hall, 2005) that an optimal choice for W is the concentration matrix, i.e.,

W = [cov(S∗)]−1 . (8)

The GMoM estimator θ̂GMoM for θ is the value which minimizes f (θ ,S∗), i.e.,

θ̂GMoM = argmin
θ∈Θ

f (θ ,S∗) . (9)

Since f (θ ,S∗) depends on the expected values of the statistics, analytical and numerical procedure
cannot be used when applying the GMoM to the estimation of the parameter of a SAOM. Moreover,
compared to the MoM estimator, an extra problem arises: the determination of W based on one
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single observation of the network evolution. To overcome these difficulties a modified version of
the Robbins-Monro algorithm introduced in Section 2.2 will be presented.

The solution of the minimization problem in (9) corresponds to the root of

∂

∂θ
f (θ ,S∗) = Γ

′
W (Eθ [S∗]− s∗) = 0 , (10)

where

Γ =
∂

∂θ
(Eθ [S∗]− s∗) (11)

is the Q×P matrix of first order derivatives of the statistics involved in the estimation process.
Let B an approximation of Γ

′
W , then θ̂GMoM can be approximated by solving

B(Eθ [S∗]− s∗) = 0 . (12)

The matrix B defines the normal equations for the solution of the optimizing problem in (12) and
can be thought of a matrix of weights attaching differential importance to each statistic in the
estimation process. The relevance of a statistic depends on both the sensitivity of the statistic to
perturbation of the parameter θ (through Γ) and the variance of the statistic (through W ). The
higher the sensitivity and the lower the variance, the higher the importance. The next section
describes how to solve (12) using the Robbins-Monro algorithm.

3.3. Stochastic approximation

Above we sketched the implementation of the Robbins-Monro algorithm used for MoM estimation
of parameters in the SAOM. Some changes in this algorithm are required in order to account for the
matrix B = Γ′W . In this “modified” version of the Robbins-Monro algorithm the two components
Γ and W are estimated at the end of phase 1. Then, phase 2 and phase 3 are executed like in the
“regular” Robbins-Monro algorithm, aiming to solve (12) instead of (4). In the following we refer
to the “regular” Robbins-Monro algorithm as the “MoM algorithm”, and to its modified version
as the “GMoM algorithm”.

In the first phase of the MoM algorithm a small number n1 of simulations is used to roughly
estimate the matrix of partial derivatives D and to update the initial value of θ . In a similar way, Γ

can be approximated using either the finite difference method or the score function method.
Phase 1 should also be adapted in order to include the estimation of the matrix of weights

W . Given the n1 simulations, W is estimated computing the inverse of the covariance matrix of
the simulated statistics. The network change process is decomposed into the change opportunity
process, modelled by the rate functions, and the change determination process, modelled by the
evaluation function, as described above. The parameters for these two subprocesses are distinct,
and estimated using distinct statistics. Therefore, in the 2× 2 block structure defined by the
statistics for the rate parameters and those for the evaluation function parameters, the off-diagonal
blocks in the matrix W are set to 0. This is meant to stabilize estimation of W .

Denoting by Γ
′
0 and W0 these approximations, the matrix B is estimated by row-normalization

applied to the matrix B0 = Γ
′
0W0. The row-normalization (i.e., dividing all rows by their Euclidean

length) is applied to improve the convergence of the algorithm and control for high values in the
matrix B0. Note that dividing the rows of B by a constant does not change equation (12).
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At the end of phase 1, the parameter θ0 then is updated using the Newton-Raphson step, which
is in turn modified as follows:

θ1 = θ0−D−1
0 B0(S

∗− s∗) ,

where D−1
0 =B0Γ0. The second phase remains the same. Only the Robbins-Monro step is modified

to account for B, and is given by

θi+1 = θi−aiD̃−1
0 B0(S∗i − s∗) ,

where D̃−1
0 is a diagonal matrix.

The third phase of the algorithm estimates the covariance matrix of the GMoM estimator
and checks for the convergence of the algorithm. Application of the delta method allows the
computation of the covariance matrix of θ̂GMoM according to the following formula (Hall, 2005):

Σ
θ̂GMoM

≈ (B0Γ)−1(B0ΣS∗B
′
0)
(
(B0Γ)−1)′ ,

where ΣS∗ = covθ (S∗). Following phase 1 of the GMoM algorithm and using the value of θ

computed during phase 2, a high number n3 of simulations is performed to re-estimate B, Γ and
ΣS∗ , and consequently Σ

θ̂GMoM
.

