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Abstract: Parameters are derived of distributions of three c¢~effaeients of  simi- 
larity between pairs (dyads) of  operational taxonomic uni~ ° for multivariate 
binary data (presence/absence of atlributes) under statistical independence. 
These are applied to test independence for dyadic data. Association among attri- 
butes within operational taxonomic units is allowed. It is also permissible for 
the two units in the dyad to be drawn from different populations having different 
presence probabilities of attributes. The variance of the dislxibution of the simi- 
laxity coeffaeients under statistical independence is shown to be relati~'ely large 
in many empirical situations. This result implies that the practical interpretation 
of these coefficients requires much care. An application using the Jaecard index 
is given for the assessment of consensus between psychotherapists and their 
clients. 

R~sum~: La distribution des coefficients de similarit~ pour les donn~es 
binaires et les attributs associ~s. Les param~tres de la distribution de trois 
coefficients de similarit~ entre paires d'61~ments taxinomiques op6rationels de 
dorm6es multivariabies binaires (presence/absence) ont ~t~ d~riv~s darts 
l'hypoth~se d'ind6pendance statistique. Ces param~tres sont utilis6s dans un test 
d'ind~pendance pour les donn~es dyadiques. Uexistence est autoris6e, dans la 
population d'616ments, d'une association entre plnsieurs attributs. I1 est 6gale- 
rnent permis que les denx 616ments de la dyade soient tir~s de deux populations 
diff6rentes, ayant diff&entes probabilit6s quant h la pr6senee des attributs. Darts 
beaucoup de situations empiriques, la variance des coefficients de similarit~ peut 
~tre relativement 6iev6e darts le cas d'ind6pendance statistique. Par 
cons&tuenee, ces coefficients doivent ~tre interpr6t~s avee pr6eaufion. Un exem- 
pie est donna pour le coefficient de Jaeeard, qui a 6t6 employ6 darts tree 
recherche sur la concordance entre des psychoth6rapeutes et ieurs clients. 

Keywords: Consensus; Dice coeffaeient; Jaeeard coefSeient; Simple Matching 
coefficient; Multivariate binary data; Observer agreement; Similarity 
coefficients; Beta distribution. 

1. Introduction: Some Similarity Coefficients for Binary Data 

Similarity between operational taxonomic units (or units, for short) can 
be defined on the basis of the common presence and absence of attributes. 
Coefficients of similarity, or association, based on multivariate binary data are 
widely used in the field of taxonomy (Sneath and Sokal 1973; Everitt 1980; 
Anderberg 1976), in biology (Washington 1984), and in other disciplines 
(Austin and ColweU 1977; Hubalek 1982). These coefficients are often used 
to convert a two-mode (e.g., units by attributes) matrix to a one-mode (units 
by units) matrix of proximities between pairs of units. In this paper we treat 
the case where data arise in pairs of units, or dyads, so that representation in a 
two-mode matrix would imply a loss of information. The dependence 
between the units in the dyad will be investigated; in other words, the paper is 
concerned with the Q mode of analysis (relations among units) rather than the 
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R mode (relations among variables). We restrict attention to three of the 
better-known similarity coefficients: the Simple Matching coefficient, M 
(Sokal and Michener 1958), the Jaccard index, J (Jaccard 1900, 1908), and 
the Dice coefficient, D (Dice 1945; see also Dice 1952; also called 
Czekanowski-Dice coefficient by Wishart 1978). These are defined by 

a + d  a 2a 
M = J - D - , (1) 

a + b + c + d  a + b + c  2 a + b + c  

where a, b, c, and d refer to entries in the contingency table for two units 
based on attributes present (1) orabsent (0) among n attributes: 

Unit A 
1 

0 

Unit B 
1 0 

a b 

c d 

a + c = N B  b + d  

a + b = N a  

c + d  

a + b + c + d = n  

The similarity coeficients J and D are increasing functions of each other:. 

J = D I ( 2 - D ) ,  D =2J/C1 + J )  . (3) 

Thus, J and D express the same information in numerically different ways. 
Probability statements about J and about D can be transformed into each 
other. Our interest is more in J than in D; the coefficient D is discussed 
because, as will be shown in Section 6, the mean and variance of D can be 
calculated more easily than those of J, so that D can be used as an intermedi- 
ary to study the statistical properties of J. Our discussion of similarity 
coefficients is concerned with testing their values for dyads under a null 
model of absence of association between units A and B; we do not consider 
the application of such coefficients in cluster analysis. 

According to each coeffiient M, J, and D, two units are more similar to 
the extent that a larger number of attributes is jointly present in both. Each 
coefficient ranges between 0 and 1. The difference between J and D on the 
one hand and M on the other lies in the trealment of joint absence of attri- 
butes in both units. These "negative matches" are ostensibly ignored in J 
and D, but used in M. The Jaccard index was proposed by Jaccard (1900, 
1908) in order to remove the artifact that two units (in his study: ecological 
sites) would be considered similar because neither contains many of the attri- 
butes On his study: plant species under consideration). 
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2. Comparing Observed Values of Association Coefficients 
with Expected Values Under Statistical Independence: 

Formulation of a Null Hypothesis and Tests of Significance 

In applications of similarity coefficients, substantive theory often 
predicts similarity between specific units (individuals, species, sites) to be 
higher than between arbitrary units. This situation can lead the researcher to 
test the similarity coefficients for specific dyads against a null hypothesis of 
independence (e.g., Coquin-Viennot 1975). However, knowing that a dyad's 
similarity coefficient is higher than expected under the null hypothesis is not 
enough; we want to know whether it is significantly higher. In the absence of 
criteria for determining significantly high values of similarity, some research- 
ers (e.g., Quesada, Ventosa, Rodriguez-Valera, Megias, and Ramos- 
Cormenzana 1983) resort to using arbitrary levels (e.g., 0.65) as a lower 
boundary for an interpretable level of similarity. The present paper is 
devoted to a presentation of procedures for a significance test. 

