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The most promising class of statistical models for expressing struc-
tural properties of social networks observed at one moment in time
is the class of exponential random graph models (ERGMs), also
known as p

∗
models. The strong point of these models is that they

can represent a variety of structural tendencies, such as transitivity,
that define complicated dependence patterns not easily modeled
by more basic probability models. Recently, Markov chain Monte
Carlo (MCMC) algorithms have been developed that produce ap-
proximate maximum likelihood estimators. Applying these models
in their traditional specification to observed network data often has
led to problems, however, which can be traced back to the fact that
important parts of the parameter space correspond to nearly de-
generate distributions, which may lead to convergence problems of
estimation algorithms, and a poor fit to empirical data.
This paper proposes new specifications of exponential random
graph models. These specifications represent structural properties
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such as transitivity and heterogeneity of degrees by more compli-
cated graph statistics than the traditional star and triangle counts.
Three kinds of statistics are proposed: geometrically weighted de-
gree distributions, alternating k-triangles, and alternating indepen-
dent two-paths. Examples are presented both of modeling graphs
and digraphs, in which the new specifications lead to much better
results than the earlier existing specifications of the ERGM. It is
concluded that the new specifications increase the range and appli-
cability of the ERGM as a tool for the statistical analysis of social
networks.

1. INTRODUCTION

Transitivity of relations—expressed for friendship by the adage “friends
of my friends are my friends”—has resisted attempts to be expressed in
network models in such a way as to be amenable for statistical infer-
ence. Davis (1970) found in an extensive empirical study on relations of
positive interpersonal affect that transitivity is the outstanding feature
that differentiates observed data from a pattern of random ties. Transi-
tivity is expressed by triad closure: if i and j are tied, and so are j and
h, then closure of the triad i, j, h would mean that i and h are also tied.
The preceding description is for nondirected relations, and it applies in
modified form to directed relations. Davis found that triads in data on
positive interpersonal affect tend to be transitively closed much more
often than could be accounted for by chance, and that this occurs con-
sistently over a large collection of data sets. Of course, in empirically
observed social networks transitivity is usually far from perfect, so the
tendency towards transitivity is stochastic rather than deterministic.

Davis’s finding was based on comparing data with a nontransitive
null model. More sophisticated methods along these lines were devel-
oped by Holland and Leinhardt (1976), but they remained restricted
to the testing of structural characteristics such as transitivity against
null models expressing randomness or, in the case of directed graphs,
expressing only the tendency toward reciprocation of ties. A next step
in modeling is to formulate a stochastic model for networks that ex-
presses transitivity and could be used for statistical analysis of data.
Such models have to include one or more parameters indicating the
strength of transitivity, and these parameters have to be estimated and
tested, controlling for other effects—such as covariate and node-level



NEW SPECIFICATIONS FOR ERGMS 101

effects. Then, of course, it would be interesting to model other network
effects in addition to transitivity.

The importance of controlling for node-level effects, such as ac-
tor attributes, arises because there are several distinct localized social
processes that may give rise to transitivity. In the first, social ties may
“self-organize” to produce triangular structures, as indicated by the
process noted above, that the friends of my friends are likely to become
my friends (i.e., a structural balance effect). In other words, the pres-
ence of certain ties may induce other ties to form, in this case with the
triangulation occurring explicitly as the result of a social process in-
volving three people. Alternatively, certain actors may be very popular,
and hence attract ties, including from other popular actors. This process
may result in a core-periphery network structure with popular actors
in the core. Many triangles are likely to occur in the core as an out-
come of tie formation based on popularity. Both of these triangulation
effects are structural in outcome, but one represents an explicit social
transitivity process whereas the other is the outcome of a popularity
process. In the second case, the number of triangles could be accounted
for on the basis of the distribution of the actors’ degrees without re-
ferring to transitivity. In a separate third possibility, however, ties may
arise because actors select partners based on attribute homophily, as
reviewed in McPherson, Smith-Lovin, and Cook (2001), or some other
process of social selection, in which case triangles of similar actors may
be a by-product of homophilous dyadic selection processes. An often
important question is whether, once accounting for homophily, there
are still structural processes present. This would indicate the presence
of organizing principles within the network that go beyond dyadic se-
lection. In that case, can we determine whether this self-organization is
based within triads, or whether triangulation is the outcome of some
other organizing principle? Given the diversity of processes that may
lead to transitivity, the complexity of statistical models for transitivity
is not surprising.

It can be concluded that transitivity is widely observed in net-
works. For a full understanding of the processes that give rise to
and sustain the network, it is crucial to model transitivity adequately,
particularly in the presence of—and controlling for—attributes. In a
wide-ranging review, Newman (2003) deplores the inadequacy of ex-
isting general network models in this regard. When the requirement is
made that the model is tractable for the statistical analysis of empirical
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data, exponential random graph (or p∗) models offer the most promis-
ing framework within which such models can be developed. These
models are described in the next section; it will be explained, how-
ever, that current specifications of these models often do not provide
adequate accounts of empirical data. It is the aim of this paper to
present some new specifications for exponential random graph mod-
els that considerably extend our capacity to model observed social
networks.

1.1. Exponential Random Graph Models

The following terms and notation will be used. A graph is the mathe-
matical representation of a relation, or a binary network. The number
of nodes in the graph is denoted by n. The random variable Yij indicates
whether there exists a tie between nodes i and j (Yij = 1) or not (Yij =
0). We use the convention that there are no self-ties—i.e., Yii = 0 for all
i. A random graph is represented by its adjacency matrix Y with ele-
ments Yij. Graphs are by default nondirected (i.e., Yij = Yji holds for all
i, j), but much attention is given also to directed relations, represented
by directed graphs, for which Yij indicates the existence of a tie from i
to j, and where Yij is allowed to differ from Yji. Denote the set of all
adjacency matrices by Y . The notational convention is followed where
random variables are denoted by capitals and their outcomes by small
letters. We do not consider nonbinary ties here, although they may be
considered within this framework (e.g., Snijders and Kenny 1999; Hoff
2003).

A stochastic model expressing transitivity was proposed by
Frank and Strauss (1986). According to their definition, a probabil-
ity distribution for a graph is a Markov graph if the number of nodes
is fixed at n and possible edges between disjoint pairs of nodes are in-
dependent conditional on the rest of the graph. This can be formulated
less compactly, for the case of a nondirected graph: if i, j, u, v are four
distinct nodes, the Markov property requires that Yij and Yuv are inde-
pendent, conditional on all other variables Yts. This is an appealing but
quite restrictive definition, generalizing the idea of Markovian depen-
dence for random processes with a linearly ordered time parameter and
for spatial processes on a lattice (Besag 1974). The basic idea is that two
possible social ties are dependent only if a common actor is involved in
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both. In Section 3.2 we shall discuss the limitations of this dependence
assumption in modeling observed social structures.

Frank and Strauss (1986) obtained an important characteriza-
tion of Markov graphs. They used the assumption of permutation invari-
ance, stating that the distribution remains the same when the nodes are
relabeled. Making this assumption and using the Hammersley-Clifford
theorem (Besag 1974), they proved that a random graph is a Markov
graph if and only if the probability distribution can be written as

Pθ {Y = y} = exp

(
n−1∑
k=1

θk Sk(y) + τ T(y) − ψ(θ, τ )

)
y ∈ Y (1)

where the statistics Sk and T are defined by

S1(y) = ∑
1≤i< j≤n yi j number of edges

Sk(y) = ∑
1≤i≤n

(
yi+
k

)
number of k-stars (k ≥ 2)

T(y) = ∑
1≤i< j<h≤n yi j yih yjh number of triangles,

(2)

the Greek letters θ k and τ indicate parameters of the distribution, and
ψ(θ , τ ) is a normalizing constant ensuring that the probabilities sum to
1. Replacing an index by the + sign denotes summation over the index,
so yi+ is the degree of node i. A configuration (i , j 1, . . ., jk) is called
a k-star if i is tied to each of j 1, j 2, up to jk. For all k, the number of
k-stars in which node i is involved, is given by

(yi+
k

)
. An edge is a one-

star, so S1(y) is also equal to the number of one-stars. Some of these
configurations are illustrated in Figure 1.

It may be noted that this family of distributions contains for
θ 2 = . . . = θ n−1 = τ = 0 the trivial case of the Bernoulli graph—i.e., the
purely random graph in which all edges occur independently and have
the same probability eθ1/(1 + eθ1 ).

Frank and Strauss (1986) elaborated mainly the three-parameter
model where θ 3 = . . . = θ n−1 = 0, for which the probability distribution
depends on the number of edges, the number of two-stars, and the num-
ber of transitive triads. They observed that parameter estimation for
this model is difficult, and they presented a simulation-based method
for the maximum likelihood estimation of any one of the three parame-
ters in this model, given that the other two are fixed at 0, which is only of
theoretical value. They also proposed the so-called pseudo-likelihood
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FIGURE 1. Some configurations for nondirected graphs.

estimation method for estimating the complete vector of parameters.
This is based on maximizing the pseudo-loglikelihood defined by


(θ ) =
∑
i< j

ln
(

Pθ

{
Yi j = yi j | Yuv = yuv for all u < v, (u, v) �= (i, j )

} )
.

(3)

This method can be carried out relatively easily, as the algorithm is
formally equivalent to a logistic regression. However, the properties of
pseudo-loglikelihood estimators have not been adequately established
for social networks. In analogous situations in spatial statistics, the maxi-
mum pseudo-loglikelihood estimator has been observed to overestimate
the dependence in situations where the dependence is strong and to per-
form adequately when the dependence is weak (Geyer and Thompson
1992). For most social networks the dependence is strong and the max-
imum pseudo-loglikelihood is suspect.

The paper by Frank and Strauss (1986) was seminal and led to
many papers published in the 1990s. In the first place, Frank (1991) and
Wasserman and Pattison (1996) proposed to use a model of this form,
both for nondirected and for directed graphs, with arbitrary statistics
u(y) in the exponent. This yields the probability functions

Pθ {Y = y} = exp
(
θ ′u(y) − ψ(θ )

)
y ∈ Y (4)

where y is the adjacency matrix of a graph or digraph and u(y) is any
vector of statistics of the graph. Wasserman and Pattison called this
family of distributions the p∗ model. As this is an example of what



NEW SPECIFICATIONS FOR ERGMS 105

statisticians call an exponential family of distributions (e.g., Lehmann
1983) with u(Y ) as the sufficient statistic, the family also is called an
exponential random graph model (ERGM).

Various extensions of this model to valued and multivariate re-
lations were published (among others, Pattison and Wasserman 1999;
Robins, Pattison, and Wasserman 1999), focusing mainly on subgraph
counts as the statistics included in u(y), motivated by the Hammersley-
Clifford theorem (Besag 1974). To estimate the parameters, the pseudo-
likelihood method continued to be used, although it was acknowledged
that the usual chi-squared likelihood ratio tests were not warranted here,
and there remained uncertainty about the qualities and meaning of the
pseudo-likelihood estimator. The concept of Markovian dependence
as defined by Frank and Strauss was extended by Pattison and Robins
(2002) to partial conditional independence, meaning that whether edges
Yij and Yuv are independent conditionally on the rest of the graph de-
pends not only on whether they share nodes but also on the pattern of
ties in the rest of the graph. This concept will be used later in this paper.