The check of convergence of the algorithm is again based on the deviations between simulated
values of the statistics and their observed values. Since the approximation of the GMoM estimator
is the solution of equation (12), the deviations weighted with the matrix B should (ideally) be
equal to 0. Consequently, the convergence of the algorithm is tested using the ratio between
the simulated values of the statistics B0S∗ and their standard deviations. Just like for the MoM
algorithm, when these ratios are in absolute value lower than 0.1 (0.15) the convergence is
excellent (reasonable).

It must be noted that the number of simulations n1 and n3 of the GMoM algorithm should
be higher than those of the MoM algorithm since more quantities need to be estimated. In fact,
the matrix of first order derivatives Γ is larger than D and the GMoM requires the additional
estimation of the matrix of weights W . Also, estimating B with good precision for the GMoM
is more important than estimating D̃0 with good precision for the MoM. The Robbins-Monro
algorithm for the GMoM estimator will be implemented in the R package RSiena (http://r-forge.r-
project.org/R/?group_id=461).

4. Simulation examples

Several simulations were conducted to investigate the relative efficiency of the GMoM estima-
tor with respect to the MoM estimator. A nested simulation design was used. Three repeated
observations of a network consisting of 50 actors were simulated 500 times according to a partic-
ular model specification. Estimates by both methods were calculated twice for each simulated
sequence of networks. When estimating the standard errors of the two estimators, such a design
has the advantage of accounting for the variation in both the simulated network evolution and the
stochastic algorithm.

The network evolution was simulated using a model specified by the outdegree, reciprocity,
transitive triplets, and 3-cycle effects. Since actors were characterized by a binary attribute
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taking values 0 and 1, the covariate-related activity, the covariate-related popularity and the
same covariate effects were also included in the model as explanatory variables for the network
evolution. Consequently, the evaluation function of the model is

fi(β ,x(i j),v) = βoutd ∑
j

xi j + βrec ∑
j

xi j x ji

+ βtrans ∑
j,h

xi j xih xh j + βcycle ∑
j,h

xi j x jh xhi

+ βego ∑
j

xi j vi + βalter ∑
j

xi j v j

+ βsame ∑
j

xi j1{vi = v j} (13)

and

θ =
(
ρ1,ρ2,βoutd,βrec,βtrans,βcycle,βego,βalter,βsame

)
.

The choice of the parameter values of the evaluation function is based on empirical results deriving
from the estimation of SAOMs in friendship networks. Therefore, the outcome of the simulation
study cannot be generalized to different type of relations. The value of the parameter related to
the density of the network was tuned so that the average degrees of the actors are in a reasonable
desired range, i.e., between 3 and 6.

The choice of the rate parameters was based on the consideration that the new statistics may add
more information when observations are not too far apart. For instance, if the observed outcome
is a transitive triplet and we would like to distinguish between closure and agreement, we need
to know in which order ties were created. When observations are too far apart, the data do not
provide such an information and situations like d-g in Figure 2 are more likely to be observed
than the situations a and b. To empirically verify this expectation, different rate parameters were
combined with the same parameter values of the evaluation function.

The results of the simulations are presented in Tables 1 and 2. The second column of the
tables shows the value of the parameter θ used to simulate the network evolution. To estimate the
parameters of the SAOM using the GMoM and to compare the efficiency of the two estimation
methods only the new statistics S∗rec and S∗clos and S∗agr were considered. The number of iterations
in phase 1 was equal to 300 and 35 for the GMoM and the MoM algorithms, respectively. For the
MoM, this is the default used for this value of P in RSiena (Ripley et al., 2015); for the GMoM,
experience showed that for the determination of B0 a higher number is needed. The number of
iterations in phase 3 was set to 4,000.