Such coefficients as M, D, or J are not only sensitive to similarity 
between the two units, but also to other characteristics of the data. Since the 
aim of using these similarity coefficients is to study similarity within dyads, it 
is necessary to control suitably for factors which could influence these 
coefficients, and thereby may cause problems in assessing their observed 
values. Two of these factors explicitly to be taken into account are discussed 
first. 

The first is that some attributes may be present more frequently than 
others. If so, average values of similarity coefficients will be higher than if all 
attributes have equal relative frequencies. When units A and B in (2) are 
drawn from two different populations (e.g., from populations of therapists and 
clients, as in Section 3) a further complication arises. If the frequency orders 
of attributes are the same in both populations, the average values of similarity 
coefficients will be higher than if the frequency orders are different. 
Differential frequency of attributes, and different populations of units A and B, 
do not constitute serious problems, but they do need to be taken into account. 

A second factor results from the association within units among the 
given attributes. The attributes used in applications of M, D, and J may be 
related in a meaningful way; in some applications they can be regarded as 
different indicators of one or more underlying latent concepts. When the 
attributes are associated from a conceptual point of view, they will be mutu- 
ally statistically dependent in the population(s) of units. This dependence 
affects the probability distributions of M, D, and J. We may expect that asso- 
ciation among attributes will affect the standard deviations of the similarity 
coefficients, since it affects the standard deviations of the numbers ?CA and NB 
of attributes present. This problem is more serious than the first one and has 
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hardly been addressed in the literature we know, which mostly assumes, 
explicitly o r -  more often - -  implicitly, that under the null hypothesis the 
attributes are mutually independent within units. (An exception is Heltshe 
(1988), who gave jackknife estimates for the Simple Matching and Jaecard 
coeffacients in the situation in which a quadrat sample is taken to estimate the 
population value of these similarity coefficients. This situation is essentially 
different from the one we have studied.) We propose to take these problems 
into account, first for the Simple Matching coefficient, and subsequently for 
the Jaeeard index, using the Dice index as an intermediate step. 

These considerations lead to the following formulation of the null 
hypothesis that in our opinion is most relevant for testing an observed value 
of a similarity coefficient. A 15opulation of dyads is postulated. Either the 
two units in each ctyad are a priori indistinguishable, or they can be dis- 
tinguished as one unit of type A and the other of type B, drawn, respectively, 
from a population A and a population B of units. For a given set of n attri- 
butes, the presence (denoted by 1) or absence (denoted by 0) of each attribute 
can be observed for both members of the dyads investigated. There may be 
association (i.e., statistical dependence) among attributes within units (see 
Coleman, Mares, Willig, and Hsieh 1982, for a formulation of independence 
in which association is assumed to be absent). If units of types A and B are 
distinguished, then the joint probability distribution of attributes present may 
differ between population A and population B. The null hypothesis is 
independence between units in a single dyad under investigation. 

It is assumed in this paper that sufficiently large samples of units A and 
B are available that the joint probability distribution of presence of the attri- 
butes within either population of units are known. Parameters of the proba- 
bility distribution of the similarity coefficients M, D, and J will be derived 
under the null hypothesis. The null distribution of many other similarity 
coetfL'ients can be investigated using the same approach. 

The null distribution of similarity coetficients in the situation where no 
distinction between units A and B is made is identical to the null distribution 
in the situation in which such a distinction is made, but the joint probability 
distribution in population A is the same as in population B. Therefore, no 
gener~ty is lost by formulating all results for the ease where the distinction 
between the twe types is made. 

3. Using the Jaccard Index for the Measurement of Consensus 

Agreement may have cultural or interpersonal origins. In the first case, 
two persons hold the same opinions quite independently: they share some 
beliefs or attributes without having been in contact with each other. In the 
second case, they agree because they have exchanged views on the subject- 
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matter and have thus influenced each other's previously-held opinions. The 
latter situation is called "co-orientation through communication" in Scheff's 
consensus model, where this process is postulated as the basis of interper- 
sonal consensus. If psychotherapist and client have discussed the nature of 
the latter's problem, as is generally the case in the first therapeutic contacts, 
communication has explicitly taken place. 

We have been using the Jaccard index to measure consensus between a 
psychotherapist and his client with respect to the definition of the client's 
problem(s). Attributes are here specific formulations of possible problems. If 
both therapist and client agree that certain attributes (problem formulations) 
apply to the client, then they exhibit agreement or "zero-level of co- 
orientation" (Scheff 1967). If, on the other hand, both therapist and client 
agree that certain attributes do not apply to the client, then this agreement 
should not be taken to contribute to consensus between therapist and client. 
Therefore, the J index is appropriate here; it avoids the "common 
deficiencies" problem present in many other coefficients (Gregson 1975, p. 
48). 

In our research on consensus fDormaar, Dijkman-Caes, and De Vries, 
1989), we used data based on the responses of psychiatric clients and their 
therapists to a list with eight problem formulations. Clients and therapists 
were asked to state for each problem formulation whether they considered it 
valid for the client. The 162 clients ftlled out the list after the second therapy 
session and so did their therapists. There were 22 different therapists who 
participated between 2 and 12 times in this research and who completed the 
list of problem formulations for a total of 115 of the 162 clients. For this sam- 
ple of 115 client-therapist dyads the mean J-value was 0.49 and the standard 
deviation 0.21. 

We hypothesize that a distribution of consensus values in a population 
of dyads, each consisting of "client and client's own therapist," will have a 
higher mean value than the distribution of these values in a population of 
"client - arbitrary therapist" dyads. We expect that within the first type of 
dyads co-orientation will have occurred, leading to more agreement and 
higher levels of consensus than within dyads of the second type. The distri- 
bution for dyads of the second type corresponds to the null hypothesis formu- 
lated above that clients and therapists respond to the problem formulations 
independently. 

Empirical rejection of this null hypothesis would provide support for 
the model of interpersonal consensus outlined above. Moreover, the availa- 
bility of the probability distribution under the null hypothesis of statistical 
independence would enable the researcher to select those dyads which exhi- 
bit evidence of having gone successfully through the process of co- 
orientation. These dyads could be defined as those reaching a degree of 
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consensus that is highly improbable under the null hypothesis of mutual 
independence, operationalized, for instance, as J-values with p-values under 
statistical independence lower than 5%. 