Recent developments in general statistical theory suggested
Markov chain Monte Carlo (MCMC) procedures both for obtaining
simulated draws from ERGMs, and for parameter estimation. MCMC
algorithms for maximum likelihood (ML) estimation of the parameters
in ERGMs were proposed by Snijders (2002) and Handcock (2003).
This method uses a general property of maximum likelihood estimates
in exponential families of distributions such as (4). That is to say, the
ML estimate is the value θ̂ for which the expected value of the statistics
u(Y ) is precisely equal to the observed value u(y):

Eθ̂u(Y) = u(y). (5)

In other words, the parameter estimates require the model to reproduce
exactly the observed values of the sufficient statistics u(y).

The MCMC simulation procedure, however, brought to light se-
rious problems in the definition of the model given by (1) and (2). These
were discussed by Snijders (2002), Handcock (2002a, 2002b, 2003), and
Robins, Pattison, and Woolcock (2005), and they go back to a type of
model degeneracy discussed in a more general sense by Strauss (1986).
A probability distribution can be termed degenerate if it is concentrated
on a small subset of the sample space, and for exponential families this
term is used more generally for distributions defined by parameters on
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the boundary of the parameter space; near degeneracy here is defined
by the distribution placing disproportionate probability on a small set
of outcomes (Handcock 2003).

A simple instance of the basic problem with these models occurs
as follows. If model (1) is specified with only an edge parameter θ 1 and
a transitivity parameter τ , while θ 1 has a moderate and τ a sufficiently
positive value, then the exponent in (1) is extremely large when y is the
complete graph (where all edges are present—i.e., yij = 1 for all i, j)
and much smaller for all other graphs that are not almost complete.
This difference is so extreme that for positive values of τ—except for
quite small positive values—and moderate values of θ 1, the probability
is almost 1 that the density of the random graph Y is very close to 1. On
the other hand, if τ is fixed at a positive value and the edge parameter
θ 1 is decreased to a sufficient extent, a point will be reached where the
probability mass moves dramatically from nearly complete graphs to
predominantly low density graphs. This model has been studied asymp-
totically by Jonasson (1999) and Handcock (2002a). If τ is nonnega-
tive, Jonasson shows that asymptotically the model produces only three
types of distributions: (1) complete graphs, (2) Bernoulli graphs, and
(3) mixture distributions with a probability p of complete graphs and
a probability 1 − p of Bernoulli graphs. These distributions are not
interesting in terms of transitivity. This near-degeneracy is related to
the phase transitions known for the Ising and some other models (e.g.,
Besag 1974; Newman and Barkema 1999). The phase transition was
studied for the triangle model by Häggström and Jonasson (1999) and
Burda, Jurkiewicz, and Krzywicki (2004), and for the two-star model
by Park and Newman (2004).

Some examples of more complex models are given in Sections 4
and 5 below. The phase transition occurs in such models as a near dis-
continuity of the expected value Eθu(Y ) as a function of θ—i.e., as the
existence of a value of θ where a plot of coordinates Eθuk(Y) graphed
as a function of the coordinate θ k (or of other coordinates θ k′) shows
a sudden and big increase, or jump (e.g., see, the Figure 16 a). Mathe-
matically, the function still is continuous, but the derivative is extremely
large. In many network data sets this increase of E θuk(Y) jumps right
over the observed value uk(y); and for the parameter value where the
jump occurs—which has to be the parameter estimate satisfying the like-
lihood equation (5)—the probability distribution of uk(y) has a bimodal
shape, reflecting that here the random graph distribution is a mixture of
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the low-density graphs produced to the left of the jump, and the almost
complete graphs produced to its right. Hence, although the parame-
ter estimate does reproduce the observation u(y) as the fitted expected
value, this expected value is far from the two modes of the fitted distri-
bution. This fitted model does not give a satisfactory representation of
the data. Illustrations are given in later sections.

One potential way out of these problems might be to condition
on the total number of ties—i.e., to consider only graphs having the
observed number of edges. However, Snijders (2002) showed that al-
though conditioning on the total number of ties does sometimes lead to
improved parameter estimation, the mentioned problems still occur in
more subtle forms, and there still are many data sets for which satisfac-
tory parameter estimates cannot be obtained.

A question, then, must be answered: To what extent does model
(1) when applied to empirical data produce parameter estimates that are
in, or too close to, the nearly degenerate area, resulting in the impossi-
bility of obtaining satisfactory parameter estimates. A next question is
whether a model such as (1) will provide a good fit. Our overall experi-
ence is that, although sometimes it is possible to attain parameter esti-
mates that work well, even though they are close to the nearly degenerate
area, there are many empirically observed graphs having a moderate or
large degree of transitivity and a low to moderate density, which cannot
be well represented by a model such as (1), either because no satisfac-
tory parameter estimates can be obtained or because the fitted model
does not give a satisfactory representation of the observed network.
This model offers little medium ground between a very slight tendency
toward transitivity and a distribution that is for all practical purposes
concentrated on the complete graph or on more complex “crystalline”
structures as demonstrated in Robins, Pattison, and Woolcock (2005).

The present paper aims to extend the scope of modeling social
networks using ERGMs by representing transitivity not only by the
number of transitive triads but in other ways that are in accordance
with the concept of partial conditional independence of Pattison and
Robins (2002). We have couched this introduction in terms of the impor-
tant issue of transitivity, but the modeling of transitivity also requires
attention to star parameters, or equivalently, aspects of the degree distri-
bution. New representations for transitivity and the degree distribution
in the case of nondirected graphs are presented in Section 3, preceded by
a further explanation of simulation methods for the ERGM in Section 2.
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After the technical details in Section 3, we present in Section 4 some
new modeling possibilities made possible by these specifications, based
on simulations, showing that these new specifications push back some
of the problems of degeneracy discussed above. In Section 5 the new
models are applied to data sets that hitherto have not been amenable to
convergent parameter estimation for the ERGM. A similar development
for directed relations is given in Section 6.

2. GIBBS SAMPLING AND CHANGE STATISTICS

Exponential random graph distributions can be simulated, and the pa-
rameters can be estimated, by MCMC methods as discussed by Snijders
(2002) and Handcock (2003). This is implemented in the computer pro-
grams SIENA (Snijders et al. 2005) and statnet (Handcock et al. 2005).
A straightforward way to generate random samples from such distri-
butions is to use the Gibbs sampler (Geman and Geman 1983): cycle
through the set of all random variables Yij (i �= j) and simulate each in
turn according to the conditional distribution

Pθ {Yi j = yi j | Yuv = yuv for all (u, v) �= (i, j )}. (6)

Continuing this procedure a large number of times defines a Markov
chain on the space of all adjacency matrices that converges to the desired
distribution. Instead of cycling systematically through all elements of
the adjacency matrix, another possibility is to select one pair (i, j) ran-
domly under the condition i �= j, and then generate a random value of
Yij according to the conditional distribution (6); this procedure is called
mixing (Tierney 1994). Instead of Gibbs steps for stochastically up-
dating the values Yij, another possibility is to use Metropolis-Hastings
steps. These and some other procedures are discussed in Snijders (2002).

For the exponential model (4), the conditional distributions (6)
can be obtained as follows, as discussed by Frank (1991) and Wasserman
and Pattison (1996). For a given adjacency matrix y, define by ỹ(1)(i, j )
and ỹ(0)(i, j ), respectively, the adjacency matrices obtained by defining
the (i, j) element as ỹ(1)

i j (i, j ) = 1 and ỹ(0)
i j (i, j ) = 0 and leaving all other

elements as they are in y, and define the change statistic with (i, j) element
by
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zi j = u(ỹ(1)(i, j )) − u(ỹ(0)(i, j )). (7)

The conditional distribution (6) is formally given by the logistic regres-
sion with the change statistics in the role of independent variables,

logit
(
Pθ

{
Yi j = 1 | Yuv = yuv for all (u, v) �= (i, j )

} ) = θ ′zi j . (8)

This is also the form used in the pseudo-likelihood estimation procedure,
shown in (3).

The change statistic for a particular parameter has an interpre-
tation that is helpful in understanding the implications of the model.
When multiplied by the parameter value, it represents the change in
log-odds for the presence of the tie due to the effect in question. For in-
stance, in model (1), if an edge being present on (i, j) would thereby form
three new triangles, then according to the model the log-odds of that tie
being observed would increase by 3τ due to the transitivity effect.

The problems with the exponential random graph distribution
discussed in the preceding section reside in the fact that for specifica-
tions of the statistic u(y) containing the number of k-stars for k ≥ 2
or the number of transitive triads, if these statistics have positive pa-
rameters, changing some value yij can lead to large increases in the
change statistic for other variables yuv. The change in yuv suggested by
these change statistics will even further increase values of other change
statistics, and so on, leading to an avalanche of changes which ulti-
mately leads to a complete graph from which the probability of escape is
negligible—hence the near degeneracy. Note that this is not intrinsically
an algorithmic issue—the algorithm merely reflects the full-conditional
probability distributions of the model. The cause is that the underlying
model places significant mass on complete (or near complete) graphs.
A theoretical analysis of these issues is given by Handcock (2003).

This can be illustrated more specifically by the special case of the
Markov model defined by (1) and (2) for nondirected graphs where only
edge, two-star, and triangle parameters are present. The change statistic
is 


z1i j

z2i j

z3i j


 =




1

ỹ(0)
i+(i, j ) + ỹ(0)

j+(i, j )

L2i j


 =




1

yi+ + yj+ − 2 yi j

L2i j


 (9)
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where ỹ(0)(i, j ) denotes, as above, the adjacency matrix obtained from y
by letting ỹ(0)

i j (i, j ) = 0 and leaving all other yuv unaffected, and ỹ(0)
i+(i, j )

and ỹ(0)
j+(i, j ) are for this reduced graph the degrees of nodes i and j; while

L2ij is the number of two-paths connecting i and j,

L2i j =
∑
h �=i, j

yih yhj . (10)

The corresponding parameters are θ 1, θ 2, and τ . The avalanche effect,
occurring for positive values of the two-star parameter θ 2 and the tran-
sitivity parameter τ , can be understood as follows.