Table 1 reports the results of the simulations from three SAOMs having the same parameter
values for the evaluation function but different rates. While the algorithm always converged for the
MoM, its modified version for the GMoM did not always reach convergence. To define a proper
estimator, we defined the GMoM estimator in the case of non-convergence as the MoM estimator.
For the results in Table 1 non-convergence of the GMoM occurred in 5, 6 and 17 simulations,
respectively. The GMoM and the MoM estimators yield similar estimates. The efficiency of the
MoM and the GMoM was compared using a Wilcoxon signed rank test. The last column of Table 1
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θ θ̂GMoM RMSE(θ̂GMoM) θ̂MoM RMSE(θ̂MoM)

rate t0–t1 3.000 2.786 0.348 2.784 0.329 †
rate t1–t2 4.000 3.985 0.521 3.987 0.458 †
density –2.000 –1.980 0.091 –1.980 0.096 *
reciprocity 2.000 1.925 0.177 1.919 0.182 *
transitivity 0.400 0.381 0.088 0.382 0.107 *
3-cycle –0.120 –0.120 0.174 –0.121 0.189 *
ego v –0.200 –0.152 0.151 –0.153 0.150
same v 0.600 0.537 0.145 0.537 0.141 †
alter v 0.400 0.363 0.146 0.360 0.144

rate t0–t1 4.500 4.475 0.573 4.494 0.504 †
rate t1–t2 5.500 5.481 0.767 5.536 0.612 †
density –2.000 –2.003 0.082 –2.003 0.085 *
reciprocity 2.000 2.015 0.150 2.008 0.154 *
transitivity 0.400 0.388 0.062 0.388 0.079 *
3-cycle –0.120 –0.125 0.134 –0.126 0.148 *
ego v –0.200 –0.206 0.137 –0.205 0.133 †
same v 0.600 0.621 0.126 0.619 0.120 †
alter v 0.400 0.409 0.127 0.406 0.126

rate t0–t1 6.500 6.343 0.915 6.412 0.720 †
rate t1–t2 7.500 7.424 1.040 7.574 0.771 †
density –2.000 –1.992 0.081 –1.990 0.080
reciprocity 2.000 2.006 0.138 1.998 0.138
transitivity 0.400 0.384 0.048 0.380 0.063 *
3-cycle –0.120 –0.110 0.114 –0.113 0.123 *
ego v –0.200 –0.189 0.126 –0.190 0.122 †
same v 0.600 0.617 0.113 0.611 0.106 †
alter v 0.400 0.413 0.113 0.408 0.112

TABLE 1. Simulation results, 3 waves for 50 actors: true value of the parameter (θ ), mean (θ̂ ), and root mean squared
errors (RMSE) of the generalized method of moments (GMoM) and the method of moments (MoM). SAOMs with the
same parameter values for the effects in the evaluation function but different rates. An asterisk (*) in the last column
denotes the effects for which the RMSE is lower for the GMoM than for the MoM; a dagger (†) denotes the effects for
which the RMSE is higher for the GMoM than for the MoM (Wilcoxon signed rank test, p-value < 0.01).

indicates that for the first combination of parameters, the GMOM has significantly lower MSE
than the MoM for the parameters related to density, reciprocity, transitive triplets, and 3-cycles;
and significantly higher RMSE for the parameters related to the rates and the same-covariate
effect. Similar patterns were observed when higher rates of changes were used to simulate the
network evolution: performance of the GMoM for the effects of network structure was somewhat
better, for the effects of rates and of covariates somewhat worse compared to the MoM. Therefore,
the small simulation study did not provide evidence for a higher gain in efficiency for the GMoM
when network observations are closer in time. The ratio between the estimated mean squared
errors ranges between 0.97 and 1 for the reciprocity and between 0.76 and 0.82 for the transitive
triplets parameter, the two parameters for which additional statistics were used in the GMoM.
However, for some other parameters the GMoM resulted in higher standard errors, in particular for
the rate parameters, where this ratio went up to 1.35. This was unexpected, and will be examined
in future work.

The efficiency of the GMoM and the MoM estimators was also compared for some other

© SFdS, SMF. http://www.sfds.asso.fr/journal – ISSN: 2102-6238



19

θ θ̂GMoM RMSE(θ̂GMoM) θ̂MoM RMSE(θ̂MoM)

rate t0–t1 3.000 2.971 0.327 2.973 0.303 †
rate t1–t2 4.000 4.076 0.436 4.089 0.372 †
density –1.500 –1.576 0.091 –1.575 0.096 *
reciprocity 1.500 1.427 0.154 1.426 0.160 *
transitivity 0.400 0.411 0.057 0.410 0.063 *
3-cycle –0.120 –0.113 0.097 –0.112 0.104 *
ego v –0.200 –0.148 0.138 –0.149 0.137
same v 0.600 0.522 0.129 0.522 0.123 †
alter v 0.400 0.357 0.129 0.355 0.125 †

