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Abstract

We consider a continuous-time model for the evolution of social networks. A social network is here conceived as a (di-) graph
on a set of vertices, representing actors, and the changes of interest are creation and disappearance over time of (arcs) edges in
the graph. Hence we model a collection of random edge indicators that are not, in general, independent. We explicitly model the
interdependencies between edge indicators that arise from interaction between social entities. A Markov chain is defined in terms
of an embedded chain with holding times and transition probabilities. Data are observed at fixed points in time and hence we are
not able to observe the embedded chain directly. Introducing a prior distribution for the parameters we may implement an MCMC
algorithm for exploring the posterior distribution of the parameters by simulating the evolution of the embedded process between
observations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The methods of social network analysis (e.g., Wasserman and Faust, 1994; Carrington et al., 2005) have long been
employed in studying social phenomena ranging from friendship patterns of children in school classes (Moreno, 1934)
to the spread of HIV (Klovdahl, 1985). The importance of studying the dynamics of social networks is generally stressed
and there are some obvious shortcomings of cross-sectional data. Snijders (2001), proposed a statistical model for the
analysis of longitudinal social network data (for empirical applications see e.g. van de Bunt et al., 1999, and van Duijn
et al., 2003). Inference has so far been limited to an MCMC implementation of the method of moments, the properties
of which (i.e. the estimators) are not fully understood. Here we propose a Bayesian inference scheme for these models
as well as a model formulation that makes provisions for relaxing some of the assumptions and that allows for a wider
scope for the type of data that may be analysed.
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2. Preliminaries

In this paper, we consider social networks construed as graphs or directed graphs, where the vertices represent actors
in a network and edges and arcs represent how the actors are relationally tied to each other. The set of actors is assumed
to be fixed and we are interested in how the set of edges or arcs changes over time.

Here follows a brief characterization of the general class of models. We restrict attention to binary social network
data. Denote by V ={1, . . . , n} a fixed set of actors and denote by N the subset of pairs of actors that constitute the set

of possible relational ties between actors. For a non-directed relation (network) such as friendship N=
(

V

2

)
, and the

elements in N are called edges. For a directed network such as “give advice to”, N=V (2) ={(i, j) ∈ V ×V : i �= j},
the elements in which are called arcs. There may also be other types of restrictions on N such as for example in the
case of a bipartite network on two classes of actors A and B, in which case we set N = A × B. A (di-) graph on V

with (arc) edge set E ⊆ N, can be described by a collection x = (xe : e ∈ N) of N = |N|, (arc) edge indicators,
xe = 1{e ∈ E}. We refer to x as the adjacency matrix of the implied graph or digraph since the conventional matrix
form is easily recovered from x and N. Let X = {0, 1}N, be the space of all binary adjacency matrices.

We consider a continuous-time Markov chain {x(t)}t∈R, with outcome space X, the intensity matrix
Q = (q(x, y))x,y∈X, and transition matrix P t = (P t

xy)x,y∈X. To capture the desired property that the edges change one
at a time we proceed by first defining the Hamming metric for the elements of X as

|x − y| =
∑
e∈N

|xe − ye|,

and define x(e) as the matrix that differs from x in exactly the element e ∈ N. Note that x(e)(e) = x. Secondly, in the
following we will only consider processes such that

q(x, y) =
{

qe(x) if y = x(e),

0 if |x − y| > 1,

−∑
e∈Nqe(x) if x = y.

This can be interpreted as a process on the vertices of the binary N -cube, i.e. a graph G= (X,E), E={(x, y) ∈ X×X :
|x − y| = 1}, that jumps between adjacent vertices. We refer to such jumps as mini-steps.

If we set qe(x) = N−1, we obtain the random walk on X, and we have (see e.g. Aldous, 1983) that

P t
xy = 2−N(1 + e−2t/N )N−|x−y|(1 − e−2t/N )|x−y|, (1)

for all x, y ∈ X.
Consider now discriminating between changing an element of x from zero to one and changing an element from

one to zero, the first corresponding to adding an edge and the second to removing an edge. To obtain the so called
independent arcs model (Wasserman, 1977), we set qe(x) equal to �0 if xe = 0, and �1 if xe = 1. For x, y ∈ X, define

Nhk = Nhk(x, y) = �{e|xe = h, ye = k},
and the transition probabilities are given by

P t
xy =

(
N00 + N01

N01

) (
N11 + N10

N11

)
�0(t)

N01(1 − �0(t))
N00�1(t)