As a first way of answering the question whether this value can be 
interpreted as a high level of consensus, a simulation study was carried out, 
analogous to Johnson and Millie's (1982) procedure to lind confidence inter- 
vals for Stander's similarity index. A dataset of 10,000 independent dyads 
was randomly simulated on the basis of the marginal popularities of the eight 
problem formulations for clients and therapists separately. The simulation 
model assumed no association among the attributes (problem formulations). 
In this case the mean J-value was 0.38 and the standard deviation 0.19. 

In a second simulation approach all 115 response vectors of clients to 
the eight problem formulations were combined with all 115 therapist response 
vectors. This resulted in a total of 115 x 115 = 13,225 simulated ./-values, 
among which 115 were genuinely observed and the other 13,110 were 
hypothetical. The entire set of 13,225 simulated dyads had a mean J-value of 
0.39 with a standard deviation of 0.22. The difference between this value and 
that of the genuine dyads is considerable, but it cannot be legitimately tested 
with the t-test because the assumption of independent observations is not 
valid. 

These simulation results demonstrate that the standard deviation of J is 
affected by the presence of association among attributes within units. Rather 
than using simulation studies to assess the deviation from our observed J- 
values to values expected under statistical independence, we now turn to a 
more formal approach to this problem. 

4. Mean and Variance of the Simple Matching, Dice, and 
Jaccard Coefficients Under Absence of Association 

Goodall (1967) considered the Simple Matching coeff~ent in the situa- 
tion in which attributes are independent within units, and in which there is no 
distinction between types of units A and B. Denoting the probability of pres- 
ence of attribute j by pj, Goodall derived under the null hypothesis that 

E(M) = Ix = n -1 ~ (p2 + (1 _pj)2) (4) 
j=l 

n 

var(M) = n-l(~(1 - ~ ) - n  -~ ~ (p~ + (1 _p j )2_  g)2) . (5) 
j..--I 

These formulae can be derived by expressing M as a mean (over attri- 
butes) of agreement indicators. They can simply be extended to the situation 
in which there is a distinction between units of types A and B. 
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A similar straightforward approach to the mean and variance of J or D 
is not possible, because the denominators of J and D are random whereas the 
denominator of M is fixed. In this section we consider some previously pub- 
fished formulae for the mean and variance of J and D, as well as one new for- 
mula, which all assume absence of association of attributes within units. The 
formulae in the literature deal with the randomness of the denominators by 
using the delta method (see, e.g., Bishop, Fienberg and Holland 1975, Section 
14.6). This is an approximation valid for large values of n, the number of 
attributes. The practical validity of the formulae is doubtful in many cases 
because similarity coefficients are often applied when the value of n is rather 
small. 

GoodaU (1978, expression (46) on p. 126) gives the expression 

n l , l  

E(J) = ( ~  p~) l (~_, pj  (2-pj)) (6) 
j =1 j =1 

(mistakenly omitting the division slash), which is obtained by replacing both 
the numerator and the denominator of J by their expected values. For large n, 
this approximation is valid. A related exact approach is the following. Under 
the condition that attribute j is present for at least one of the units, the condi- 
tional probability that it is present for both units is given by pj / (2 -p j ) .  
Defining 

{~ if attribute j is present for at least one of the units 
ly = if attribute j is present for neither unit, 

the vector I = (11 . . . . .  I,,) indicates those attributes which contribute to the 
denominator of J. This denominator can be expressed as 

/I 

a + b + c =  • l j .  
j--1 

Conditional on the outcome of/,  the expected value of J is 

n 

E{J ! I1,/2, . . . .  In} = { Z ljpy/(2-p )} / {a + t, + c} 
j=l 
n 

= 2 {I)l(a +b +c)}{pj l (2-pj)} .  
y--1 
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To calculate the expected value of J from this formula, the random variables 
lj / (a + b + c) must be replaced by their expected values. Note that the sum 
over j of these random variables (and hence of their expected values) is 
necessarily equal to 1. Ifp./= p independently of j, the result is 

E ( J )  = p / ( 2 - p ) .  (7) 

In other cases, this approach seems to be intractable: again because of the 
random nature of the denominator (a + b + c), the expected value of 
Iy / (a + b + c) earmot be computed. However, this approach does allow the 
conclusion, that E(J) is a weighted average of the values/7.//(2 -py), where 
the weights depend on p 1 . . . .  ,Pn. 

Janson and Vegelius (1981), and Elston, Schroeder, and Rojahn (1982) 
considered several similarity coefficients, among them the Jaccard coefficient, 
in the situation in which attributes are independent within units and each 
attribute has the same probability of being present. These assumptions are 
very restrictive and likely to be unrealistic in most applications. However, 
these authors did distinguish between units of type A and B, and they derived 
formulae which are valid also for the alternative hypothesis that there is 
dependence among units within dyads. We will discuss their approach 
briefly. 

Denote the probabilities of presence of an attribute j for units of types 
A and B by PA and Ps, respectively. The probability of joint presence of an 
attribute for both units is denoted by p,~. Under the null hypothesis of 
independence between units within dyads, p ~  =PAPs. Both Janson and 
Vegelius and Elston et al. derived the approximate formulae 

E(J) = p ~  / (PA + PB --P~)  (8) 

Var(J) = {PAB ~A +PB -- 2pAB)} / {n(PA +PS _p~)3} .  (9) 

By conditioning on 11 . . . . .  In as in the derivation of (7), it can be concluded 
that (8) is an exact expression for E(J), provided that the strong assumptions 
made do indeed hold. If units A and B are not distinguished, and the units are 
independent within dyads, (8) reduces to (7). Janson and Vegelius also give 

E(D) = 2p~ / (P,4 + PB) (10) 

var(D)=4pAB {(pA +PB --PAS)(PA +PB--2p~)} / {n(pA +ps)4} • (II) 

Baroni-Urbani and Buser (1976) and Baroni-Urbani (1980) considered 
the Jaccard coefficient when all attributes are independent and have a com- 
mon probability of 1/2 of being present. This situation is a special case of the 
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one considered by Janson and Vegelius and by Elston et al., and it presumably 
has little practical significance. Connor and Simberloff (1978) also men- 
tioned a null hypothesis in which each attribute has its own mean and vari- 
ance. However, since they considered it extremely difficult to determine 
these values, they did not elaborate. 