rate t0–t1 3.000 2.951 0.325 2.950 0.309 †
rate t1–t2 4.000 4.125 0.446 4.130 0.396 †
density –1.500 –1.575 0.086 –1.576 0.091 *
reciprocity 1.000 0.927 0.173 0.925 0.176 *
transitivity 0.400 0.416 0.061 0.416 0.074 *
3-cycle –0.120 –0.129 0.107 –0.128 0.117 *
ego v –0.200 –0.128 0.129 –0.128 0.129
same v 0.600 0.500 0.128 0.499 0.124 †
alter v 0.400 0.344 0.126 0.343 0.125

rate t0–t1 3.000 2.785 0.347 2.785 0.322 †
rate t1–t2 4.000 3.990 0.521 4.007 0.435 †
density –2.000 –1.973 0.095 –1.972 0.097 *
reciprocity 2.000 1.926 0.180 1.921 0.180
transitivity 0.500 0.482 0.079 0.481 0.090 *
3-cycle –0.120 –0.105 0.152 –0.105 0.162 *
ego v –0.200 –0.154 0.150 –0.154 0.149
same v 0.600 0.554 0.145 0.551 0.138 †
alter v 0.400 0.370 0.145 0.367 0.142 †

rate t0–t1 3.000 2.865 0.358 2.874 0.306 †
rate t1–t2 4.000 3.976 0.433 4.020 0.359 †
density –2.000 –1.984 0.139 –1.978 0.119 †
reciprocity 2.000 1.915 0.203 1.906 0.192 †
transitivity 0.700 0.699 0.113 0.689 0.085 †
3-cycle –0.120 –0.084 0.177 –0.082 0.162 †
ego v –0.200 –0.174 0.196 –0.175 0.189 †
same v 0.600 0.569 0.159 0.565 0.144 †
alter v 0.400 0.375 0.159 0.376 0.148 †

TABLE 2. Simulation results, 3 waves for 50 actors: true value of the parameter (θ ), mean (θ̂ ), and root mean squared
errors (RMSE) of the generalized method of moments (GMoM) and the method of moments (MoM). SAOMs with
different parameter values for the reciprocity and the transitive triplet effects. An asterisk (*) in the last column
denotes the effects for which the RMSE is lower for the GMoM than for the MoM; a dagger (†) denotes the effects for
which the RMSE is higher for the GMoM than for the MoM (Wilcoxon signed rank test, p-value < 0.01).

values of the parameters associated to reciprocity and transitivity triplets. The same procedure
was followed, with results reported in Table 2. Again the algorithm always converged for the
MoM, while modified version for the GMoM did not always reach convergence, and in such
cases the MoM estimate was used instead. For the results in Table 2 non-convergence occurred
in 4, 4, 6, and 22 simulations, respectively. The mean squared errors associated to the density,
reciprocity, and transitive triplet, and 3-cycle parameters are mostly smaller for the GMoM than
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rate rate density recip. real trans. real 3-cycle ego v same v alter v
t0–t1 t1–t2 recip. trans.

rate t0–t1 1.000 0.132 0.261 0.214 0.110 0.163 0.053 0.156 0.079 0.191 0.129
rate t1–t2 0.132 1.000 0.476 0.374 0.124 0.471 0.174 0.439 0.153 0.304 0.251
density 0.261 0.476 1.000 0.799 0.549 0.762 0.523 0.702 0.163 0.510 0.352
recip. 0.214 0.374 0.799 1.000 0.699 0.685 0.465 0.693 0.229 0.513 0.263
real recip. 0.110 0.124 0.549 0.699 1.000 0.450 0.332 0.457 0.131 0.339 0.161
trans. 0.163 0.471 0.762 0.685 0.450 1.000 0.680 0.943 0.356 0.517 0.460
real trans. 0.053 0.174 0.523 0.465 0.332 0.680 1.000 0.634 0.195 0.340 0.261
3-cycle 0.156 0.439 0.702 0.693 0.457 0.943 0.634 1.000 0.372 0.509 0.419
ego v 0.079 0.153 0.163 0.229 0.131 0.356 0.195 0.372 1.000 0.281 0.672
same v 0.191 0.304 0.510 0.513 0.339 0.517 0.340 0.509 0.281 1.000 0.162
alter v 0.129 0.251 0.352 0.263 0.161 0.460 0.261 0.419 0.672 0.162 1.000