N11(1 − �1(t))
N10 ,

where

�a(t) = �a

�a + �1−a

+ (−1)1−a

�1−a

exp{−(�a + �1−a)t},

for a = 0, 1.
A third model with an explicit form for P t

xy is the reciprocity model (Wasserman, 1977, 1980; Leenders, 1995),

defined for digraphs, N = V (2), by

qij (x) = �0 + �0xji (xij = 0), (2)
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and

qij (x) = �1 + �1xji (xij = 1), (3)

subject to the constraint that qij is positive for all i, j ∈ V , j �= i (since e= (i, j)). The formula for P t
xy requires a little

more space than is available here (we refer to Leenders, 1995, or Snijders, 1999, for the exact expression). Note, in Eqs.
(2) and (3), the distinction that is made between reciprocated ties, xij = xji = 1, and non-reciprocated ties xij �= xji .

3. Model specification

We now proceed to express the transition intensities as the product of two more easily interpretable factors. We define
the class of models considered in this paper from the point of view of the embedded chain of a continuous-time process
on X. The transition probabilities in the embedded chain are

�(�, x, y), (4)

and the time spent in x ∈ X exponentially distributed with rate

�(�, x). (5)

It is assumed that �(�, x, y) > 0 for x, y ∈ X such that |x − y| = 1 and 0 otherwise. The p × 1 parameter vector � ∈ �
includes all unknown parameters. The two functions (4) and (5) determine the rate functions

q(�, x, y) = �(�, x) �(�, x, y),

which defines the generator of the continuous-time process on X.
It is worth pointing out that the formulation in terms of the embedded chain lends itself to easily interpreted change

mechanisms. The transition probabilities (4) in the stochastic actor-oriented model (Snijders, 2001) for directed graphs
are typically modelled using random utility models (Maddala, 1983).

Assume that we have observations on the network x(t) for fixed time points, t0 < t1 < · · · < tM−1. The analysis is
throughout made conditional on the first observation at t0. Because of the Markov property we can drop the notational
dependency on the observation points, in order to make the notation more lucid. In the sequel we refer by t0 and t1 to
two generic consecutive observation points, t0 < t1, and T = (t1 − t0).

For t1 and t0, denote the distance between two observations by

H = |x(t1) − x(t0)|.
From the construction of the mini-step, the number of mini-steps used to transformx(t0) intox(t1)must equalm=H+2k,
for some k ∈ {0, 1, 2, . . .}.

For given m let Wm(x, y) be the set of all sequences v0, v1, . . . , vm, such that v0 =x and vm =y, and |vi−1 −vi |=1,
vi ∈ X for i = 1, . . . , m. Equivalently, Wm(x, y) is the set of all m-walks in the N -cube G = (X,E), from x to y.
Unless otherwise stated Wm = Wm(x(t0), x(t1)). Define also Sm = {(u1, . . . , um) ∈ (0, T )m : u1 + · · · + um < T }.
For a fixed m, let the latent variable w = (y, u), comprise y = (yh)

m
h=0 ∈ Wm, and u = (uh)

m
h=1 ∈ Sm, with the

interpretation that y constitutes a walk from the observation x(t0) to the observation x(t1), for which the time between
consecutive changes yh and yh+1 is uh, for h = 1, . . . , m. For a given w ∈ Cm =Wm ×Sm, we define the augmented
likelihood

L(�; w, x(t0)) = exp

{
−

m+1∑
h=1

uh�(�, yh−1)

}
m∏

h=1

�(�, yh−1, yh)�(�, yh−1). (6)

Given observations x(t0) and x(t1) the data likelihood

P T
x(t0),x(t1)

= LD(�; x(t1), x(t0))

is obtained from (6) by marginalizing with respect to w ∈ C = ∪∞
k=0CH+2k .
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4. Parameter inference

Assuming that we have a model in the form specified in the previous section, and that we have specified a prior
distribution �(�), the main objective of the proposed inference scheme is to obtain the posterior distribution

�(�|x(t0), . . . , x(tM)) ∝ �(�)

M−1∏
�=0

LD(�; x(t�+1), x(t�)). (7)

In accordance with the account of the model formulation above, since the likelihood factors, we may treat each pair of
consecutive observations separately.

Under the assumption that the augmented likelihood L(�; w, x(t0)) is cheap to evaluate for all � and w ∈ C, a sample
from the joint posterior of w and � can be obtained using the adaption of the reversible jump MCMC (Green, 1995)
proposed in Koskinen (2004; due to the nature of the model, the inference scheme has many features in common with
inference in models for disease transmission, e.g. Auranen et al., 2000). This sampling scheme rests on the fact that in
the full conditional posterior:

�(w|�, x(t1), x(t0)) ∝ L(�; w, x(t0)), (8)

the data likelihood only enters as a multiplicative constant when data are augmented (Tanner and Wong, 1987) by the
latent walk. The full conditional posterior of the parameter vector � given data and an observation w on the latent
evolution is

�(�|w, x(t1), x(t0)) ∝ L(�; w, x(t0))�(�).