5. Mean and Variance of M for Two Sets of Units and 
Associated Attributes 

In this section we give formulae for the mean and variance of the Sim- 
ple Matching coefficient under the null hypothesis of independence between 
units within dyads, taking account of the association among attributes within 
units. The following definitions are needed. Define the random variables 

[ ~  if attribute j is present for unit A 
XAj = if attribute j is not present for unit A 

and XBj similarly. It will be convenient not to work with a, b, c, and d as in 
Table 2 but with 

N A = a + b ,  N B = a + c ,  N l l = a  (12) 

which can be expressed by 

n n n 

NA= E XAi, NB= E XB. NlI = E XAyX.y. 
.i=1 y=l .i=1 

The Simple Matching coefficient is then given by 

M = (2Nll -NA -NB + n) I n .  (13) 

Define 

PAl = P {XA/ = 1} = probability of presence of attribute j for a 
unit oftypeA (j = 1 . . . . .  n) 

Pajh = P {XAj = XAh --- 1 } = probability of simultaneous presence of attri- 
butes j and h for a unit of type A 
(/, h = 1 . . . . .  n ) ,  

and define PB.i and PBjh similarly. Note that PAjh = PAh.i for all (j,h), and that 
P4ij = PAj. Replacing an index j and/or h by a + sign will denote summation 
over that index; e.g., 
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n / l  

PA++ = ~ ~ PAjh. 
j=Â h=l 

It follows from these definitions that 

PAj = E(XAj), PA+ = E(NA), PB+ = E(NB). (14) 

E.g., Pa + is the mean number of attributes present for a unit of type A. Now 
define 

n 

mll = ~ PAjP,~j. (15) 
j=l 

Then the number m11 is the mean number of attributes simultaneously 
present for both units within an independent dyad: 

m1I = E(Nll). (16) 

It follows from (13), (14), and (16) that the mean of the Matching 
Coefficient under the null hypothesis is given by 

E(M) = (2mll --PA+ --PB+ + n)/ n . (17) 

For an expression for the variance of M, we also need to define 

n n 

m12 = ~. ~ PA.iPBjh, 
j=l h=l 

n 

m21 = 2 ~ PAjhPBj, 
j=l h=l 

n n 

m22 = ~., ~ PAihPBjh. 
j=l h=l 

(18) 

For these quantifies there is no simple interpretation analogous to (16). We 
derive in the Appendix that 

var(M) = n-2(4{m22 + mll(Pa+ +PB+) 

- -m21-m12-m21}  + PA++ + PB++ _p2+ _p2+ ). 

(19) 

These expressions will be used in Section 7 to derive an approximation to the 
cumulative distribution function of M, which can be used to test observed 
values of M. 



16 Snijders, Dormaar, van Schuur, Dijkman-Caes, Driessen 

6. Mean and Variance ofD andJ 

For the Jaccard and Dice coefficients, the situation is more complicated 
because of the randomness of the denominators. Using the definitions in (12), 
the Jaecard coefficient can be expressed as 

Nl l  
j =  (20) 

N A + N a - N l l  

Useful exact expressions for E(J) and var(J) cannot be derived for the gen- 
eral case in which associated attributes are allowed. Two approximations for 
E(J) and var(J) will be presented. The first yields simpler formulae but is 
much less precise; however, it may be applied in situations in which the data 
needed for the second approach are not available. For the second approach 
we use the Dice coefficient to obtain helpful intermediate results. 

The first approach uses the delta method (el. Section 4), which is an 
approximation valid for large values of n, the number of attributes. Expres- 
sion (20) is rewritten as 

P l l  
J = (21) 

PA + P B - P l l  

where P 11 = NII / n, PA = NA / n, Pa = Na / n; this non-linear function is 
then approximated by a function which is linear in PA, PB and P II. Proofs 
are given in the Appendix. The results are 

roll 
E U )  = 

PA+ + P B + - m l l  

var(J) =n-I  (PA+ + P n + - m n )  -4 

× {2m21 (PA++ +PB++ +PA+PB+) 

--2mll(m12 + mZl)(PA+ +PB+) + m22(PA+ +Pa+) 2} • 

(22) 

(23) 

Expressions (6) - (9) are special cases of (22) and (23). In the continuation of 
our example presented in Section 8, we show that these approximations are 
much less precise than those obtained in the second approach. This result is 
not surprising, since n = 8 in this example whereas the delta method assumes 
that n is large. 

The second approach makes use of the fact that the exact mean and 
variance of the Dice coefficient can be derived. It must be assumed that 
P {NA = 0} = P {NB = 0} = 0. Otherwise, it would be possible for the 
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denominators of D and J to be 0, thus leaving D and J undefined. In practice, 
J will be computed only for those cases in which Na > 0 and N B > 0, so that 
this assumption is not restrictive from a practical point of view. 