All the change statistics are elementwise nondecreasing functions
of the adjacency matrix y. Therefore, given that θ 2 and τ are positive,
increasing some element yij from 0 to 1 will increase many of the change
statistics and thereby the logits (8). In successive simulation steps of the
Gibbs sampling algorithm, an accidental increase of one element yij will
therefore increase the odds that a next variable yuv will also obtain the
value 1, which in the next simulation steps will further increase many
of the change statistics, etc., leading to the avalanche effect. Note that
the maximum value of z2 is 2(n − 2) and the maximum of z3 is (n − 2),
both of which increase indefinitely as the number of nodes of the graph
increases, and this large maximum value is one of the reasons for the
problematic behavior of this model. It may be tempting to reduce this
effect by choosing the edge parameter θ 1 strongly negative. However,
this forces the model toward the empty graph. If the two forces are
balanced, the combined effect is a mixture of (near) empty and (near)
full graphs with a paucity of the intermediate graphs that are closer
to realistic observations. If the Markov random graph model contains
a balanced mixture of positive and negative star parameter values, this
avalanche effect can be smaller or even absent. This property is exploited
and elaborated in the following section.

3. PROPOSALS FOR NEW SPECIFICATIONS FOR STAR
AND TRANSITIVITY EFFECTS

We begin this section by considering proposals that will model all k-
star parameters as a function of a single parameter. Since the number
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of stars is a function of the degrees, this is equivalent to modeling the
degree distribution. Suitable functions will ensure that the avalanche
effect referred to in the previous section will not occur, or will at least
be constrained. These steps can be taken within the framework of the
Markov dependence assumption.

We then turn to transitivity, which is more important from a the-
oretical point of view but is treated after the models for k-stars and
the degree distribution because of the greater complexity of the graph
structures involved. The model for transitivity uses a new graph config-
uration that we term a k-triangle. We model k-triangles in similar ways
to the stars, in that all k-triangle parameters are modeled as a function
of a single parameter. But these new parameters are not encompassed
by Markov dependence, and we need to relax the dependence assump-
tion to partial conditional dependence. The discussion is principally for
nondirected graphs; the case of directed graphs is presented more briefly
in a later section.

3.1. Geometrically Weighted Degrees and Related Functions

Expression (1)–(2) shows that the exponent of a Markov graph model
can contain an arbitrary linear function of the k-star counts Sk, k =
1, . . . , n − 1. These counts Sk are given by binomial coefficients, which
are independent polynomials of the node degrees yi+, Sk being a poly-
nomial of degree k. But it is known that every function of the numbers 1
through n − 1 can be expressed as a linear combination of polynomials
of degrees 1, . . . , n − 1. Therefore, any function of the degree distribu-
tion (i.e., any function of the degrees that does not depend on the node
labels) can be represented as a linear combination of the k-star counts
S1, . . . , Sn−1. In other words, we have complete liberty to include any
function of the degree distribution in the exponent of (4) and still remain
within the family of Markov graphs.

Saturated models for the degree sequence were discussed by
Snijders (1991) and by Snijders and van Duijn (2002). These models
have the virtue of giving a perfect fit to the degree distribution and
controlling perfectly for the degrees when estimating and testing other
parameters, but at the expense of an exceedingly high number of pa-
rameters and the impossibility to do more with the degree distribution
than describe it. Therefore we do not discuss these models here.
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3.1.1. Geometrically Weighted Degree Counts
A specification that has been traditional since the original paper by
Frank and Strauss (1986) is to use the k-star counts themselves. Such
subgraph counts, however, if they have positive weights θ k in the ex-
ponent in (4), are precisely among the villains responsible for the de-
generacy that has been plaguing ERGMs, as noted above. One primary
difficulty is that the model places high probability on graphs with large
degrees. A natural solution is to use a statistic that places decreasing
weights on the higher degrees.

An elegant way is to use degree counts with geometrically de-
creasing weights, as in the definition

u(d)
α (y) =

n−1∑
k=0

e−αkdk(y) =
n∑

i=1

e−αyi+, (11)

where dk(y) is the number of nodes with degree k and α > 0 is a parameter
controlling the geometric rate of decrease in the weights. We refer to α as
the degree weighting parameter. For large values of α, the contribution
of the higher degree nodes is greatly decreased. As α → 0 the statistic
places increasing weight on the high degree graphs. This model is clearly
a subclass of the model (4) where the vector of statistics is u(y) = d(y) ≡
(d 0(y), . . . , d n−1(y)) but with a parametric constraint on the natural
parameters,

θk = e−αk k = 1, . . . , n − 1, (12)

which may be called the geometrically decreasing degree distribution
assumption. This model is hence a curved exponential family (Efron
1975). The statistic (11) will be called the geometrically weighted degrees
with parameter α.

As the degree distribution is a one-to-one function of the number
of k-stars, some additional insight can be gained by considering the
equivalent model in terms of k-stars. Define

u(s)
λ (y) = S2 − S3

λ
+ S4

λ2
− . . . + (−1)n−2 Sn−1

λn−3

=
n−1∑
k=2

(−1)k Sk

λk−2
.

(13)
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Here the weights have alternating signs, so that positive weights of some
k-star counts are balanced by negative weights of other k-star counts.
This implies that, when considering graphs with increasingly high de-
grees, the contribution from extra k-stars is kept in check by the contri-
bution from extra (k + 1)-stars. Using expression (2) for the number of
k-stars and the binomial theorem, we obtain that

u(s)
λ (y) = λ2u(d)

α (y) + 2λS1 − nλ2 (14)

for λ = eα/(eα − 1) ≥ 1; the parameters α and λ are decreasing func-
tions of one another. This shows that the two statistics form the same
model in the presence of an edges or 1-star term. This model is also a
curved exponential family based on (1), and the constraints on the star
parameters can be expressed in terms of the parameter λ as

θk = −θk−1/λ. (15)

This equation is equivalent to the geometrically decreasing degree dis-
tribution assumption and can, alternatively, be called the geometric al-
ternating k-star assumption. Statistic (13) will be called an alternating
k-star with parameter λ.

As α → ∞, it follows that λ → 1, and (11) approaches

u(d)
∞ (y) = d0(y). (16)

Thus the boundary case α = ∞(λ = 1) implies that the number of
isolated nodes is modeled distinctly from other terms in the model. This
can be meaningful for two reasons. First, social processes leading to the
isolation of some actors in a group may be quite different from the social
processes that determine which ties the nonisolated actors have. Second,
it is not uncommon that isolated actors are perceived as not being part of
the network and are therefore left out of the data analysis. This is usually
unfortunate practice. From a dynamic perspective, isolated actors may
become connected and other actors may become isolated. To exclude
isolated actors in a single network study is to make the implausible
presupposition that such effects are not present.

The change statistic associated to statistic (11) is

zi j = − (
1 − e−α

) (
e−α ỹi+ + e−α ỹ j+

)
(17)
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where ỹ = ỹ(0)(i, j ) is the reduced graph as defined above. This change
statistic is an elementwise nondecreasing function of the adjacency ma-
trix, but the change becomes smaller as the degrees ỹi+ become larger,
and for α > 0 the change statistic is negative and bounded below by
2(e−α − 1). Thus, according to the criterion in Handcock (2003), a full-
conditional MCMC for this model will mix close to uniformly. This
should help protect such models from the inferential degeneracy that
has hindered unconstrained models.

As discussed above, the change statistic aids interpretation. If the
parameter value is positive, then we see that the conditional log-odds of
a tie on (i, j) is greater among high-degree actors. In a loose sense, this ex-
presses a version of preferential attachment (Albert and Barabási 2002)
with ties from low degree to high degree actors being more probable
than ties among low degree actors. However, preference for high degree
actors is not linear in degree: the marginal gain in log-odds for connec-
tions to increasingly higher degree partners is geometrically decreasing
with degree.

For instance, if α = ln(2) (i.e., λ = 2) in equation (17), for a fixed
degree of i, a connection to a partner j1 who has two other partners is
more probable than a connection to j2 with only one other partner, the
difference in the change statistics being 0.25. But if j1 and j2 have degrees
5 and 6 respectively (from their ties to others than i), the difference in the
change statistics is less than 0.02. So, nodes with degree 5 and higher are
treated almost equivalently. Given these two effects – a preference for
connection to high degree nodes, and little differentiation among high
degree nodes beyond a certain point, we expect to see two differences
in outcomes from models with this specification compared to Bernoulli
graphs with the same value for θ 1: a tendency for somewhat higher
degree nodes, and a tendency for a core-periphery structure.

3.1.2. Other Functions of Degrees
Other functions of the node degrees could also be considered. It has
been argued recently (for an overview, see Albert and Barabási 2002)
that for many phenomena degree frequencies tend to 0 more slowly than
exponential functions—for example, as a negative power of the degrees.
This suggests sums of reciprocals of degrees, or higher negative powers
of degrees, instead of exponential functions such as (14). An alternative
specification of a slowly decreasing function that exploits the fact that
factorials are recurrent in the combinatorial properties of graphs and
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that is in line with recent applications of the Yule distribution to degree
distributions (see Handcock and Jones 2004), is a sum of ascending
factorials of degrees,

u(y) =
n∑

i=1

1
(yi+ + c)r

(18)

where (d)r for integers d is Pochhammer’s symbol denoting the rising
factorial,

(d)r = d(d + 1) . . . (d + r − 1),

and the parameters c and r are natural numbers (1, 2, . . .). The associated
change statistic is

zi j (y) = −r
(ỹi+ + c)r+1

+ −r
(ỹ+ j + c)r+1

. (19)

The choice between this statistic and (13), and the choice of the
parameters α or λ, c, and r, will depend on considerations of fit to
the observed network. Since these statistics are linearly independent
for different parameter values, several of them could in principle be
included in the model simultaneously (although this will sometimes
lead to collinearity-type problems and change the interpretation of the
parameters).

3.2. Modeling Transitivity by Alternating k-Triangles

The issues of degeneracy discussed above suggest that in many empirical
circumstances the Markov random graph model of Frank and Strauss
(1986) is too restrictive. Our experience in fitting data suggests that prob-
lems particularly occur with Markov models when the observed network
includes not just triangles but larger “clique-like” structures that are not
complete but do contain many triangles. Each of the three processes
discussed in the introduction are likely to result in networks with such
denser “clumps.” These are indeed the subject of much attention in
network analysis (cohesive subset techniques), and the transitivity pa-
rameter in Markov models (and perhaps the transitivity concept more
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generally) can be regarded as the simplest way to examine such clique-
like sections of the network because the triangle is the simplest clique
that is not just a tie. But the linearity of the triangle count within the
exponential is a source of the near-degeneracy problem in Markov mod-
els, when observed incomplete cliques are somewhat large and hence
contain many triangles. What is needed to capture these “clique-ish”
structures is a transitivity-like concept that expresses triangulation also
within subsets of nodes larger than three, and with a statistic that is
not linear in the triangle count but gives smaller probabilities to large
cliquelike structures. Such a concept is proposed in this section.

From the problems associated with degeneracy, given the equiv-
alence between the Markov conditional independence assumption and
model (1), we draw two conclusions: (1) edges that do not share a tie
may still be conditionally dependent (i.e., the Markov dependence as-
sumption may be too restrictive); (2) the representation of the social
phenomenon of transitivity by the total number of triangles is often too
simplistic, because the conditional log-odds of a tie between two social
actors often will not be simply a linear function of the total number of
transitive triangles to which this tie would contribute.