rate t0–t1 1.000 0.247 0.224 0.196 0.131 0.090 0.059 0.091 0.046 0.161 0.068
rate t1–t2 0.247 1.000 0.519 0.447 0.241 0.524 0.357 0.513 0.090 0.328 0.165
density 0.224 0.519 1.000 0.798 0.546 0.778 0.632 0.737 0.043 0.455 0.216
recip. 0.196 0.447 0.798 1.000 0.723 0.721 0.566 0.736 0.084 0.457 0.131
real recip. 0.131 0.241 0.546 0.723 1.000 0.478 0.357 0.500 0.057 0.250 0.082
trans. 0.090 0.524 0.778 0.721 0.478 1.000 0.830 0.963 0.110 0.480 0.223
real trans. 0.059 0.357 0.632 0.566 0.357 0.830 1.000 0.783 0.118 0.375 0.219
3-cycle 0.091 0.513 0.737 0.736 0.500 0.963 0.783 1.000 0.130 0.478 0.190
ego v 0.046 0.090 0.043 0.084 0.057 0.110 0.118 0.130 1.000 0.190 0.646
same v 0.161 0.328 0.455 0.457 0.250 0.480 0.375 0.478 0.190 1.000 0.094
alter v 0.068 0.165 0.216 0.131 0.082 0.223 0.219 0.190 0.646 0.094 1.000

rate t0–t1 1.000 0.312 0.327 0.223 0.191 0.195 0.185 0.180 0.050 0.175 0.095
rate t1–t2 0.312 1.000 0.594 0.476 0.255 0.641 0.443 0.612 0.145 0.306 0.262
density 0.327 0.594 1.000 0.779 0.484 0.824 0.715 0.779 0.138 0.416 0.366
recip. 0.223 0.476 0.779 1.000 0.687 0.747 0.632 0.777 0.241 0.432 0.282
real recip. 0.191 0.255 0.484 0.687 1.000 0.450 0.387 0.482 0.152 0.271 0.171
trans. 0.195 0.641 0.824 0.747 0.450 1.000 0.841 0.960 0.342 0.476 0.503
real trans. 0.185 0.443 0.715 0.632 0.387 0.841 1.000 0.789 0.238 0.386 0.389
3-cycle 0.180 0.612 0.779 0.777 0.482 0.960 0.789 1.000 0.381 0.479 0.460
ego v 0.050 0.145 0.138 0.241 0.152 0.342 0.238 0.381 1.000 0.334 0.557
same v 0.175 0.306 0.416 0.432 0.271 0.476 0.386 0.479 0.334 1.000 0.183
alter v 0.095 0.262 0.366 0.282 0.171 0.503 0.389 0.460 0.557 0.183 1.000

TABLE 3. Mean correlation matrices of the statistics according to the blocks in Table 1.

for the MoM, while those for the rate and covariate parameters are larger; except for the last case,
where the reciprocity and transitivity parameters are 2 and 0.7, respectively. In this case the MoM
outperforms the GMoM estimator.

Table 3 and Table 4 show the correlations between the new and the old statistics for the
simulation examples. Correlations between network statistics are usually quite high because of the
intrinsic properties of networks. Table 3 and Table 4 indicate that the correlation between new and
the old statistics related to the same effect varies between 0.6 and 0.94. The highest correlation is
observed for the simulation study whose results are shown in the last block of Table 2.
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rate rate density recip. real trans. real 3-cycle ego v same v alter v
t0–t1 t1–t2 recip. trans.

rate t0–t1 1.000 0.227 0.251 0.191 0.170 0.150 0.120 0.126 0.057 0.135 0.060
rate t1–t2 0.227 1.000 0.487 0.370 0.235 0.514 0.308 0.459 0.044 0.220 0.176
density 0.251 0.487 1.000 0.682 0.474 0.820 0.635 0.742 0.021 0.251 0.237
recip. 0.191 0.370 0.682 1.000 0.762 0.671 0.513 0.699 0.132 0.259 0.126
real. recip. 0.170 0.235 0.474 0.762 1.000 0.443 0.340 0.468 0.055 0.162 0.057
trans. 0.150 0.514 0.820 0.671 0.443 1.000 0.797 0.907 0.125 0.259 0.294
real trans. 0.120 0.308 0.635 0.513 0.340 0.797 1.000 0.702 0.044 0.140 0.174
3-cycle 0.126 0.459 0.742 0.699 0.468 0.907 0.702 1.000 0.182 0.256 0.224
ego v 0.057 0.044 0.021 0.132 0.055 0.125 0.044 0.182 1.000 0.213 0.389
same v 0.135 0.220 0.251 0.259 0.162 0.259 0.140 0.256 0.213 1.000 0.074
alter v 0.060 0.176 0.237 0.126 0.057 0.294 0.174 0.224 0.389 0.074 1.000