Define 

pa(nA) = P {Na = na}, the probability that a total of na attributes is 
present for unit A; 

p4/(na) = P {Na = na and XAj = 1 }, the probability that a total of na 
attributes is present for unit A, among which is attribute j; 

PAjh(n A) = P {N a = n A and X/j = Xah = 1 }, the probability that a total of 
na attributes is present for unit A, among which are attributes 
j and h; 

similarly, define pB(nB), pBj(nB), and PBjh (rtB). Ill the Appendix, the following 
expressions for the mean and variance of D are derived: 

n It  n 

E(D) = 2 E Y. ((nA +nB) -1 Y'. PA.i(nA)pBj(nB)) (24) 
Ita=| ns=l j=l  

n I t  

= 2  Y'. • ((ha+ nB) -1 {c(na,nB) +nanBpa(na)ps(nBlln}) (25) 
n,~=l ns=I 

where 
I t  

C(nA,rIB) = ~_~ ({pAj(nA)-- nAPA(nA) l n} {PBj(rtB) -- nBpB(nB) / rt }) ; 
j=l  

va t  (D)  = E ( D  2) -- (E(D))  2 

n I'l A n 

= 4  Z Z ((nA +nB) -2 Z Z PA#(na)pB#(nB))-(E(O)) 2 
na=l ns=l j=l h=l 

I t  n 

= 4  E Z ((hA + nB)-2{d(na,nit) 
ns=l ns=l 

(26) 

(27) 

+ nZan~pA(na)pB(ns) / n2}) - (E(D)) 2 

where 
It  n 

a(nA,nB) = Z Z 
j--1 h--1 

{PA:h (hA) -- n A(nA) /n 2 } 

X {PBjh (riB) -- n~ps(ns) / n 2 }.  
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The total contribution to (25) of the terms following the + sign is the 
expectation of the random variable 

NANB 
n(N~ + NB) 

which is an increasing function of NA and Ns. This contribution increases as 
the popularity of the attributes for units A and/or B increases. The total con- 
tribufion of the terms c(nA,nB) in (25) is higher when the frequency of partic- 
ular attributes is similar in populations A and B than when it is dissimilar. 
This point was already mentioned in a qualitative sense in Section 2. 

The expressions for E(D) and var(D) derived above can be employed 
to derive approximate expressions for E(J) and var (J) by a variant of the 
delta method. For approximating E(J) we use the second-order Taylor expan- 
sion 

] = o / ( 2 - o )  = { g ( O )  / (2 - E ( O ) ) }  

+ 2 (D  - E ( D ) ) ( 2  - E ( D ) )  -2 + 2 (D  - E ( D ) ) 2 ( 2  - E ( D ) )  -3 ; 

the quadratic term employed here is a refinement of the usual implementation 
of the delta method, and yields a considerably better approximation to EU).  
Note that, in the fight hand side of this approximate equality, E(D) is con- 
stant. Taking expectations with respect to the random variable D yields the 
approximation 

E ( ] )  = e ( o )  / (2 - E(D)) + 2(2 - e ( O ) )  -3 var ( D ) .  (28) 

For approximating var (J) we use the first-order Taylor expansion 

J = D / (2 - D) = {g(o)  / (2 - E(D))} + 2(D - E(D))(2 - E(D)) -2 ; 

using the second-order Taylor expansion here would necessitate expressions 
for the third and fourth moments of D, which we have not wished to derive 
and which presumably would not contribute much to the accuracy of the 
resulting expression for var (J). Taking the variance of the right hand side 
yields the approximation 

var (J) --- 4(2 - E(D))-4var (D).  (29) 

The approximation of E(J) and var(J) according to the first approach 
will usually not be very reliable, since the non-linear nature of J as a function 
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of (Pa,PB,Pn) will often be rather pronounced in the region where most of 
the probability mass of (Pa,Ps,Pll) is concentrated. Note that approximation 
(22) neglects the fact that the denominator of (21) is random. Since the non- 
linear nature of (3) is less pronounced than that of function (21), and a 
second-order Taylor series for (3) is used for approximating E(J), the second 
approach may be expected to yield better approximations than the first. On 
the other hand, although approximations (22)-(23) are rougher than (28)-(29), 
the former can be useful because less information on the joint probability dis- 
tributions is needed to evaluate them. There may be situations in which the 
values of (22)-(23) can be estimated from available data (or guessed), while 
(28)-(29) cannot be reliably estimated. 

7. Approximations to the Distribution Functions of M and./ 

In order to make probability statements for assessing the significance of 
a given observed value of M, D, or J, it is necessary to evaluate the cumula- 
tive distribution function (cdf), or at least to approximate it. In Section 6 
exact expressions were given for the mean and variance of D, but only 
approximate ones for the mean and variance of./. Therefore it seems sensible 
in approximating the cdf of J to use the exact expressions for E(D) and 
var (D), to approximate the cdfofD, and then to use relation 

P{J<t} =P{D<2tl(1 +t)},  (O_<t_<l) (30) 

implied by (3), rather than use the approximate expressions for E(J) and 
Var (J). 

To approximate the cdf of M or D, one could use either a normal 
approximating distribution or a non-normal one that takes into account the 
boundedness of the interval [0,1] of possible values of M and D. The fact that 
M and D are restricted to the interval [0,1] causes problems in a normal 
approximation, because the standard deviation in many practical cases is 
rather large. It seems therefore preferable to consider the approximation 
using a Beta distribution, which is a distribution on the interval (0,1) having 
probability density function 

f(x) = {B(p,q)} -1 x p-1 (1 -x)  q-1 , (0 < x  < 1) 

where p and q are positive parameters and B(p,q) is the beta function defined 
by 
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1 

B(p,q) = Ix p-1 (1 - x )  q-1 dx.  
0 

The cdfof the Beta distribution will be denoted by B(x;p,q). The mean and 
variance of this distribution are, respectively, 

I t=pl (p+q)  o'2=pql{(p+q)2(p+q+ l)}; (31) 

see, e.g., Johnson and Kotz (1970, p.40). The distributions of M and D can be 
approximated by Beta distributions. There exists only one Beta distribution 
with a given mean It and variance o "2. The parameters are determined by 
inverting relations (31), which results in 

p = It2(1 - l i ) / o ' 2 - i t ,  q = l l (1 -11)2 /oa -  1 +I t  (32) 

(el. Johnson and Kotz 1970, p. 44). 
of M, D o r J  now is the following: 

1. 
2. 
3. 
4. 

. 