A more general type of dependence is the partial conditional in-
dependence introduced by Pattison and Robins (2002), a definition that
takes into account not only which nodes are being potentially tied, but
also the other ties that exist in the graph—i.e., the dependence model
is realization-dependent. We propose a model that satisfies the more
general independence concept denoted here as [CD] for “Conditional
Dependence.”

Assumption [CD]: Two edge indicators Yiv and Yuj are conditionally
dependent, given the rest of the graph, only if one of the two following
conditions is satisfied:

1. They share a vertex—i.e., {i , v} ∩ {u, j} �= ∅ (the usual Markov
condition).

2. yiu = yvj = 1, i.e., if the edges existed they would be part of a four-
cycle (see Figure 2).

This assumption can be phrased equivalently in terms of independence:
If neither of the two conditions is satisfied, then Yiv and Yuj are condi-
tionally independent, given the rest of the graph.
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FIGURE 2. Partial conditional dependence when four-cycle is created.

One substantive interpretation of the partial conditional depen-
dence assumption (2) is that the possibility of a four-cycle establishes
the structural basis for a “social setting” among four individuals (Patti-
son and Robins 2002), and that the probability of a dyadic tie between
two nodes (here, i and v) is affected not just by the other ties of these
nodes but also by other ties within such a social setting, even if they do
not directly involve i and v. A four-cycle assumption is a natural exten-
sion of modeling based on triangles (three-cycles) and was first used by
Lazega and Pattison (1999) in an examination of whether such larger
cycles could be observed in an empirical setting to a greater extent than
could be accounted for by parameters for configurations involving at
most three nodes.

We now seek subgraph counts that can be included among the
sufficient statistics u(y) in (4), expressing types of transitivity—therefore
including triangles—and leading to graph distributions conforming to
assumption [CD]. Under the Markov assumption (1), Yiv is condition-
ally dependent on each of Yiu, Yij, and Yjv, because these edge indica-
tors share a node. If yiu = yjv = 1, the precondition in the four-cycle
partial conditional dependence (2), then Yiv is conditionally dependent
also on Yuj, and hence (cf. Pattison and Robins 2002) the Hammersley-
Clifford theorem implies that the exponential model (4) could contain
the statistic defined as the count of such configurations. We term this
configuration, given by

yiv = yiu = yi j = yu j = yjv = 1,

a two-triangle (see Figure 3). It represents the edge yij = 1 as part of the
triadic setting yij = yiv = yjv = 1 as well as the setting yij = yiu = yju = 1.

Elaborating this approach, we propose a model that satisfies as-
sumption [CD] and is based on a generalization of triadic structures in
the form of graph configurations that we term k-triangles. It should be
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FIGURE 3. Two examples of a two-triangle.

noted that this model implies, but it is not implied by, assumption [CD]:
It is a further specification.

For a nondirected graph, a k-triangle with base (i, j) is defined by
the presence of a base edge i − j together with the presence of at least k
other nodes adjacent to both i and j. We denote a “side” of a k-triangle
as any edge that is not the base. The integer k is called the order of the
k-triangle. Thus a k-triangle is a combination of k individual triangles,
each sharing the same edge i − j, as shown in Figure 4. The concept of
a k-triangle can be seen as a triadic analogue of a k-star. If kmax denotes
the highest value of k for which there is a k-triangle on a given base
edge (i, j), then the larger kmax, the greater the extent to which i and j
are adjacent to the same nodes, or alternatively to which i and j share
network partners. Because the notion of k-triangles incorporates that
of an ordinary triangle (k = 1), k-triangle statistics have the potential
for a more granulated description of transitivity in social networks. It
should be noted that there are inclusion relations between the k-triangles
for different k. A three-triangle configuration, for instance, necessarily
comprises three two-triangles, so the number of three-triangles cannot
be less than thrice the number of two-triangles.

A summary of how dependence structures relate to conditional
independence models is given by Robins and Pattison (2005). Here
we use the characterization, obtained by Pattison and Robins (2002),

FIGURE 4. A k-triangle for k = 5, which is also called a five-triangle.
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of the sufficient statistics u(y) in (4) of partial conditionally indepen-
dent graph models. In the model proposed below, the statistics u(y)
contain, in addition to those of the Markov model, parameters for
all k-triangles. Such a model satisfies assumption [CD], which can be
seen as follows. It was shown already above that this holds for two-
triangles. Assuming appropriate graph realizations, [CD] implies that
every possible edge in a three-triangle configuration can be condition-
ally dependent on every other possible edge through one or the other
of the two-triangles, and hence as all possible edges are conditionally
dependent, it follows from the characterization by Pattison and Robins
(2002) that there is a parameter pertaining to the three-triangle in the
model. Induction on k shows that the Markovian conditional depen-
dence (1) with the four-cycle partial conditional dependence (2) implies
that there can be a parameter in the model for each possible k-triangle
configuration.

Our proposed model contains the k-triangle counts, but includ-
ing these all as separate statistics in the exponent of (4) would lead to a
large number of of statistical parameters. Therefore we propose a more
parsimonious model specifying relations between their coefficients in
this exponent, in much the same way as for alternating k-stars. The
model expresses transitivity as the tendency toward a comparatively
high number of triangles, without too many high-order k-triangles be-
cause this would lead to a (nearly) complete graph. Analogous to the
alternating k-stars model, the k-triangle model described below implies
a possibly substantial increase in probability for an edge to appear in
the graph if it is involved in only one triangle, with further but smaller
increases in probability as the number of triangles that would be created
increases (i.e., as the edge would form k-triangles of higher and higher
order). Thus, the increase in probability for creation of a k-triangle is a
decreasing function of k. There is a substantively appealing interpreta-
tion: If a social tie is not present despite many shared social partners,
then there is likely to be a serious impediment to that tie being formed at
all (e.g., impediments such as limitations to degrees and to the number
of nodes connected together in a very dense cluster, mutual antipathy, or
geographic distance, depending on the empirical context). In that case,
the addition of even more shared partners is not likely to increase the
probability of the tie greatly.

This is expressed mathematically as follows. The number of k-
triangles is given by the formula



120 SNIJDERS, PATTISON, ROBINS, AND HANDCOCK

Tk = �{({i, j}, {h1, h2, . . . , hk}) | {i, j} ⊂ V, {h1, h2, . . . , hk} ⊂ V,

yi j = 1 and yih

= yh
 j = 1 for 
 = 1, . . . , k}

= ∑
i< j yi j

(L2i j
k

)
(for k ≥ 2), (20a)

where L2ij, defined in (10), is the number of two-paths connecting i and
j. (Note that for nondirected graphs, two-paths and two-stars refer to
the same configuration yih = yhj = 1; the name “star” points attention to
the middle vertex h, the name “path” to the end vertices i and j.) If there
exists a tie i − j, the value k = L2ij is the maximal order k for which a k-
triangle exists on the base (i, j). The formula for the number of triangles,
which can be called 1-triangles, is different, due to the symmetry of these
configurations:

T1 = 1
3

∑
i< j

yi j L2i j . (20b)

We propose a model where these k-triangle counts occur as suf-
ficient statistics in (4), but with weights for the k-triangle counts Tk that
have alternating signs and are geometrically decreasing, like those in the
alternating k-stars. We start with the 1-triangles—in contrast to (13)—
these being the standard type of triangles on which the others are based,
with a weight of 3 aimed at obtaining a simple expression in terms of
the numbers of shared partners L2ij. This leads to the following statistic.
Analogous to the geometrically weighted degree count, an equivalent
expression is given using (20) and the binomial formula,

u(t)
λ (y) = 3T1 − T2

λ
+ T3

λ2
− . . . + (−1)n−3 Tn−2

λn−3

=
∑
i< j

yi j

n−2∑
k=1

(−1
λ

)k−1 (
L2i j

k

)

= λ
∑
i< j

yi j

{
1 −

(
1 − 1

λ

)L2i j
} (21a)

= λS1 − λ
∑
i< j

yi j e−αL2i j , (21b)

where again λ = eα/(eα − 1).
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Expression (21a) shows that this is a linear function of the k-
triangle counts, which is basic to the proof that this statistic satisfies
assumption [CD]. As in the case of k-stars, the statistic imposes the
constraint τ k = − τ k−1/λ (k ≥ 3), where τ k is the parameter pertain-
ing to Tk. The alternating negative weights counteract the tendency to
forming big cliquelike clusters that would be inherent in a model with
only positive weights for k-triangle counts. Expression (21b) is (for α >

0) an increasing function of the numbers L2ij for which there is an edge
i − j, but it increases very slowly as L2ij gets large. This expresses that
the tie i − j has a higher probability accordingly as i and j have more
shared partners, but this increase in probability is very small for higher
numbers of shared partners.

We propose to use this statistic as a component in the exponen-
tial model (4) to express transitivity, with the purpose of providing a
model that will be better able than the Markov graph model to rep-
resent empirically observed networks. In some cases, this statistic can
be used alongside T = T 1 in the vector of sufficient statistics, in other
cases only (21a) (or, perhaps, only T 1) will be used—depending on how
the best fit to the empirical data is achieved and on the possibility of
obtaining a nondegenerate model and satisfactory convergence of the
estimation algorithm.

The associated change statistic is

zi j = λ

{
1 −

(
1 − 1

λ

)L̃2i j
}

+
∑

h

{
yih yjh

(
1 − 1

λ

)L̃2ih

+ yhi yhj

(
1 − 1

λ

)L̃2h j
}

, (22)

where L̃2uv is the number of two-paths connecting nodes u and v in the
reduced graph ỹ (where ỹi j is forced to be 0) for the various nodes u
and v.

The change statistic gives a more specific insight into the alter-
nating k-triangle model. Suppose λ = 2 and the edge i − j is at the base
of a k-triangle and consider the first term in the expression above. Then,
similarly to the alternating k-stars, the conditional log-odds of the edge
being observed does not increase strongly as a function of k for val-
ues of k above 4 or 5 (unless perhaps the parameter value is rather large
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compared to other effects in the model). The model expresses the notion
that it is the first one to three shared partners that principally influence
transitive closure, with additional partners not substantially increasing
the chances of the tie being formed. The second and third terms of the
change statistic relate to situations where the tie completes a k-triangle
as a side rather than as the base. For example, for the second term, the
edge i − h is the base and h is a partner shared with j; the change statis-
tic decreases as a function of the number of two-paths from i to h. This
might be interpreted as actor i, already sharing many partners with h,
feeling little impetus to establish a new shared partnership with j who
is also a partner to h.

