
APTS 2011–12 lecture material

Computer-Intensive
Statistics

c© 2008–12 B. D. Ripley1

1 What is ‘Computer-Intensive Statistics’?

‘Computer-intensive statistics’ is statistics that could only be done with ‘modern‘ computing
resources, typically either

• Statistical inference on small problems which needs a lot of computation to do at all,
or to do well. Quite small datasets can need complex models to explain, and even
simple models can need a lot of computation for a realistic analysis (especially where
dependence is involved).

• Statistical inference on ‘huge’ problems.

All of these terms are relative and change quite rapidly—according to the most commonly
quoted version of Moore’s Law (see section 6 and Ripley (2005)) computing power will
quadruple during your doctoral studies.

One very important idea for doing statistical inference ‘well’ on analytically intractable sta-
tistical models (that is, most real-world ones) is to make use of simulation. So most of this
module could be subtitled simulation-based inference, as in Geyer (1999)’s comments about
MCMC for spatial point processes:

If you can write down a model, I can do likelihood inference for it, not only maxi-
mum likelihood estimation, but also likelihood ratio tests, likelihood-based confi-
dence intervals, profile likelihoods, whatever. That includes conditional likelihood
inference and inference with missing data.

This is overstated, of course. . . . But analyses that can be done are far beyond
what is generally recognized.

These notes go beyond what will be covered in lectures—they are intended to give pointers to
further issues and to the literature.

1Thanks to Anthony Davison, Martyn Plummer and Ruth Ripley for their comments.

2 Simulation-based Inference

The basic idea is quite simple – simulate data from one or more plausible models (or for
a parametric model, at a range of plausible parameter values), apply the same (or similar)
procedure to the simulated datasets as was applied to the original data, and then analyse the
results. In this section we consider some of the ‘classical’ applications, but bootstrapping is
another.

The main reference for this section is Ripley (1987, §7.1).

Monte-Carlo tests

Suppose we have a fully-specified null hypothesis, and a test statistic T for which small values
indicate departures from the null hypothesis. We can always simulate m samples t1, . . . , tm
under the null hypothesis, and use these to obtain an indication of where the observed value
T lies on the null distribution. For example, consider a dataset on the amounts of shoe wear
in an experiment reported by Box, Hunter & Hunter (1978). There were two materials (A and
B) that were randomly assigned to the left and right shoes of 10 boys.

Table 1: Data on shoe wear from Box, Hunter & Hunter (1978).

boy A B

1 13.2 (L) 14.0 (R)

2 8.2 (L) 8.8 (R)

3 10.9 (R) 11.2 (L)

4 14.3 (L) 14.2 (R)

5 10.7 (R) 11.8 (L)

6 6.6 (L) 6.4 (R)

7 9.5 (L) 9.8 (R)

8 10.8 (L) 11.3 (R)

9 8.8 (R) 9.3 (L)

10 13.3 (L) 13.6 (R)

A paired t-test gives a t-value of −3.3489 and two-tailed p-value of 0.85% for no difference
between the materials. The sample size is rather small, and one might wonder about the
validity of the t-distribution. An alternative for a randomized experiment such as this is to
base inference on the permutation distribution of d = B-A. Figure 1 shows that the agreement
is very good.

Monte Carlo tests2 are a closely related (but not identical) idea. If the null hypothesis is
true, we have m + 1 exchangeable samples from the null distribution, one natural and m
by simulation. Thus the probability that T is the kth smallest or smaller is exactly k/(m + 1)
provided we can ignore ties. To do so we now assume that T has a continuous null distribution.

By choosing k and m suitably, say (1, 19), (5, 99), (50, 999) we can derive an exact signifi-
cance test at any desired level. Note that the experiment can be stopped early if k simulated

2Usually attributed to a published comment by George Barnard in 1963.

2

diff

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Empirical and Hypothesized t CDFs

solid line is the empirical d.f.

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Permutation dsn

t_9 cdf

Figure 1: Histogram and empirical CDF of the permutation distribution of the paired t–test in the shoes
example. The density and CDF of t9 are shown overlaid. (Figure 5.5 of Venables & Ripley (2002).)

values less than T have been observed – if the null hypothesis is true this will take a mean of
2k trials. However, doing the test indicates some evidence against the null hypothesis, so we
should not expect early stopping to be typical.

Power considerations

One common objection to Monte-Carlo tests is that different users will get different results.
One answer is

So what?; they would have used different test statistics, or deleted different out-
liers, or chosen different significance levels or

Effectively the actual significance level conditional on the simulations varies and only has
average α. This will be reflected in a loss in power. Detailed calculations by Jöckel (1986)
give

power of MC test
power of exact test

≥ 1− E|Z − α|
2α

≈ 1−
[

1− α
2πmα

]1/2
where Z ∼ beta(α(m+ 1), (1− α)(m+ 1)). This is a lower bound, and ranges, for α = 5%,
from 64% for m = 19 through 83% for m = 99 to 94.5% for m = 999. Asymptotic results
show better behaviour if the statistic is asymptotically normal, for example.

Note that our discussion has been entirely about simple null hypotheses. There have been
some suggestions about how to use Monte Carlo tests for composite null hypotheses, and of
course there are many standard arguments to reduce composite null hypotheses to simple ones.