The procedure for approximating the cdf 

Calculate (E(M) and var (M)) or (E(D) and var (D)); 
Set 0t = E(M),o "2 = vat (M)) or = = var (D)); 
Calculate the parameters p and q of the Beta distribution from (32); 
Employ a numerical procedure to calculate the cdfof the Beta distri- 
bution with these values of p and q, e.g., by using subroutine 
MDBETA in the IMSL library or function BETAI given by Press, 
Flannery, Teukolsky, and Vetterling (1986). 
Procedure (1)-(4) yields approximations to the cdfofM or D, respec- 
tively. Relation (30) can be used for transforming the cdfofD to that 
of J. 

An approximation to the distribution of M and to that of Y (possibly via 
that of D) by a normal distribution is also possible, but such an approximation 
will in many cases give a rather high probability of values smaller than 0 
and/or greater than 1, which is obviously undesirable. In those cases where a 
normal approximation would yield a good result, this result would presum- 
ably not be very different from the approximation by a Beta distribution. The 
reason is that the variance of M or J, respectively, will be relatively small in 
such cases. This situation leads to large parameters p and q in the Beta distri- 
bution. For such parameter values, the Beta distribution itself approaches a 
normal distribution. In conclusion, there seems to be no strong mason for 
using a normal approximation given that a Beta approximation is also avail- 
able. 
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Goodall (1967) approximates the cdfofM by using a normal distribu- 
tion for arcsin(M'/'), which also takes into account that 0 < M  < 1.  He sug- 
gests this transformation because it stabilizes the variance for a binomial pro- 
portion; if all attributes are independent within units and have the same pro- 
bability of being present, then indeed M is simply a binomial proportion. In 
the general case, however, there are no special arguments for use of this 
transformation. A helpful property of the Beta approximation proposed here 
is the fact that the mean and variance of the approximating Beta distribution 
are exactly equal to the mean and variance of M or D, respectively. 

The approximation by a Beta distribution suffers from the usual prob- 
lems that occur when a discrete distribution is approximated by a continuous 
one. A continuity correction will usually improve the approximation and can 
be carded out in the following way for, e.g., the J index. The possible values 
for J are the rational numbers all  where a and f are integers with 
0 < a < f <  n, 0 < f Let t l ,  t2, and t3 be three consecutive possible values for 
J: so 0 < t l  < t2 <t3 < 1, and there are no possible values for J between tl 
and t2, nor between t2 and t3. The outcome t2 for J is then identified with 
the interval of continuous values from (tl + t2) / 2 to (t2 + t3) / 2. To carry 
out a continuity correction for approximating P {J-> t2}, define 
t4 = (tl + t2) / 2. Then (30) with the continuity correction leads to 

P{J>t2} =P{D >2t4 / (1 + t4)} • (33) 

For the right side of (33), the Beta approximation can be used. 
In the examples we have calculated, it has turned out that a special 

problem in approximating the cdfof J is caused by the relatively large proba- 
bility that J =0;  see Section 8. From expression (20), note that 
P{J = 0} = P{Nll = 0}; in contrast, the probabilities of strictly positive out- 
comes of Nll  are spread over several values for J (depending on the denomi- 
nator Na + Nn - N 11), thereby leading to smaller probabilities for the various 
positive outcomes of J. A somewhat ad hoe procedure for dealing with this 
problem, which resulted in markedly increased precision in our examples, is 
the following. The expected value of Nll  is, from (16), given by m11; possi- 
ble values for Nl l  range from 0 to n. Approximating the distribution of Nll  
by a binomial distribution yields 

P { J = 0 }  =P{D =0]  =P{Nll =O}=(1-mllln) n. (34) 

Denote the latter value by m The distribution of D now can be approximated 
by a mixed distribution with a probability ~ for the discrete outcome D = 0, 
and a probability (1 -7r) for a beta distribution with parameters Po and qo. 
This distribution has cdf 
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+ (1 -~)B(x;po,qo) (35) 

for 0_< x __. 1. Elementary probability calculations show that this distribution 
has mean and variance 

11= BoO -re), o'2 = (I -~x)(Oo 2 + gl.to2), (36) 

where go and o 2 correspond to Po and qo as in (31). The distribution of D is 
now approximated by equating mean and variance tt and 02 in (36) to the 
exact mean and variance of D. Solving (36) for go and (~2 shows that po and 
q0 can be calculated from (32), substituting 

= E ( O )  / (1 - ~ ) ,  

02 = (var (O)) / (1 - ~ ) -  (E(O)) 2 ~(1 - ~)-2 

(37) 

for !1 and 02 in those equations. Approximate cumulative probabilities for J 
can be calculated using cdf (35) for D, and using (33) for the correspondence 
between the cdf'sof J and D. 

8. Elaboration of the Example of Consensus Assessment 

The values found for J in the study of consensus between psychothera- 
pist and client, discussed briefly in Section 3 and more fully in Dormaar, 
Dijkman-Caes, and De Vries (1989), were investigated under the null model 
defined in Section 2. The parameters PAi, etc., were estimated from the sam- 
ple of 115 psychotherapist-client dyads for which complete data were avail- 
able. Thus, the estimated null distribution of J coincides with the distribution 
of the 13,225 simulated J-values obtained by taking all pairs of any psychoth- 
erapist and any client, which was referred to in Section 3. This distribution 
can be regarded as the permutation distribution; consequently, given that 
estimated probabilities are used, the probability distribution of J for which 
approximations are given in Sections 6 and 7 is simply the permutation distri- 
bution. The availability in this case of the permutation distribution can be 
used to study the values of the various approximations in this particular case. 

Under the permutation distribution, results for the Dice coefficient were 
E(D)=0.521 and var(D)=0.0555, while for the Jaccard coefficient 
E(J) = 0.386 and var(J)= 0.0476. The delta method approximations (22) 
and (23) to the moments of J were 0.491 and 0.0347, while approximations 
(28) and (29) yielded 0.386 and 0.0463, respectively. The poor performance 
of the first approximation and the good performance of the second one are 
striking. With (32), we obtain p = 1.82 and q = 1.68 as parameters for the 
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J 
Figure 1. Cumulative distribution functions of J: permutation distribution (step function) and 
approximating continuous distribution function using the Beta distn'bution for D. 

approximating Beta distribution for D. Figure 1 gives the cdf of J under the 
permutation distribution and the approximating cdf obtained by transforming 
the Beta(1.82, 1.68) distribution according to (30). 