As was the case for the alternating k-stars, this statistic is con-
sidered for λ ≥ 1, and the downweighting of higher-order k-triangles is
greater accordingly as λ is larger. Again, the boundary case λ = 1 has a
special interpretation. For λ = 1 the statistic is equal to

u(t)
1 (y) =

∑
i< j

yi j I{L2i j ≥ 1}, (23)

the number of pairs (i, j) that are directly linked (yij = 1) but also
indirectly linked (yih = yhj = 1 for at least one other node h). In this case
the change statistic is

zi j = I{L̃2i j ≥ 1} +
∑

h

{yih yjh I{L̃2ih = 0} + yhi yhj I{L̃2h j = 0}}. (24)

3.3. Alternating Independent Two-Paths

It is tempting to interpret the effect of the alternating k-triangles as an
effect for a tie to form on a base, emergent from the various two-paths
that constitute the sides. But the change statistic makes clear that for-
mation of alternating k-triangles involves not only the formation of new
bases of k-triangles but also new sides of k-triangles, which should be
interpreted as contributing to prerequisites for transitive closure rather
than as establishing transitive closure. In order to differentiate between
these two interpretations, it is necessary to control for the prerequisites
for transitive closure—i.e., the number of configurations that would be
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FIGURE 5. Two-independent two-paths (a) and five-independent two-paths (b).

the sides of k-triangles if there would exist a base edge. This means that
we consider in addition the effect of connections by two-paths, irrespec-
tive of whether the base is present or not. This is precisely analogous
in a Markov model to considering both preconditions for triangles—
i.e., two-stars or two-paths—and actual triangles. For Markov models,
the presence of the two-path effect permits the triangle parameter to
be interpreted simply as transitivity rather than a combination of both
transitivity and a chance agglomeration of many two-paths. Including
the following configuration implies that the same interpretation is valid
in our new model.

We introduced k-triangles as an outcome of a four-cycle depen-
dence structure. A four-cycle is a combination of two two-paths. The
sides of a k-triangle can be viewed as combinations of four-cycles. More
simply, we construe them as independent (the graph-theoretical term
for nonintersecting) two-paths connecting two nodes.

Thus, we define k-independent two-paths, illustrated in Figure 5,
as configurations (i , j , h1, . . ., hk) where all nodes h1 to hk are adjacent
to both i and j, irrespective of whether i and j are tied. Their number is
expressed by the formula

Uk = �{({i, j}, {h1, h2, . . . , hk}
) | {i, j} ⊂ V, {h1, h2, . . . , hk} ⊂ V,

i �= j, yih

= yh
 j = 1 for 
 = 1, . . . , k}

=
∑
i< j

(
L2i j

k

)
(for k �= 2) (25a)

U2 = 1
2

∑
i< j

(
L2i j

2

)
(number of four-cycles); (25b)
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the specific expression for k = 2 is required because of the symmetries
involved. The corresponding statistic, given as two equivalent expres-
sions, of which the first one has alternating weights for the counts of
independent two-paths while the second has geometrically decreasing
weights for the counts of pairs with given numbers of shared partners,
is

up
λ(y) = U1 − 2

λ
U2 +

n−2∑
k=3

(−1
λ

)k−1

Uk

= λ
∑
i< j

{
1 −

(
1 − 1

λ

)L2i j
}

,

(26a)

= λ
(n

2

)
−

∑
i< j

e−αL2i j (26b)

where, in analogy to the statistic for the k-triangles, the extra factor 2
is used for U 2 in (26a) in order for the binomial formula to yield the
expression (26b). As before, λ = eα/(eα − 1).

This is called the alternating independent two-paths statistic. The
change statistic is

zi j =
∑
h �=i, j

{
yjh

(
1 − 1

λ

)L̃2ih

+ yhi

(
1 − 1

λ

)L̃2h j
}

. (27)

As for the alternating k-star and k-triangle statistics, the alternat-
ing independent two-paths statistic can be generated by imposing the
constraint νk = − νk−1/λ, where νk is the parameter corresponding to
Uk.

For λ = 1 the statistic reduces to

up
1(y) =

∑
i< j

I{L2i j ≥ 1}, (28)

the number of pairs (i, j) that are indirectly connected by at least one
two-path. This statistic is counterpart to statistic (23), the number of
pairs both directly and indirectly linked. Taken together they assess
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effects for transitivity in precise analogy with triangles and two-stars
for Markov graphs. Since two nodes i and j are at a geodesic distance of
two if they are indirectly but not directly linked, the number of nodes at
a geodesic distance two is equal to (28) minus (23). The change statistic
for λ = 1 is

zi j =
∑
h �=i, j

{yjh I{L̃2ih = 0} + yhi I{L̃2h j = 0}}. (29)

3.4. Summarizing the Proposed Statistics

Summarizing the preceding discussion, we propose to model transitivity
in networks by exponential random graph models that could contain in
the exponent u(y) the following statistics:

1. The total number of edges S1(y), to reflect the density of the graph;
this is superfluous if the analysis is conditional on the total number
of edges—and this indeed is our advice.

2. The geometrically weighted degree distributions defined by (11), or
equivalently the alternating k-stars (13), for a given suitable value
of α or λ, to reflect the distribution of the degrees.

3. Next to, or instead of the alternating k-stars: the number of two-stars
S2(y) or sums of reciprocals or ascending factorials (18); the choice
between these degree-dependent statistics will be determined by the
resulting fit to the data and the possibility of obtaining satisfactory
parameter estimates.

4. The alternating k-triangles (21a) and the alternating independent
two-paths (26a), again for a suitable value of λ (which should be the
same for the k-triangles and the alternating independent two-paths
but may differ from the value used for the alternating k-stars), to
reflect transitivity and the preconditions for transitivity.

5. Next to, or instead of, the alternating k-triangles: the triad count
T(y) = T1(y), if a satisfactory estimate can be obtained for the
corresponding parameter, and if this yields a better fit as shown
from the t-statistic for this parameter.

Of course, actor and dyadic covariate effects can also be added.
The choice of suitable values of α and λ depends on the data set. Fitting
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this model to a few data sets, we had good experience with λ = 2 or 3 and
the corresponding α = ln (2) or ln (1.5). In some cases it may be useful
to include the statistics for more than one value of λ—for example, λ =
1 (with the specific interpretations as discussed above) together with
λ = 3. Instead of being determined by trial and error, the parameters λ

(or α) can also be estimated from the data, as discussed in Hunter and
Handcock (2005).

This specification of the ERGM satisfies the conditional depen-
dence condition [CD]. This dependence extends the classical Markovian
dependence in a meaningful way to a dependence within social settings.
It should be noted, however, that this type of partial conditional de-
pendence is satisfied by a much wider class of stochastic graph models
than the transitivity-based models proposed here. Parsimony of mod-
eling leads to restricting attention primarily to the statistics proposed
here. Further modeling experience and theoretical elaboration will have
to show to what extent it is desirable to continue modeling by including
counts of other higher-order subgraphs, representing more complicated
group structures.

4. NEW MODELING POSSIBILITIES WITH THESE
SPECIFICATIONS

In this section, we present some results from simulation studies of these
new model specifications. This section is far from a complete explo-
ration of the parameter space. It only provides examples of the types of
network structures that may emerge from the new specifications. More
particularly, it illustrates how the new alternating k-triangle parameter-
ization avoids certain problems with degeneracy that were noted above
in regard to Markov random graph models.

We present results for distributions of nondirected graphs of
30 nodes. The simulation procedure is similar to that used in Robins
et al. (2005). In summary, we simulate graph distributions using the
Metropolis-Hastings algorithm from an arbitrary starting graph, choos-
ing parameter values judiciously to illustrate certain points. Typically we
have simulation runs of 50,000, with a burn-in of 10,000, although when
MCMC diagnostics indicate that burn-in may not have been achieved
we carry out a longer run, sometimes up to half a million iterations.
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FIGURE 6. A graph from an alternating k-star distribution.

We sample every 100th graph from the simulation, examining graph
statistics and geodesic and degree distributions.

4.1. Geometrically Weighted Degree Distribution

The graph in Figure 6 is from a distribution obtained by simulating with
an edge parameter of −1.7 and a degree weighting parameter (for α =
ln (2) = 0.693, corresponding to λ = 2) of 2.6. This is a low-density
graph with 25 edges and a density of 0.06, and in terms of graph statis-
tics is quite typical of graphs in the distribution. Even despite the low
density, the graph shows elements of a core-periphery structure, with
some relatively high degree nodes (one with degree 7), several isolated
nodes, and some low degree nodes with connections into the higher
degree “core.” What particularly differentiates the graph from a com-
parable Bernoulli graph distribution with a mean of 25 edges is the
number of stars, especially higher order stars. For instance, the number
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of four-stars in the graph is 3.5 standard deviations above that from the
Bernoulli distribution. This is the result of a longer tail on the degree
distribution, compensated by larger numbers of low degree nodes. (For
instance, less than 2 percent of corresponding Bernoulli graphs have the
combination expressed in this graph of 18 or more nodes isolated or of
degree 1, and of at least one node with degree 6 or above.) Because of the
core-periphery elements, the triangle count in the graph, albeit low, is
still 3.7 standard deviations above the mean from the Bernoulli distribu-
tion. Monte Carlo maximum likelihood estimates using the procedure
of Snijders (2002) as implemented in the SIENA program (Snijders et al.
2005) reassuringly reproduced the original parameter values, with an es-
timated edge parameter of –1.59 (standard error 0.35) and a significant
estimated geometrically weighted degree parameter of 2.87 (S.E. 0.86).

It is useful to compare the geometrically weighted degree distri-
bution, or alternatively alternating k-star graph distribution, of which
the graph in Figure 6 is an example, against the Bernoulli distribution
with the same expected number of edges. Figure 7 is a scatterplot com-
paring the number of edges against the alternating k-stars statistic for
both distributions. The figure demonstrates a small but discernible dif-
ference between the two distributions in terms of the number of k-stars
for a given number of edges. There is also a tendency here for greater
dispersion of edges and alternating k-stars in the k-star distribution. As
with our example graph, in the alternating k-star distributions there are
more graphs with high degree nodes, as well as graphs with more low
degree nodes.

Finally, in Figure 8, we illustrate the behavior of the model as
the alternating k-star parameter increases. The figure plots the mean
number of edges for models with an edge parameter of –4.3 and varying
alternating k-star parameters, keeping λ = 2. Equation (13) implies that,
as a graph becomes denser, the change statistic for alternating k-stars
becomes closer to its constant maximum, so that high-density distri-
butions are very similar to Bernoulli graphs. For an alternating k-star
parameter of 1.0 or above, the properties of individual graphs gener-
ated within these distributions are difficult to differentiate from realiza-
tions of Bernoulli graphs. Even so, the distributions themselves (except
those that are extremely dense) tend to exhibit much greater disper-
sion in graph statistics, including in the number of edges. An important
point to note in Figure 8 is that there is a relatively smooth transition
from low-density to high-density graphs as the parameter increases,
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FIGURE 7. Scatterplot of edges against alternating k-stars for Bernoulli and alternating k-
star graph distributions.

without the almost discontinuous jumps that betoken degeneracy and
are often exhibited in Markov random graph models with positive star
parameters.

4.2. Alternating k-Triangles

The degeneracy issue for transitivity models and the advance presented
by the alternating k-triangle specification are illustrated in Figure 9.
This figure depicts the mean number of edges for three transitivity mod-
els for various values of a transitivity-related parameter. Each of these
models contains a fixed edge parameter, set at –3.0, plus certain other
parameters.