To obtain a sample from the marginal posterior of � given data (7), we sample from the joint distribution of � and w

given data giving a sequence (�(g), w(g))Gg=1, where (�(g))Gg=1 is an approximate sample from the marginal distribution
of � given data. In each iteration g we successively draw

w(g) ∼ w|�(g−1), x(t1), x(t0),

and

�(g) ∼ �|w(g), x(t1), x(t0).

For w(g−1) ∈ Cm, we perform draws from (8) using a Metropolis–Hastings updating step, with the necessary modifica-
tions for variable dimensions (Green, 1995), accepting or rejecting a proposed move to w∗ ∈ Cm+2k , for a k=−1, 0, 1,
chosen with probability a−

m , a0
m, and a+

m , respectively. The Hastings ratio for the acceptance probability is given by

L(�(g−1); w∗, x(t0))

L(�(g−1); w(g−1), x(t0))

q(y(g−1)|y∗)q(u(g−1)|y(g−1), w∗)
q(y∗|y(g−1))q(u∗|y∗, w(g−1))

J ,

where we use q as a generic form for the proposal density and J is the Jacobian of the transformation of going from
u(g−1) to u∗.

4.1. Move type 1: propose longer walk

Given a latent walk w = (yh, uh)
m
h=1, we propose a move to w∗ ∈ Cm+2, by choosing an element e ∈ N, uniformly

at random, and selecting two insertion points h′ and h′′ where we insert two superfluous changes. For a chosen e ∈ N,
the proposed latent walk is set to

y0, y1, . . . , yh′ , yh′(e), yh′+1(e), . . . , yh′′(e), yh′′(e)(e), yh′′+1, . . . , ym.

In order to write the proposal probability q(y∗|y) we need to introduce some extra notation. Firstly, if we let eh denote
the element that is changed in the hth mini-step, i.e. yh = yh−1(eh), the sequence (yh)

m
h=1 is completely determined

by y0 and the sequence (eh)
m
h=1. Second, let mev be the number of uninterrupted e-runs of length v in (eh)

m
h=1, and

denote by me the total number of times the element e is changed. Note that we have me =∑
vvmev and that for element
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e ∈ N, me is odd if and only if |xe(t0) − xe(t1)| = 1. Since there are m − me − 2 distinct insertion points once we
have chosen e, the implied proposal probability is given by

q(y∗|y) = a+
m

1

N

(
m − me − 2

2

)−1

.

4.2. Move type 2: propose shorter walk

If m > H we may propose a move to w∗ ∈ Cm−2 by removing a superfluous change to an element e ∈ N, from
among the N+ elements e for which me > 1. In total there are me+ = ∑

v �1mev e-runs and given that we have chosen
the element e ∈ N, we can either remove a pair of changes to e from one of the me+ − me1 e-runs of length greater
than 1 or a pair from two distinct e-runs. The proposal probability of each walk proposed in this way is given by

q(y∗|y) = a−
m

1

N+

[(
me+

2

)
+ me+ − me1

]−1

.

4.3. Move type 3 and updating holding times

Moves to w∗ ∈ Cm simply consists of changing the order of mini-steps in w. Rearranging the order can be done
in many ways and a convenient way of doing this is by choosing h′ and h′′ such that eh′ �= eh′′ , setting e∗

h′ = eh′′ and
e∗
h′′ = eh′ . Since this move is symmetric the proposal ratio is unity. This move is not required for the ergodicity of the

Markov chain but is included to improve mixing (for the details for drawing w see Koskinen, 2004).
If we propose a move from w ∈ Cm to w∗ ∈ Cm+2, we need to propose two new holding times u∗

h′ and u∗
h′′ in

addition to the extra changes. These are drawn from a rescaled Dirichlet distribution with parameters (1,1,m + 1), and
to make room for u∗

h′ and u∗
h′′ , the current holding times are scaled by (T − u∗

h′ − u∗
h′′)/T . The part in the Hastings

ratio that depends on the holding times becomes

q(u; y, w∗)
q(u∗; y∗, w)

J = T 2

(m + 2)(m + 1)
. (9)

For moves from w ∈ Cm+2 to w∗ ∈ Cm, two holding times are removed and the remaining rescaled in an analogous
fashion. Instead of the Hastings ratio in (9), we have the reciprocal of this.