rate t0–t1 1.000 0.186 0.198 0.092 0.111 0.137 0.093 0.078 0.031 0.101 0.090
rate t1–t2 0.186 1.000 0.349 0.202 0.178 0.344 0.197 0.266 0.006 0.148 0.172
density 0.198 0.349 1.000 0.554 0.396 0.780 0.571 0.622 0.062 0.243 0.273
recip. 0.092 0.202 0.554 1.000 0.771 0.535 0.363 0.562 0.140 0.253 0.160
real recip. 0.111 0.178 0.396 0.771 1.000 0.408 0.268 0.431 0.127 0.199 0.157
trans. 0.137 0.344 0.780 0.535 0.408 1.000 0.784 0.772 0.210 0.294 0.381
real trans. 0.093 0.197 0.571 0.363 0.268 0.784 1.000 0.572 0.180 0.227 0.299
3-cycle 0.078 0.266 0.622 0.562 0.431 0.772 0.572 1.000 0.249 0.280 0.283
ego v 0.031 0.006 0.062 0.140 0.127 0.210 0.180 0.249 1.000 0.226 0.283
same v 0.101 0.148 0.243 0.253 0.199 0.294 0.227 0.280 0.226 1.000 0.096
alter v 0.090 0.172 0.273 0.160 0.157 0.381 0.299 0.283 0.283 0.096 1.000

rate t0–t1 1.000 0.242 0.204 0.197 0.167 0.171 0.128 0.157 0.076 0.156 0.114
rate t1–t2 0.242 1.000 0.399 0.339 0.189 0.422 0.225 0.410 0.146 0.256 0.196
density 0.204 0.399 1.000 0.721 0.518 0.764 0.580 0.686 0.120 0.434 0.255
recip. 0.197 0.339 0.721 1.000 0.766 0.656 0.458 0.683 0.181 0.397 0.222
real recip. 0.167 0.189 0.518 0.766 1.000 0.443 0.300 0.472 0.098 0.273 0.140
trans. 0.171 0.422 0.764 0.656 0.443 1.000 0.815 0.917 0.307 0.425 0.405
real trans. 0.128 0.225 0.580 0.458 0.300 0.815 1.000 0.655 0.190 0.299 0.284
3-cycle 0.157 0.410 0.686 0.683 0.472 0.917 0.655 1.000 0.320 0.408 0.366
ego v 0.076 0.146 0.120 0.181 0.098 0.307 0.190 0.320 1.000 0.255 0.594
same v 0.156 0.256 0.434 0.397 0.273 0.425 0.299 0.408 0.255 1.000 0.176
alter v 0.114 0.196 0.255 0.222 0.140 0.405 0.284 0.366 0.594 0.176 1.000

rate t0–t1 1.000 0.195 0.383 0.323 0.246 0.218 0.226 0.184 0.028 0.145 0.124
rate t1–t2 0.195 1.000 0.638 0.515 0.280 0.730 0.563 0.662 0.045 0.173 0.168
density 0.383 0.638 1.000 0.729 0.480 0.751 0.672 0.653 -0.004 0.228 0.202
recip. 0.323 0.515 0.729 1.000 0.863 0.676 0.577 0.729 0.057 0.211 0.039
real recip. 0.246 0.280 0.480 0.863 1.000 0.386 0.350 0.433 0.039 0.090 0.046
trans. 0.218 0.730 0.751 0.676 0.386 1.000 0.944 0.940 0.066 0.091 0.183
real trans. 0.226 0.563 0.672 0.577 0.350 0.944 1.000 0.776 0.009 0.068 0.114
3-cycle 0.184 0.662 0.653 0.729 0.433 0.940 0.776 1.000 0.087 0.076 0.091
ego v 0.028 0.045 0.004 0.057 0.039 0.066 0.009 0.087 1.000 0.178 0.483
same v 0.145 0.173 0.228 0.211 0.090 0.091 0.068 0.076 0.178 1.000 0.056
alter v 0.124 0.168 0.202 0.039 0.046 0.183 0.114 0.091 0.483 0.056 1.000