The first model (labeled “triangle without star parameters” in
the figure) is a Markov model with simply the edge parameter and a
triangle parameter. For low values of the triangle parameter, only very
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FIGURE 8. Mean number of edges in alternating k-star distributions with different values of
the alternating k-star parameter.

low-density graphs are observed; for high values only complete graphs
are observed. There is a small region, with a triangle parameter between
0.8 and 0.9, where either a low-density or a complete graph may be the
outcome of a particular simulation. This bimodal graph distribution
for certain triangle parameter values corresponds to the findings of
Jonasson (1999) and Snijders (2002). Clearly, this simple two-parameter
model is quite inadequate to model realistic social networks that exhibit
transitivity effects.

The second model (labeled “triangle with negative star param-
eters” in Figure 9) is a Markov model with the inclusion of two- and
three-star parameters as recommended by Robins et al. (2005), in partic-
ular a positive two-star parameter value (0.5) and a negative three-star
parameter value (–0.2), and a triangle parameter with various values.
The negative three-star parameter widens the nondegenerate region of
the parameter space, by preventing the explosion of edges that leads
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FIGURE 9. Mean number of edges in various graph distributions with different values of a
triangle parameter.

to complete graphs. In this example, this works well until the trian-
gle parameter reaches about 1.1. Below this value, the graph distri-
butions are stochastic and of relatively low density, and they tend to
have high clustering relative to the number of edges (in comparison to
Bernoulli graph distributions). With a triangle parameter above 1.1,
however, the graph distribution tends to be “frozen,” not on the empty
or full graph but on disconnected cliques akin to the caveman graphs of
Watts (1999). This area of near degeneracy was observed by Robins et al.
(2005).

The third model (labeled “ktriangle” in Figure 9), on the other
hand, does not seem to suffer the discontinuous jump, nor the caveman
area of near degeneracy, of the first and second models. It is a two-
parameter model with an edge parameter and an alternating k-triangles
parameter, and the expected density increases smoothly as a function
of the latter parameter.
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FIGURE 10. A low-density and a higher-density k-triangle graph.
Note: Edge parameter = –3.7 for both; alternating k-triangles parameter = 1.0 for (a) and 1.1
for (b).

Figure 10 contains two examples of graphs from alternating k-
triangles distributions. The higher alternating k-triangles parameter
shown in panel (b) of the figure results understandably in a denser graph,
but the transitive effects are quite apparent from the diagrams. Both dis-
tributions have significantly more triangles than Bernoulli graphs with
the same density. This is illustrated in Figure 11, which represents fea-
tures of three graph distributions: the alternating k-triangles distribu-
tion of which Figure 10 (b) is a representative (edge parameter = –3.7;
alternating k-triangle parameter = 1.1); the Bernoulli graph distribu-
tion with mean number of edges identical to this alternating k-triangle
distribution (edge parameter = –1.35, resulting in a mean 89.5 edges);
and a Markov random graph model with positive two-star, negative
three-star, and positive triangle parameters, with parameter values cho-
sen to produce the same mean number of edges (edge parameter =
–2.7; two-star parameter = 0.5; three-star parameter = –0.2; triangle
parameter = 1.0; mean number of edges = 88.8). We can see from the
figure that for the same number of edges the alternating k-triangle dis-
tribution is clearly differentiated both from its comparable Bernoulli
model as well as the Markov model in having higher numbers of tri-
angles. The Markov model also tends to have more triangles than the
Bernoulli model, reflecting its positive triangle parameter.

For an edge-plus-alternating-k-triangle model applied to the
graph Figure 10 (a), SIENA produced Monte Carlo maximum likeli-
hood estimates that converged satisfactorily and were consistent with the
original parameter values: edge –3.74 (S.E. 0.30), alternating k-triangles
1.06 (S.E. 0.20).
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FIGURE 11. Number of triangles against number of edges for three different graph
distributions.

Estimates for a Markov model with two-star, three-star, and tri-
angle parameters do exist for this graph (as can be shown using results
in Handcock 2003). However it is very difficult to obtain them using
SIENA or statnet as the dense core of triangulation produced in graphs
from this distribution take us into nearly degenerate regions of the pa-
rameter space of Markov models.

4.3. Independent Two-Paths

Some of the distinctive features of independent two-path distributions
are as follows. A simple way to achieve many independent two-paths
is to have cycles through two high-degree nodes. This is what we see
in Figure 12, which is a graph from a distribution with edge param-
eter –3.7 and independent two-paths parameter 0.5. Compared to a
Bernoulli graph distribution with the same mean number of edges, this
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FIGURE 12. A graph from an independent two-path distribution.

graph distribution has substantially more stars, triangles, k-stars, k-
triangles, and of course independent two-paths. The graph in Figure
12 is dramatically different from graphs generated under a Bernoulli
distribution.

With increasing independent two-paths parameters, the resulting
graphs tend to have two centralized nodes, but with more edges among
the noncentral nodes. For lower (but positive) independent two-paths
parameters, however, only one centralized node appears, resulting in
a single starlike structure, with several isolates. We know of no set of
Markov graph parameters that can produce such large starlike struc-
tures, without conditioning on degrees.

5. EXAMPLE: COLLABORATION BETWEEN
LAZEGA’S LAWYERS

Several examples will be presented based on a data collection by Lazega,
described extensively in Lazega (2001), on relations between lawyers in
a New England law firm (also see Lazega and Pattison 1999). As a
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first example, the symmetrized collaboration relation was used between
the 36 partners in the firm, where a tie is defined to be present if both
partners indicate that they collaborate with the other. The average degree
is 6.4, the density is 0.18, and degrees range from 0 to 13. Several actor
covariates were considered: seniority (rank number of entry in the firm),
gender, office (there were three offices in different cities), years in the
firm, age, practice (litigation or corporate law), and law school attended
(Yale, other Ivy League, or non–Ivy League).

The analysis was meant to determine how this collaboration re-
lation could be explained on the basis of the three structural statistics
introduced above (alternating combinations of two-stars, alternating
k-stars, and alternating independent two-paths), the more traditional
other structural statistics (counts of k-stars and triangles), and the co-
variates. For the covariates X with values xi, two types of effect were
considered as components of the statistic u(y) in the exponent of the
probability function. The first is the main effect, represented by the
statistic

∑
i

xi yi+.

A positive parameter for this model component indicates that actors i
high on X have a higher tendency to make ties to others, which will con-
tribute to a positive correlation between X and the degrees. This main
effect was considered for the numerical and dichotomous covariates.
The second is the similarity effect. For numerical covariates such as age
and seniority, this was represented by the statistic

∑
i, j

simi j yi j (30)

where the dyadic similarity variable simij is defined as

simi j = 1 − | xi − xj |
dmax

x
,

with dmax
x = max i,j |xi − xj | being the maximal difference on variable

X . The similarity effect for the categorical covariates, office and law
school, was represented similarly using for sim ij the indicator function
I{xi = xj} defined as 1 if xi = xj and 0 otherwise. A positive parameter
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for the similarity effect reflects that actors who are similar on X have a
higher tendency to be collaborating, which will contribute to a positive
network autocorrelation of X .

The estimations were carried out using the SIENA program
(Snijders et al. 2005), version 2.1, implementing the Metropolis-
Hastings algorithm for generating draws from the exponential ran-
dom graph distribution, and the stochastic approximation algorithm
described in Snijders (2002). Since this is a stochastic algorithm, as is
any MCMC algorithm, the results will be slightly different, depending
on the starting values of the estimates and the random number streams
of the algorithm. Checks were made for the stability of the algorithm
by making independent restarts, and these yielded practically the same
outcomes. The program contains a convergence check (indicated in the
program as “Phase 3”): after the estimates have been obtained, a large
number of Metropolis-Hastings steps is made with these parameter val-
ues, and it is checked if the average of the statistics u(Y ) calculated
for the generated graphs (with much thinning to obtain approximately
independent draws) is indeed very close to the observed values of the
statistics. Only results are reported for which this stochastic algorithm
converged well, as reflected by t-statistics less than 0.1 in absolute value
for the deviations between all components of the observed u(y) and
the average of the simulations, which are the estimated expected values
Eθ̂u(Y) (cf. (5) and also equation (34) in Snijders 2002).

The estimation kept the total number of ties fixed at the ob-
served value, which implies that there is a not a separate parameter
for this statistic. This conditioning on the observed number of ties is
helpful for the convergence of the algorithm (for the example reported
here, however, good convergence was obtained also without this con-
ditioning). Effects were tested using the t-ratios defined as parameter
estimate divided by standard error, and referring these to an approxi-
mating standard normal distribution as the null distribution. The effects
are considered to be significant at approximately the level of α = 0.05
when the absolute value of the t-ratio exceeds 2.

Some explorative model fits were carried out, and it turned out
that of the covariates, the important effects are the main effects of senior-
ity and practice, and the similarity effects of gender, office, and practice.
In Model 1 of Table 1, estimation results are presented for a model that
contains the three structural effects: (1) geometrically weighted degrees
for α = ln(1.5) = 0.405 (corresponding to alternating combinations of
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TABLE 1
MCMC Parameter Estimates for the Symmetrized Collaboration Relation Among

Lazega’s Lawyers

Model 1 Model 2

Parameter Est. S.E. Est. S.E.

Geometrically weighted degrees, α = ln(1.5) −0.711 2.986 — —
Alternating k-triangles, λ = 3 0.588 0.184 0.610 0.094
Alternating independent two-paths, λ = 3 −0.030 0.155 — —
Number of pairs directly and indirectly connected 0.430 0.512 — —
Number of pairs indirectly connected −0.014 0.184 — —
Seniority main effect 0.023 0.006 0.024 0.006
Practice (corporate law) main effect 0.383 0.111 0.373 0.109
Same practice 0.377 0.103 0.382 0.095
Same gender 0.336 0.124 0.354 0.116
Same office 0.569 0.105 0.567 0.103

two-stars for λ = 3), (2) alternating k-stars and (3) alternating indepen-
dent two-paths, both for parameter λ = 3 and in addition, the last two
of these effects for parameter λ = 1; as indicated above, the latter effects
are equal to the number of pairs of nodes both directly and indirectly
connected, and the number of pairs indirectly connected.

The results show that none of the structural effects except the
alternating k-triangles has a t-ratio greater than 2. There is quite some
collinearity between these effects. For example, the estimated correlation
between the estimate for the alternating independent two-paths and that
for the number of pairs indirectly connected is –0.94. All of the retained
covariate effects have t-ratios larger than 2. With a backward selection
procedure, nonsignificant effects were stepwise deleted from the model.
The result is presented as Model 2 in Table 1. The only remaining struc-
tural effect is the alternating k-triangles effect (θ̂ j = 0.610, t = 6.5). This
indicates that there is strong evidence for transitivity, as represented by
the k-triangles effect, and not for any other structural effects except what
is already represented by the covariates.