4.4. Updating the parameter vector

Although it may sometimes be possible to perform draws from the full conditional posterior ·|w(g), x(t1), x(t0) using
standard distributions, typically the model specification only permits that we use a Metropolis–Hastings updating step.
If we propose a move to �∗ sampled from a distribution q(�∗|�(g−1)), given that we are in the current state �(g−1), the
Hastings ratio is of the standard form

L(�∗; w, x(t0))�(�∗)
L(�(g−1); w, x(t0))�(�(g−1))

q(�(g−1)|�∗)
q(�∗|�(g−1))

.

For q(·|�) in the empirical examples below we have used a Gamma distribution for the non-negative parameter and
independently thereof a multivariate normal distribution, both centred on the current parameter point. Although the
mixing of the MCMC sampler is contingent on the choice of proposal density to a large extent (Tierney, 1994), standard
distributions are satisfactory provided the scaling is chosen appropriately. The variance for a multivariate normal
proposal distribution is conveniently set using a quasi-Newton algorithm that outputs the Hessian when maximizing
the complete data likelihood for a fixed w ∈ CH.

5. Example: the electronic information exchange system

In this section we analyse the electronic information exchange system (EIES) data collected by Freeman and Freeman
(1979), using one of the models fitted with the method of moments in Snijders and van Duijn (1997). The relation



J.H. Koskinen, T.A.B. Snijders / Journal of Statistical Planning and Inference 137 (2007) 3930–3938 3935

Table 1
Point estimates for parameters in model fitted to EIES data using proposed Bayesian analysis and method of moments (MM), with posterior standard
deviations and approximate standard errors

MM SE Bayes STD

	, activity on rate .58 .333 −.23 .384

1, activity −1.70 .582 −1.23 .434

2, reciprocity 1.02 .270 .90 .238

3, citation attraction −.52 .228 −.61 .214

4, citation dissimilarity −.20 .223 −.10 .190

5, transitivity .12 .029 .098 .0163
�, constant in rate 4.89 1.055 4.94 .81

(originally valued) is directed and was measured at two points in time for a network consisting of n=32 actors (N=992).
The data set is described in Wasserman and Faust (1994). We consider the relation defined by the respondent claiming
to have met the other person or being a friend. Arguments for the proposed model specification and details of the
dichotomization of the relation can be found in Snijders and van Duijn (1997).

The intention is to model the evolution of the network as driven by the actors’ efforts to seek “better” network
configurations. A binary variable zi is available, reflecting the citation rate of actor i ∈ V . First, we introduce the
parameters � > 0, 	, and 
1, . . . , 
5, denoting these collectively by the parameter vector �. Define for each i ∈ V and
x ∈ X:

• out-degree: si1(x) = ∑
j∈V \{i}xij ,

• reciprocity: si2(x) = ∑
j∈V \{i}xij xji ,

• citation attraction: si3(x) = ∑
j∈V \{i}xij zj ,

• citation dissimilarity: si4(x) = ∑
j∈V \{i}xij

∣∣zi − zj

∣∣ ,
• transitivity: si5(x) = ∑

j,h∈V \{i}xij xihxjh.

It is assumed that all actors i independently make changes to the vector (xij )j �=i at rate

�i (x, �) = �

{
e	 + si1(x)

n − 1
(e−	 − e	)

}
,

and thus (5) is equal to �(�, x) = ∑
i∈V �i (x, �). Assume further that once actor i makes a change at time t , i changes

his/her out-relation to exactly one actor j , choosing j such that the “utility”

Ui(t, x, j) = r(�, i, j, x) + �i (t, x, j),

of the newly obtained x is maximized, where the systematic part r(�, i, j, x) = ∑5
k=1
ksik[x((i, j))], and the random

components �i (t, x, j) are iid type 1 extreme value distribution for all t , x, and j . It is straightforward to show (Maddala,
1983) that the transition probability (4) for going from x to x((i, j)) in this example is given by

�(�, x, x((i, j))) = �i (x, �)

�(�, x)

er(�,i,j,x)∑
j∈V \{i}er(�,i,j,x)