In accordance with the last paragraph of Section 7, the probability that 
J = 0 is quite large under the permutation distribution and not so large under 
the continuity-corrected Beta approximation. A further consequence of this 
poor approximation to P{J = 0} is that the remainder of the approximating 
cdf is less steep than the permutation cd.f. The approximation with an extra 
discrete probability for J = 0 gives better results. From (37) we obtain 
Po = 0.561, t~  = 0.0373, which leads to P0 = 3.138, qo = 2.456. Figure 2 
gives the corresponding calf (35). The approximation to the permutation cdf 
is much better, especially in the right tail. 
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CUM. 
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0 . 0  0 . 2  0 .4  0 . 6  0 . 8  1 .0  

J 
Figure 2. Cumulative distribution functions of J: permutation distribution (step function) and 
approximating continuous distribution function using the Beta distribution for D with an extra 
positive probability for ] = O. 

When particular J-values are to be tested under the null model of  
absence of  consensus between psychotherapist and client (formulated statisti- 
cally as independence between the attributes chosen by the client and the 
psychotherapist while allowing for association of  the attributes chosen by 
each individual), the upper 5% level of the null distribution would be a rea- 
sonable threshold value. In the permutation distribution of  the J index, this is 
the value J = 0.75. Relevant null probabilities are P{J __.4/5} = 0.046, 
P{J > 3/4} = 0.063, and P{J >_ 5/7} = 0.084; there are no possible outcomes 
for J between 5/7 = 0.71, 3/4 = 0.75, and 4/5 = 0.8. Therefore, in order to 
apply the continuity correction discussed in the paragraph leading to (33), we 
take t4 = 0.775 for tz = 0.8, and t4 = 0.73 for t2 = 0.75. The resulting values 
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of the approximation for (33) obtained by using cdf(35) are 

P{J >_415} =O.040,P {J >_ 3/4} =0.064. 

The correspondence is quite satisfactory. 
Of the 115 true client-psychotherapist dyads, only 16 had a J-value at 

least equal to .75, while 27 more had a J-value at least equal to .71. From a 
statistical point of view, these frequencies are considerably higher than the 
6.3% and 8A% expected under independence. From the clinical point of 
view, however, it is rather disappointing that there are relatively few dyads 
for which the obtained value of J suggests consensus-after-communication. 
Tentatively, we conclude that the Jaccard index on 8 attributes is not a power- 
ful method to establish consensus. 

9. Discussion 

A method has been proposed for testing the significance of observed 
values of similarity coeff~ients such as the indices of Jaecard, Dice, and the 
Simple Matching eoeffacient. This approach requires the computation of an 
(estimated) mean and variance of the similarity coefficient, which is feasible 
when a sutf~ently large sample of units is available. In our example, sam- 
pies of more than 100 units were available, which certainly seems suffmient. 
The null distributions of the M and D coefficients can be quite well approxi- 
mated by Beta distributions, provided that a continuity correction is used. For 
the distributions of Y and D, the approximating distribution should contain an 
extra, discrete probability for the outcome 0. 

The methodological message of this paper is twofold. First, the null 
mean and standard deviation of the similarity coefficients will i n  practice 
often be large, unless the number of attributes is great. As a consequence, 
observed values of the coefficients can be interpreted as contradicting the null 
model only if they are extremely high: in our example with 8 attributes, the 
5% threshold value for the Jaccard index was as high as 0.75. This result sug- 
gests that it is difficult to draw statistically significant conclusions if one 
wants to establish "consensus" on the basis of a small number of attributes 
(e.g., only 8). Increasing the number of attributes with a given average pres- 
ence probability will decrease the variances of M and J. However, the 
number of attributes useful in this context is limited for both theoretical and 
practical reasons. Users of these measures of association, which are so pre- 
valent in methods of classification, ought to be aware of these limitations. 

Second, one should take account of the possible association of attri- 
butes within taxonomic units. Such an association may strongly affect the 
null distribution of similarity coefficients. 
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The method used here for determining the mean and variance of M, J, 
and D can easily be extended to similar coefficients, although we did not have 
encyclopaedic ambitions in this respect when writing this paper. Some 
related coefficients (see, e.g., Austin and Colwell 1977, p. 206; Wishart 1978, 
p. 112; Gower and Legendre 1986, p. 13) are: 

Total difference 
Error sum of squares 
Variance 
Unnamed 
Rogers and Tanimoto 
Hamann 
Non-metric 

( b + c ) / ( a + b + c + d )  = 1 - M  
(b +c ) / 2(a +b +c +d) = (1 - M )  I 2 
( b + c ) / 4 ( a + b + c + d )  = (1 - M ) / 4  
2 (a+d) l  (a+b+c +d) = 2M 
(a +d) / (a +d+2(b +c)) = M / (2 - M) 
(a +d - b - c ) l (a +b+c +d) = 2M - 1 
( b+ c ) / (2a+ b+ c)  = 1 - D .  

These measures are functions of M or D, which means that the results of this 
paper can be directly applied to them. It may also be possible to apply the 
same methods to additional measures that are not expressible as functions of 
M orD. 

Quite a different approach to testing the significance of a set of similar- 
ity coefficients can be taken by considering the original two-mode 
units/attributes 0-1 matrix of presence - absence data, and conditioning on the 
marginal totals. This strategy implies a null distribution which fixes the 
number of attributes for each of the units, and the number of units having 
each of the attributes. This approach is worked out in Snijders (1989). 

A computer program in Fortran containing the calculations of the 
means and variances tieated in this paper can be obtained from one of the 
authors, G. Driessen. 