TABLE 4. Mean correlation matrices of the statistics according to the blocks in Table 2.
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θ̂MoM s.e.(θ̂MoM) θ̂GMoM s.e.(θ̂GMoM)

rate 1 4.913 0.685 4.912 0.691
rate 2 3.879 0.585 3.876 0.579
density –1.883 0.145 –1.882 0.139
reciprocity 1.470 0.295 1.461 0.282
transitivity 0.296 0.058 0.294 0.057
3-cycle –0.193 0.149 –0.185 0.155
ego 0.350 0.212 0.349 0.212
similarity 0.476 0.207 0.474 0.207
alter 0.054 0.206 0.055 0.207

TABLE 5. Model estimation for the van de Bunt data using the MoM and the GMoM.

5. Empirical example

An illustrative example of the application of SAOMs is presented next to simulation results. Data
were collected by Van de Bunt (1999) and are also discussed in Van de Bunt et al. (1999) and
Snijders (2001).

The network is defined over a set of 32 university freshmen, 24 female and 8 male students,
attending the same study program at a Dutch university. The relation analysed is friendship. Data
were collected at 7 time points, but here only the last three waves were analysed. The covariate is
a centered dummy variable for gender, equal to –0.25 for females and +0.75 for males.

Following the model-based approach typical of SAOMs, the model specification is based
on theories concerning the mechanisms that might determine the creation and dissolution of
ties. Earlier research on friendship networks helps in specifying the model. In particular, several
studies (e.g. van Duijn et al., 2003; Knecht et al., 2010; Ko and Buskens, 2011) showed that
friendship relationships show tendencies towards reciprocity and tend to triadic closure. Moreover,
homophily with respect to gender is often observed. Therefore, the specification of the model in
(13) can also be used in this illustrative example.

Table 5 shows the MoM and the GMoM estimates. The new statistics S∗rec, S∗clos and S∗agr
were used to estimate θ . For the GMoM, the number of iterations in phase 1 was n1 = 200 and
convergence was reached after running the estimation twice, using the results of the first run as
starting values for the second. For the MoM, the number of iterations in phase 1 was n1 = 34 and
convergence was reached after running the algorithm once. For both estimators, convergence of
the algorithm was checked by simulating the model for the observed parameters n3 =4,000 times
and computing the (weighted) ratio between the mean value of the simulated statistics and their
standard deviations.

The GMoM and the MoM estimates lead to similar values of the parameters and their standard
errors. In particular, the standard errors associated to the density, reciprocity, and transitive triplet
effects are smaller for the GMoM than for the MoM. But some of the other standard errors are
larger.

Given the results in Table 5, it is possible to make inference on the mechanisms that might have
generated the observed sequence of networks (conditional on the first of the analyzed waves).
The significance of each parameter is tested using the ratio between the corresponding estimate
and standard error. Assuming that the estimators are approximately normally distributed, the
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test statistic can be tested in the standard normal distribution (Snijders, 2001). This shows that
several parameters of the evaluation function are significant. The negative parameter associated
to the density effect corresponds to the sparseness of the observed networks and suggests that
the cost of an isolated tie is higher than its benefit. Such a cost can be attenuated when a tie is
reciprocated, closes a transitive triplet, and/or is directed to a person of the same gender. Indeed,
the parameters associated to reciprocity and transitive triplets are positive, providing evidence of
direct reciprocation of friendship ties and triadic closure, as suggested by earlier literature.

Finally, the positive value of the parameter of the similarity effect supports the theory of
homophily of friendship ties with respect to gender, i.e., there is a stronger tendency to create
and maintain friendship ties between actors having the same gender than between actors with
different gender. The 3-cycle effect is not significant and therefore data do not provide evidence
for or against generalized reciprocity. Furthermore, there is no significant effect of gender on the
activity (ego) or popularity (alter) of the freshmen. Finally the rate parameters indicate that on
average freshmen got the opportunity to change their outgoing ties 5 times in the first period and
4 times in the second period.