,

which together with (5) provides us with all we need for the augmented likelihood function (6).
The model is fitted using “non-informative” prior distributions for the parameters (a burn-in of between 5 and 10

thousand iterations seems sufficient in this case and a thinning constant of 50–100 iterations; tables and figures are
based on a total sample length of G = 50, 000, burn-in of 4000, and thinning constant of 100). The point estimates for
the Bayesian procedure (posterior expected value) and the method of moments (MM) in Table 1 largely agree in the
sense that all MM-estimates are included in the corresponding .95 highest posterior density (HPD) intervals (Fig. 1
(a)), with the exception of 	, the influence of activity on rate. From Fig. 1 (a) we may conclude that there is no evidence
for effects in the evolution of the EIES network of activity on rate (	) or of a differential preference for ties depending
on dissimilarity in the number of citations (
4). One has to be a little cautious when interpreting marginal posteriors
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Fig. 1. Posterior analysis for the EIES data: (a) marginal posterior distributions with .95 HPD intervals, (b) bivariate posterior with .95 and .99 HPD
region, and (c) posterior conditional on walk length.

since there is usually a relatively high degree of posterior correlation between parameters, such as for example between

1 and 
5, Fig. 1 (b). Given data, the number of unobserved changes, m, between observations appears to be somewhat
higher (Fig. 1 (a)) than the 154 changes required to transform x(t0) into x(t1). The dependence of the parameters on
the walk length is moderate as exemplified in Fig. 1 (c).

6. Example: university freshmen

We now turn to look at friendship nominations for a group of 32 university freshmen in a Dutch university. There are
observations for three points in time, t0, t1, and t2, with three weeks between each observation (the observations used
here were labelled t2, t3, and t4, respectively, in the original study, van de Bunt et al., 1999). We fit a reciprocity model
(as described in Section 2) as well as an extended model to x(t0) and x(t1). The extended model is similar to the model in
the preceding section. It comprises the effect of activity on rate 	; and the systematic part of r of the “utility” function Ui

is a weighted sum of the activity, reciprocity, and transitivity statistics, a number of covariate effects, and moreover the
statistic counting the number of other actors at geodesic distance 2, defined as si(x)= �{j : xij =0, maxk(xikxkj ) > 0}.
The marginal posteriors for the reciprocity model suggests that there may not be a strong tendency towards mutuality
and when the extended model is fitted, only higher-order effects, the number of distance-2 alters and transitivity, appear
to be of importance. (van de Bunt et al., 1999, conclude that reciprocity only has an effect after t2.)

Consider now evaluating the two model specifications using the observation x(t2) (that was not used in the estimation
process). While it is generally meaningless to predict a specific network configuration in social network analysis,
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Fig. 2. Predictions for van de Bunts freshmen students. Differences Z(y(t2))−Z(x(t2)), for y(t2) from the predictive distribution p(y(t2)|x(t1), x(t0))

(dashed, reciprocity model, and solid lines extended model).

summaries of structural properties are of interest. Frequently in the literature structural properties of networks are
invoked as determinants of behaviour and performance, or of the capability and capacity of the networks as transmission
paths of diseases or information.

Given a sample (�(g))Gg=1 from the posterior distribution of � given x(t0) and x(t1), we may obtain a sample from
the predictive distribution

p(y(t2)|x(t0), x(t1)) =
∫

P
t2−t1
x(t1),y(t2)

�(�|x(t0), x(t1)) d�,

by simulating adjacency matrices y(t2) for each �(g), according to the process defined by �(�(g), x, y) and �(�(g), x).
A few predictive distributions (of functions of the network) for the university freshmen at time t2, obtained in this way,
for the two fitted models are displayed in Fig. 2. For ease of comparison we have subtracted the observed value of
the corresponding statistic. While the reciprocity model captures all of the dyad-level statistics it is not sophisticated
enough to capture adequately the tendency towards network closure (a negative parameter corresponding to the distance-
2 statistic indicates a “dislike” of having indirect friends, given that everything else is constant).
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7. Discussion

In this paper we have proposed an alternative estimation procedure to the method of moments estimator for longitudi-
nal social network data. In place of the approximate standard errors from the MM-analysis as a measure of uncertainty,
we are provided with an entire sample from the posterior distribution of the parameters. We may explore the posterior
distribution thus obtained to investigate marginal as well as joint distributions of the parameters and in addition the
distribution of functions of the parameters such as log-odds. The model formulation in combination with the Bayesian
approach allows for natural extensions to treat for example missing data and networks with vertex set changing over
time. For the empirical illustrations we have settled for non-informative priors. Although a fully Bayesian analysis may
seem a difficult task in light of the relative complexity of the model, a compromise, when proper prior distributions
are required, is to employ prior distributions trained (O’Hagan, 1995) on some of the initial observations. Parts of
the procedure (programmed by Michael Schweinberger) are available in the PC program SIENA, which is part of the
StOCNET package (available free of charge from, http://stat.gamma.rug.nl/stocnet).
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