Appendix. Derivations 

1. Derivation of(19) 

The definitions in Section 5 imply 

E(XAj)  - PAj ,  var (XAj )  = PAj(1 --PAj)  , 

E(XAjXAh) - PAjh , CoV (XAj,XAh) = PAjh --PAjPAh (all j ,  h) 

and similarly for unit B. This result implies 
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E(NA) = PA +, E(NB) = PB + 
n n n iI  

E(N 2) = E(  Z E XAiXAQ = Z ~.~ PAjh = PA ++ 
j=l h=l j= l  h=l 

var (N A) = E(N2A) - (E(NA)) 2 = PA ++ --P~ + . 

(A.1) 

(A.2) 

The independence of units A and B implies that (XAI . . . . .  X~,,) and 
(XB 1, . . . .  XB,,) are independent; NA and NB are then also independent. Hence 

coy (NA,NB) = 0 
n 

E ( N l l )  = ~ PAjPBj = ro l l  (A.3) 
j= l  

n n n n 

E ( N 2 1 ) = E (  ~, ~.~ XAjXBjXAhXBh) - Z Z PAjhPBjh =m22 
j= l  h=l j=l  h=l 

var (Nli) = E(N211 ) - (E(NI i)) 2 = m22 - m121 (A.4) 

COV (XAjXBj,XAh) "- E(XAjXBjXAh ) - (E(XAjXBj))(E(XAh)) 

-- PAjhPBj -- PAjPAhPBj 
n n 

c°v (Nll ,NA) = E ~7 CoV (XAjXBj,XAh) (A.5) 
j= l  h=l 

n n 

= ~_~ ~ (PAjhPBj--PAjPAhPBj) = m21 - -pA+mll  • 
j=l h=l 

Similarly, 

coV ( N i l  ,NB) = m 12 --pB+m 11 • (A.6) 

Expression (13) for the Simple Matching coefficient implies 

var (M) = 4 {var ( N i l )  - cov (NI1,NA) - c o v  (NlI ,NB)}  

+ var (ND + var (NB) + 2coy (NA,Na). 

The latter expression, together with (A. 1) to (A.6), yields formula (19). 

2. Derivation of (22) and (23) 

For the delta method, the partial derivatives of J, as given by (21), with 
respect to PA, PB, and P 11 are needed. These are 
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~J / 03Pll = (PA + PB) / (PA + PB - P l l )  2 

~J / ~Pa = ~J / ~PB = - P l l  / (PA + P B - P l l )  2.  

(A.7) 

(A.8) 

The mean E(J) is approximated by replacing random variables in (21) with 
their mean values, yielding (22). The approximation to var (J) as given by the 
delta method is 

E (aJ / aY)(aJ / ;gz) coy 
Y z 

where the sums extend over Y and Z each taking each of the values PA, PB, 
and P l l ,  and where the partial derivatives (A.7), (A.8) are evaluated at the 
expectations (A.1), (A.2). Substituting the expressions for the variances, 
covariances, and partial derivatives yields (23). 

3. Derivation of  (24) to (27). 

The expressions for E(D) and var (D) are derived by conditioning on the out- 
comes Of NA and biB. It is clear that 

E{XAi I NA = hA} = pAi(nA) / pA(nA) , 

and similarly for XBj. Using this result with the independence of XA and X~, 
we obtain 

E{N11 I NA = nA,NB = riB} 
n 

= E { E  XAjXBj I NA = nA,NB =riB} 
j=l 

n 

= ~, {PAj(nA)PBj(nB)} / {pA(nA)PB(nB)}. 
j=l 

Denote this quantity by f(na,nB). Note that the independence of the dyad 
implies that 

P[N A = nA,N B = tl B } --- pA(nA)PB(nB) . 

The definition of D can be expressed as 

D = 2NIl  / (N a + NB), 

which implies 
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E(D) = 2E{f(NA,NB) I (NB + biB)} 
n n 

= 2 Z Z pA(nA)PB(nB)f(nA,nB) / (hA + riB), 
aa=l  nR=l 

( i . 9 )  

which is equal to (24). In order to derive (25) and (27), the following rela- 
tions will be used; I {E } denotes the indicator function of the event E, equal 
to I or 0, respectively, depending on whether E occurs or not. 

?I lit 

PAjh(nA) = ~.~ E(XAjXAhI[NA = hA} ) 
h = l  h= l  

n 

= E(XAj( Z XAh)I{NA = nA }) 
h= l  

(A. I 0) 

= e(XA/V, diNA = h A } )  = nmai(nA). 

Similarly it can be proved that 
n 

pa.i(nA) = nApA(nA), 
j=l 

so that 
/I /I 

Z Z PA.i,(nA) " n~CpA(nA)" 
jffil hffil 

The same relation holds forB. From (A.11) it follows that 
n 

Z {PAj(nA)pBj(nB)} 
j=l 

n 

= Z {PA.i(n,'i)-naP,~(n,4) / n} {pBj(nB)--nBpB(nB)/n} 
,/=1 

(A.II) 

(A. 12) 

+ nAnBpB(nA)pB(nB) / n,  

which together with (24) establishes (25). 
To derive (26) we must find an expression for E(D2), which is also 

derived by conditioning on the outcomes of NA and NB. First note that 

e {N~ I NA = nA,NB = nB } 
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n n 

- E{ 7"_ XAjXBjX XBh NA = no,NB = no} 
j=l h=l 

n / l  

= ~, ~. PAjh(nA)PBjh(nB) I {pA(nA)PB(rtB)}. 
j= l  h=l 

Analogous to the derivation of (A.9), this result leads to 
/ l  ?l n i t  

E(D 2) = 4 • ~ ((hA +nB) -2 E ~ PAjh(nA)PBjh(nB) ) 
~,4=I ns=l j=l h=l 

and hence to (26). This leads to (27), because (A.12) implies that 
?1 ?1 

~-, ~_~ PAjh(nA)PBjh(nB) 
j= l  h=l 

n i t  

"- Z Z {PAjh(11A)--11~dOA(IIA ) / n2 } {PBjh(11B) --112pB (11B)/112} 
j= l  h=l 

+ nin pA(nA)PB(ns) / n 2 • 
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