6. Discussion

This article proposed an estimator based on the generalized method of moments for the parameter
of stochastic actor-oriented models (SAOMs) as an alternative to the estimators based on the
regular method of moments and the maximum likelihood estimation, respectively. Since the log-
likelihood function of SAOMs cannot be computed explicitly, the maximum likelihood estimator
is hard to compute and the method of moments (MoM) is still the most used estimation method.
Therefore, only the method of moments and its generalization were considered in this paper.

Compared to the regular method of moments, the generalized method of moments allows using
more statistics than parameters, exploiting more information in the observed data. In the case of
SAOMs, the additional information derives from the use of new statistics which do not depend
solely on the network observed at time tm, like the statistics that have been used until now, but also
on the network observed at tm−1. Although the real sequence of changes between two consecutive
observations of a network is not known, the advantage of the new statistics is that in a way they
trace the pattern of ties from which a certain configuration originated.

For each regular statistic several new statistics can be defined. Following the principle of
the method of moments, the use of the new statistics (next to the regular statistics) results in
an over-identified system of equations whose solution is the generalized method of moments
(GMoM) estimator. This estimator is defined as the value minimizing a quadratic function of
the differences between the expected values of the statistics and their sample counterparts, or
equivalently, the root of the first order derivative of the quadratic function. The latter can be
approximated by pre-multiplying the differences between the expected values of the statistics
and their sample counterparts by a matrix of weights B, measuring the relevance of each statistic
to the estimation of the corresponding parameter. It follows that the Robbins-Monro algorithm,
currently used to approximate the solution of the system of moment equations for the SAOM
according to the MoM, can be modified to account for the matrix B and compute the estimator
based on the GMoM. Various adaptations, mentioned above, were needed to make this algorithm
work in practice.

© SFdS, SMF. http://www.sfds.asso.fr/journal – ISSN: 2102-6238



24 Amati, Schönenberger et Snijders

The algorithm for the GMoM is slower than the one for the MoM, primarily because the
estimate of the matrix B and of the covariance matrix of the estimator require a higher number
of simulations during both phase 1 and phase 3 of the algorithm. Moreover, a common practice
in estimating the parameter of the SAOM when the algorithm does not reach convergence, is to
re-run the Robbins-Monro algorithm skipping the first phase and using the estimates deriving
from the first run of the algorithm as the initial parameter value (Ripley et al., 2015). During the
simulations it was almost always necessary to use this procedure when using the GMoM.

The small simulation studies presented in the previous pages shows that the GMoM and the
MoM yield similar estimates. In general, the simulations do not support the intuition that the
relative advantage of the GMoM estimator is greater when the observations of the network are
close in time. The comparison of the RMSEs shows that the estimator based on the GMoM is
slightly more efficient than that based on the MoM only for the effects related to the new statistics.
However, the GMoM does not generally outperform the MoM, and in one of our examples the
MoM performs even better than the GMoM. One reason may be the use of a weight matrix
W with zero off-diagonal blocks for entries combining rate parameters and objective function
parameters. Another reason might be redundancy, i.e., a high correlation between the new and the
old statistics. Simulations in economic studies showed that redundancy might affect the quality of
the GMoM. Therefore, the over-identifying statistics should be carefully chosen in order not to
incur collinearity.

In network analysis, the statistics are highly correlated because of the intrinsic properties of
networks and establishing which correlations are “too high” is not so obvious. Nevertheless, the
inspection of the correlation matrices of the statistics used in the simulation examples indicates
that the higher the correlation between the new and old statistics for a certain effect, the lower
the gain of the GMoM. When some correlations get closer to 1, the MoM can even outperform
the GMoM. Redundancy might also affect the convergence of the algorithm, as suggested by the
number of simulations for those the GMoM algorithm did not reach convergence: this seemed to
increase with the correlations between the new and the old statistics.

It follows that further investigations into the effect of redundancy on the efficiency of the
GMoM, and the development of procedures for choosing new statistics, are desirable for the
practical use of the GMoM estimator.

The choice of the parameters for the simulation study was based on empirical results from
the estimation of the SAOM in friendship networks, and the use of new statistics defined in the
previous pages. However, SAOMs are used to analyse many other relations, and new statistics
can be defined with respect to more complex formulations of the model; e.g. for analysing the
co-evolution of networks and behaviours (Steglich et al., 2010). For some of these models we
expect that the GMoM may be seriously better than the MoM, and we are continuing investigations
of the efficiency of the GMoM, as depending of the choice of additional statistics, for estimating
more complex versions of the SAOM.
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