It appears that this model is successful in also representing other
structural characteristics of this network, such as the numbers of two-,
three-, and four-stars and the number of triangles. The observed number
of triangles is 120, while simulations of the ERGM (carried out also
using the SIENA program) show that the expected number of triangles
under Model 2 is 128.5 with standard deviation 13.2. So the difference
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is less than 1 standard deviation. Fitting the model extended with the
number of triangles did indeed lead to a nonsignificant effect for the
number of triangles. The observed number of four-stars is 6091, and
under Model 2 the expected number of four-stars is equal to 6635 and the
standard deviation is 1042; so here also the difference between observed
and expected value is less than 1 standard deviation. Thus, even though
these statistics are not directly fitted, the representation of the network
structure by the alternating k-triangles together with the covariate effects
also gives an adequate representation of these graph statistics.

The estimates for the covariates are hardly different from those in
Model 1. Note that these can be interpreted as estimates of the covariate
effects on a log-odds scale, similar to effects in logistic regression models,
except that they are controlled for the structural effects. This implies
that exp (θ jd) is the multiplicative effect that a difference d on variable
j has on the estimated odds of a tie. Seniority ranges from 1 to 36,
so the more senior partners collaborate more with others, the odds
ratio for the greatest difference of 35 being exp (0.024 × 35) = 2.32.
Corporate lawyers have an odds of collaboration that is exp (0.373) =
1.45 higher than those doing litigation, and having the same specialty
makes collaboration exp (0.382) = 1.47 more likely. The odds ratio
related to having the same gender is exp (0.354) = 1.42, and that related
to working in the same office is exp (0.567) = 1.76. All these odds ratios
are controlled for the structural transitivity effect. Summarizing, there
are especially large effects of seniority and of working in the same office,
and slightly smaller but still large effects of doing corporate law, having
the same specialty, and having the same gender; in addition, there is a
strong transitivity effect.

The latter effect, represented by the alternating k-triangles, can
be interpreted as evidence that there are organizing principles in this
network that go beyond homophilous selection in creating triangles.
The nonsignificance of the weighted degrees effect suggests that there
are no other important effects distinguishing the partners in their level
of collaborative activity beside the effects of seniority and specialty; and
the significance of the k-triangle effect while controlling for the weighted
degrees effect indicates that the transitivity is not the result of popular-
ity selection effects alone. In this law firm, it seems that collaborative
structures arise not just because of lawyers’ personal backgrounds; nor
do they arise because of popular collaborators attracting less popular
followers; rather, next to the covariate effects, there is a distinct balance
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effect of self-organizing team formation, resulting in close-knit transi-
tive structures. This conclusion is in line with the conclusions obtained
in earlier analyses of this data set (see Lazega 2001), but the results are
not directly comparable because analyses including effects of covariates
as well as structural transitivity effects were not published before.

The good fit in the sense of good reproduction of a variety of
other network statistics is not strongly dependent on the value of the
parameter λ. Values λ = 2, 4, and 5 also yielded good results. The values
λ = 1 and 6 were not satisfactory in this sense.

Model specifications containing the number of two-stars and of
transitive triangles also yielded convergence of the estimation algorithm,
but it did not succeed well in reproducing the observed number of pairs
of nodes tied directly and indirectly; this implies that the number of
pairs at a geodesic distance equal to two was not reproduced adequately.
Thus, we can conclude that this example is a case where the traditional
Markov random graph model for transitivity can be practically applied
but that our new model specification yields a better fit to the data.

5.1. Parameter Sensitivity in Various Models

To illustrate the differences between the various model specifications
and the difficulties of some specifications, we present some simulation
results where a parameter is varied in fitted models. We contrast the
specification based on the number of triangles to the one using the al-
ternating k-triangles. In addition, we compare models with and without
conditioning on the total number of edges.

A model similar to Model 2 in Table 1 was fitted to this data
set, and then a long sequence of graphs was simulated by the MCMC
procedure, starting with the empty graph, where all parameters except
one kept their fixed value, and one designated parameter slowly in-
creased from a low to a high value, and then decreased again to the low
value, with 40,000 MCMC iteration steps for each value of this param-
eter. The designated parameter was the one representing transitivity,
being the number of triangles, or the alternating k-triangles. The figures
present the generated values of the associated statistic after the 40,000
iterations for each single parameter value.

Figure 13 gives the generated values for the model without con-
ditioning on the number of edges (which for the number of triangles
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FIGURE 13. Generated statistics uj(y) for unconditional models, as a function of triangle
parameter (a) and alternating k-triangles parameter (b).

(Symbol � indicates simulated values generated for increasing parameter values, ∗ those gen-
erated for decreasing values.)

did not lead to satisfactory convergence in the algorithm for parame-
ter estimation but was used anyhow). A vertical line is plotted at the
estimated parameter value, and a horizontal line at the observed value
of the statistic. This implies that the curve of expected values should
exactly go through the intersection of these two lines.

For the number of triangles, an almost discontinuous jump is
observed, exactly at the intersection point that was the target for the
estimation procedure. In Figure 13 (a), for the increasing parameter
values, the jump up is made at a somewhat higher parameter value
than the jump down for the decreasing parameter values. This path-
dependence, or hysteresis, was also observed in Snijders (2002, p. 9), and
it is well-known for Ising models (Newman and Barkema 1999), which
show a similar kind of degeneracy. In a small interval of parameter
values where this jump occurs, the distribution of the statistic (and of
the graph density) has a bimodal shape. The suddenness of the jump,
and the fact that the observed statistic is in the region of the jump, is
associated with the large practical difficulties in fitting this model to
realistic data.

For the alternating k-triangles in Figure 13 (b), a smoother se-
quence of values is obtained, but the slope is still quite large, especially
near the parameter value of about 0.6 where the simulated values “take
off” from their starting values close to 0. This is similar to what is shown
for the expected values of the density in Figures 8 and 9.
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FIGURE 14. Generated statistics uj(y) for conditional models, as a function of triangle pa-
rameter (a) and alternating k-triangles parameter (b).

(Symbol � indicates values generated for increasing parameter values, ∗ those generated for
decreasing values.)

Analogous simulated values, but for models conditioning on the
observed number of edges, are given in Figure 14. Here we see in both
cases a much smoother process. The hysteresis effect for the number
of triangles is not observed any more, suggesting good mixing of the
MCMC procedure, but this model still has quite a strong slope near the
observed value of the statistic. In Figure 14 (b), which combines condi-
tional estimation with the alternating k-triangles statistic, the generated
values form a smooth pattern that confirms that estimation can proceed
smoothly for this model. The figures together illustrate that both work-
ing with the newly proposed statistics rather than with the number of
triangles and conditioning on the number of edges contribute to better
possibilities for parameter estimation. Combining both elements yields
especially good results.

6. DIRECTED RELATIONS

Directed relations are perhaps more frequent in social network research
than nondirected relations. For directed relations, the requirement Yij =
Yji for the adjacency matrix is dropped, and the oriented nature of ties
is reflected by using the term “arcs” rather than “edges.” Except for the
number of ties, all statistics discussed above have multiple analogues for
the directed case, depending on the orientation of the ties. Rather than
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listing and discussing all the different analogues that can occur depend-
ing on the possible tie orientations for the statistics proposed above, we
give in this section a brief list of what we think are the most impor-
tant versions of these statistics for directed graphs. Since an elaborate
discussion would mainly repeat much of what has been said above, we
refrain from giving an extensive motivation. (It may be noted that in
the formulas given above for the nondirected case, we have chosen the
order of the subscripts indicating the nodes in such a way that many of
the formulas are also valid for the directed case.)

For directed relations, we propose to use exponential random
graph models with the following statistics for the structural part of the
model.

1. The total number of arcs

∑
i �= j

Yi j ;

this is a superfluous element of the sufficient statistics if the analysis
is done (as advised) conditional on the number of arcs.

2. The number of mutual dyads

∑
i< j

Yi j Yji .

3. Geometrically weighted out-degrees

u(od)
α (y) =

n−1∑
k=0

e−αkd (out)
k (y) =

n∑
i=1

e−αyi+, (31)

and geometrically weighted in-degrees

u(id)
α (y) =

n−1∑
k=0

e−αkd (in)
k (y) =

n∑
i=1

e−αy+i , (32)

where d (out)
k (y) and d (in)

k (y), respectively, are the numbers of nodes
with out-degrees or in-degrees equal to k. Similar to (14), these
statistics can also be expressed as alternating out-k-star combina-
tions and alternating in-k-star combinations.
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4. Next to, or instead of, the alternating k-star combinations: the num-
ber of in-two-stars and the number of out-two-stars, reflecting the
in-degree and out-degree variances.

5. The alternating transitive k-triangles defined by

λ
∑
i, j

yi j

{
1 −

(
1 − 1

λ

)L2i j
}

(33)

and the alternating independent two-paths defined by

λ
∑
i, j

{
1 −

(
1 − 1

λ

)L2i j
}

, (34)

where L2ij is still the number of two-paths defined by (10); the ori-
entations implied by these formulas are illustrated in Figure 15.

6. Next to, or instead of the alternating transitive k-triangles: the count
of transitive triads ∑

i, j,h

Yi j YjhYih

and the number of two-paths, the latter reflecting the covariance
between in-degrees and out-degrees.

The change statistic for the geometrically weighted out-degrees
is

zi j = − (
1 − e−α

)
e−α ỹi+ . (35)

The change statistic is still given for the alternating transitive k-triangles
by (22), and for the alternating independent two-paths by (27).

FIGURE 15. Transitive three-triangle (a) and three-independent two-paths (b).
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6.1. Example: Friendship Between Lazega’s Lawyers

As an example of modeling a directed relation, we use the friendship re-
lation between the 36 partners in the law firm studied by Lazega (2001).
This is a network with density 0.21 and average degree 7.4. In-degrees
vary from 2 to 16, out-degrees from 0 to 21. The larger variability of
the degrees and skewness of the distribution of the out-degrees indicates
that here it may be more difficult to obtain a well-fitting model than in
the preceding example. The same covariates are used as in the earlier
example. For effects of actor-level covariates X on directed relations,
instead of the main effect we distinguish between (1) the activity effect,
represented in u(y) by the statistic

∑
i

xi yi+,

for which a positive parameter will tend to increase the correlation be-
tween the covariate and the out-degrees; and (2) the popularity effect,
represented by

∑
i

xi y+i ,

which contributes to the correlation between the covariate and the in-
degrees. The similarity effect connected to an actor-level covariate is
defined as for the undirected case.

Preliminary analyses showed that the most important effects of
covariates are the similarity effect of working in the same office, and
the effects associated with seniority (rank number of entry in the firm)
and practice (litigation versus corporate law). The same procedure for
estimation was used as in the preceding example. A forward selection
procedure using the effects listed above, with estimation conditional on
the total number of ties, led to the results presented in Table 2. Model 1
contains, next to various covariate effects, the four structural effects
proposed above. This appeared not to give a good fit with respect to the
number of out-k-stars for k = 2, 3, 4. Therefore the model was extended
with the the numbers of in-two-stars, out-two-stars, and two-paths. This
means that the observed covariance matrix of the in- and out-degrees is
fitted exactly. The results are presented in Table 2 as Model 2.
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TABLE 2
MCMC Parameter Estimates for the Friendship Relation Between Lazega’s

Lawyers

Model 1 Model 2

Parameter Est. S.E. Est. S.E.

Mutual dyads 1.659 0.241 2.217 0.303
Out-two-stars — — 0.129 0.016
In-two-stars — — 0.147 0.026
Two-paths — — −0.089 0.020
Geometrically weighted out-degrees, α = ln(2) 0.956 1.185 −1.364 1.361
Geometrically weighted in-degrees, α = ln(2) −4.550 2.249 −8.367 3.893
Alternating transitive k-triangles, λ = 2 0.665 0.136 0.709 0.146
Alternating independent two-paths, λ = 2 −0.139 0.031 −0.068 0.036
Same office 0.570 0.121 0.839 0.180
Seniority popularity −0.003 0.008 0.001 0.007
Seniority activity 0.013 0.007 0.010 0.006
Seniority similarity 0.038 0.008 0.041 0.008
Practice (corporate law) popularity −0.049 0.159 0.066 0.122
Practice (corporate law) activity 0.320 0.134 0.205 0.104
Same practice 0.283 0.130 0.291 0.125

The estimation procedure for both models presented in this ta-
ble converged well, but these results were obtained only after repeated
runs of the estimation algorithm, always using the previously obtained
results as the initial values for the new estimation. In this case, without
conditioning on the total number of ties it was not possible to obtain
convergence of the estimation algorithm. Model specifications includ-
ing the total number of transitive triplets as a separate statistic did
not lead to converging estimates. The strong correlations between the
structural statistics lead to very strongly correlated parameter estimates,
so that for a good reproduction of the model actually more decimal
places for the parameter estimates are required than given in Table 2
(cf. Snijders 2002, p. 32 ). The parameter estimates for the geometrically
weighted out-degrees and in-degrees, and the alternating independent
two-paths effects differ strongly in Models 1 and 2, due to the inclusion
in Model 2 of the out-two-stars, in-two-stars, and two-paths effects.
There is a strong transitivity effect, represented by alternating transitive
k-triangles with λ = 2 (t = 0.709/0.146 = 4.8 in Model 2). Further, there
is evidence that—controlling for these structural effects—friendship is
more likely between partners working in the same office, between those
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similar in seniority (this can be interpreted in part as a cohort effect),
and those with the same practice. Those doing corporate law mention
more friends than those doing litigation. The other covariate effects are
not significant. Other effects, such as the number of transitive triplets
and the numbers of three-stars and four-stars, also are represented ade-
quately, each with a difference between observed and estimated expected
value of less than 1.5 standard deviation.

A positive effect of alternating k-triangles in the presence of a
negative independent two-paths effect suggests that the friendship net-
work tends to be cliquelike, with possibly several different denser clusters
of friends. Because the geometrically weighted in-degree parameters are
negative, high in-degrees and high order in-stars are less likely in this
network, unless of course they are implied by the transitive structure
and therefore are involved in cliques of friends. So popular friends tend
to be popular within clusters of dense friendships rather than between
clusters.

Compared with the collaboration relation, modeling the friend-
ship relation requires a much more complicated structural model. This
network is an example where modeling transitivity by the number of
transitive triplets by itself is not successful, whereas modeling transitiv-
ity by the alternating transitive k-triangles is successful and also does
provide a good fit for the number of transitive triplets.

6.2. Parameter Sensitivity in Two Models

For this model also, the sensitivity of generated statistics to the pa-
rameter representing transitivity can yield insights in the possibility of
modeling by using a particular model specification. Two models were
considered, both with conditioning on the observed number of ties: the
model in Table 2 and the corresponding model with the four new statis-
tics replaced by the number of transitive triplets. For the latter model the
parameter estimation did not converge satisfactorily, but the obtained
parameter values were used anyway. Figure 16 gives simulated statistics
for a continuous MCMC chain of graphs, where all parameter values
were fixed at these estimated values, except for the number of transitive
triplets (Figure 16 a) and the alternating k-triangles (Figure 16 b), which
started at a very low value, increased in little steps to a very high value,
and then decreased again to the low value. Again, 40,000 iteration steps
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FIGURE 16. Generated statistics uj(y) for two models, as a function of a transitive triplets
parameter (a) and an alternating k-triangles para-meter (b).

(Symbol � indicates values generated for increasing parameter values, ∗ those generated for
decreasing values.)

of the MCMC algorithm were made for each parameter value and the
resulting value of the statistic corresponding to the changing parameter
is represented in the figure.

For the transitive triplets model, there is a very strong jump
that occurs right at the observed value of the statistic, indicating the
impossibility to adequately model this data set using this particular
model—even when conditioning on the observed number of ties. A hys-
teresis effect can again be discerned (for iteration runs of more than
40,000, this would decrease and eventually disappear). For the alter-
nating k-triangles model Figure 16 (b), there is a jump but it occurs
in a region representing antitransitivity (at a negative parameter value
of about –0.5), and does not invalidate the application of this model
for this data set. The generated statistics for this model vary stochas-
tically about a smooth function of this parameter in a wide region
comprising the observed value of the statistic, which corresponds to
the possibility to indeed obtain adequate parameter estimates for this
specification.

7. DISCUSSION

The methodology based on exponential random graph models, also
called p∗ models, of which the principles were introduced and elaborated
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by (among others) Frank and Strauss (1986), Frank (1991), Wasserman
and Pattison (1996), Pattison and Wasserman (1999), Robins, Pattison,
and Wasserman (1999), Snijders (2002), and Handcock (2002b), and
reviewed in Wasserman and Robins (2005), currently is the only sta-
tistical methodology for representing transitivity and other structural
features in nonlongitudinal network data. Its use has been hampered by
problems that now can be diagnosed—at least in part—as deficiencies
in the specification of the sufficient statistics defining the exponential
model. The traditional specification, where transitivity is represented by
the number of transitive triangles or triplets as implied by the Markov
assumption of Frank and Strauss (1986), does not allow a good repre-
sentation of the quite strong but far from complete tendency to tran-
sitivity that is commonly observed in social networks. A symptom of
these problems is the difficulty to find maximum likelihood estimates,
but the near degeneracy and poor fit of the implied model is the more
fundamental issue.

In this paper we have proposed a new specification of network
statistics defining the exponential random graph model. The new statis-
tics are geometrically weighted degrees to represent degree hetero-
geneity; alternating k-triangles to represent transitivity; and alternat-
ing independent two-paths to represent the preconditions for transitive
configurations. Section 3.4 summarizes for nondirected graphs the re-
sulting approach to model specification, and Section 6 gives the similar
approach for directed graphs. The new statistics are defined in such a
way that the model specification based on them does not imply, for
moderately positive values of the parameter representing transitivity,
the drive toward complete graphs that is inherent in the traditional
specification. Therefore the new specification may be expected to avoid
the large degeneracy problems associated with the traditional specifi-
cation. This is related to the fact that the new specification does not
satisfy the Markov conditional independence assumption of Frank and
Strauss (1986), which often is too stringent. The new specification sat-
isfies only a weaker type of partial conditional independence defined
here as assumption [CD], a specification of dependence concepts dis-
cussed in Pattison and Robins (2002). However, the new statistics are
not a panacea: in the new models phase changes occur less often but
they are not completely excluded, as shown in the near discontinuity in
Figure 16 (b). In this figure, however, the near discontinuity occurs at a
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negative value of the transitivity parameter, which in sociological appli-
cations is a relatively unimportant part of the parameter space. Our expe-
rience up to now, illustrated by examples presented above, suggests that
the models defined by these statistics can be used to give a good repre-
sentation of the transitivity and degree heterogeneity in many observed
social networks, also for data sets in which modeling on the basis of the
traditional specification, using only stars and the number of transitive
triplets or triangles, was not feasible. Further work is in progress that
confirms the wider modeling possibilities opened up by the new spec-
ifications. Obtaining maximum likelihood estimates under these spec-
ifications by MCMC algorithms is relatively uncomplicated for many
data sets. The readily available computer programs SIENA (Snijders
et al. 2005) and statnet (Handcock et al. 2005) can be used for this
purpose.

The statistics proposed here may look rather contrived at first
reading, but they are nevertheless a means to express that regions of
incomplete cliquelike structures will occur in social networks, but that
these cannot be expressed merely by noting that the network contains
many triangles. The k-triangle parameters should therefore be inter-
preted somewhat differently from the traditional transitivity parame-
ters based on only the triangle count; in our first example we argued
that the estimates give evidence for the emergence of close-knit transi-
tive structures that might be interpretable as self-organizing team for-
mation. Such a “higher order” interpretation is not really available in
models containing only Markov transitivity based completely on the
prevalence of single triangles in the network. The greater difficulty in
interpretation of the new statistics, as compared to the traditional spec-
ification, seems unavoidable to us, given the complexity of empirically
observed social networks. Further experience with this model will be
conducive to enhancing the interpretability of the parameters.

Other network statistics might also be possible to achieve these
modeling possibilities. We do think that any statistics that achieve this
will have some arbitrary elements, or seem contrived to some degree.
This may have to do with the fact that network structure, as observed at
one given moment, in most cases is the result of many different forces
and mechanisms that operated in a period—often of long duration—
before the observation of the network, precluding a simple represen-
tation of the dependencies within the network. One of the arguments
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supporting the statistics proposed here is that they lead to a model
satisfying the comparatively simple conditional dependence assumption
[CD].

The statistics contain parameters (α or λ) that are supposed to be
fixed in the treatment given here, and they can be estimated in practice by
trying out some reasonable values. In the examples discussed earlier, the
sensitivity of the conclusions for the precise value of this parameter was
small. However, it is preferable to estimate this parameter statistically.
The methods to do this are presented in Hunter and Handcock (2005).

Depending on the observed data set, it is still possible that degen-
eracy problems occur even with these new specifications. More experi-
ence with these models, and the further development of new models, is
required before a satisfactory and well-balanced methodology for the
statistical modeling of networks will be attained. We think that the repre-
sentation of social settings in particulars (Pattison and Robins 2002) will
need more attention and will be possible by incorporating extra model
elements. In some cases such extra model elements will be individual
and dyadic covariates, or interactions of covariates with the structures
proposed above, which is easy to carry out as it remains within the
framework of the exponential random graph model. In other cases the
model would have to be compounded with additional elements, such as
latent structure models like the Euclidean models of Hoff, Raftery, and
Handcock (2002), the ultrametric models of Schweinberger and Snijders
(2003), or the model-based clustering version of Tantrum, Handcock,
and Raftery (2005); in still other cases, in the exponential model one
could include other complicated statistics in addition to those proposed
here, along the lines of Pattison and Robins (2002).
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