3

Monte-Carlo confidence intervals

as named by Buckland (1984). These differ in a small but important detail from the bootstrap
confidence intervals we will meet in section 3.

Monte Carlo tests are only defined for a single null hypothesis, so can not easily be inverted
to form a confidence interval. Some pivotal quantity is needed. Suppose θ̂ is a consistent
estimator of θ with corresponding CDF Fθ. Let θ∗ be a sample from Fθ̂. We want to use the
variation of θ∗ about θ̂ to infer the variation of θ̂ about θ.

Suppose we have a location family. Then

θ̂ − θ ∼ F0, θ∗ − θ̂ ∼ F0

so we can obtain upper and lower prediction limits for θ∗ by

L = F−1
θ̂

(α/2) = θ̂ + F−10 (α/2)

U = F−1
θ̂

(1− α/2) = θ̂ + F−10 (1− α/2)

either analytically or via simulation from the empirical CDF of θ∗. The conventional (1− α)
confidence interval for θ is

θ ∈
(
θ̂ − F−10 (1− α/2), θ̂ − F−10 (α/2)

)
= (2θ̂ − U, 2θ̂ − L)

Thus we get a confidence interval for θ by reflecting the distribution of θ∗ about θ̂. This is the
Monte-Carlo confidence interval. If the family is only locally a location family, the confidence
interval is only approximately correct. With local scale families, the same arguments apply to
log θ.

Note carefully the difference between this and the bootstrap. The bootstrap resamples (with
replacement) from the data. These methods sample from the fitted distribution—sometimes
they are called the parametric bootstrap, as distinct from the non-parametric bootstrap. If we
had fitted a completely general class of distributions, the fitted distribution Fθ̂ would be the
empirical distribution function F ∗ which assigns mass 1/n to each data point. Then indepen-
dent sampling from F ∗ is bootstrap resampling, and the Monte-Carlo confidence intervals are
what are known as basic bootstrap intervals.

Monte Carlo Likelihood

as termed by Geyer & Thompson (1992). In general the likelihood equations for a canonical
exponential family equate the observed value to the expectation of a sufficient statistic, the
parameter controlling the expectation. The difficulty can arise in evaluating the expectation.

Consider the so-called Strauss model of spatial inhibition (Ripley, 1988, §4), which has pdf
for n points xi ∈ D ⊂ Rd of

fc(x1, . . . , xn) = a(c)ct(x1,...,xn) (1)

where t() computes the number of pairs of points closer than distance R, and 0 ≤ c ≤ 1. The
log-likelihood includes log a(c) and this is unknown.

4

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

c

E
 t

0.40 0.45 0.50 0.55 0.60

28
30

32
34

c

E
 t

●

Figure 2: Fitting the Strauss model (1). The top figure shows the average of 100 simulations at five
values of c. The lower figure shows the means and 95% confidence intervals based on 1000 simula-
tions at six values of c, plus (green) the fitted regression line and (blue, dashed) values estimated by
polysampling from 1000 simulations at c = 0.5. The grey line is the observed value.

5

However, we do not actually need a(c), for the MLE of c satisfies

t(x1, . . . , xn) = Eĉ[t(X1, . . . , Xn)] (2)

where the right-hand side can not be expressed in a simple form. We can however estimate the
RHS by simulation from the density (1), as in the preliminary material. An example is given
in Figure 2, for a data set in which the observed value of t(x1, . . . , xn) was 30. Note that by
importance sampling we can estimate the RHS of (2) for a range of c from simulations at one
value, an idea sometimes known as polysampling. The idea is that

Ec[t(X1, . . . , Xn)] = Ec0

[
t(X1, . . . , Xn)

fc(X1, . . . , Xn)

fc0(X1, . . . , Xn)

]
so we can take a series of samples at c = c0, replace the expectation on the RHS by an average
over those samples, and thereby estimate the LHS for any c. The downside is that the estimator
is likely to be a good estimator only for c near c0. What does ‘near’ mean? Well, this is an
experiment and standard statistical methods (e.g. response surface designs) can be employed
to answer such questions. So-called bridge sampling (Meng & Wong, 1996) uses this idea
for simulations at two values of c: see also Gamerman & Lopes (2006, pp. 242–3). Note that
these ideas do need at least ratios of a(c): see computer exercise 3.

Finding marginals and conditionals

A great deal of statistics is about finding marginal distributions of quantities of interest. This
occurs in both frequentist and Bayesian settings—especially the latter, where almost all ques-
tions boil down to finding a marginal distribution.

Finding those marginals is often difficult, and textbook examples are chosen so that the inte-
grations needed can be done analytically. A great deal of ingenuity has been used in finding
systematic ways to compute marginals: examples include the Lauritzen & Spiegelhalter (1988)
message-passing algorithm for graphical models.

It is an almost trivial remark that simulation provides a very simple way to compute marginals.
Suppose we have a model that provides a joint distribution for a (finite) collection (Xi) of
random variables. Then if we have a way to simulate from the joint distribution, taking a
subset of the variables provides a painless way to get a marginal distribution of that subset.
You should be used to thinking of distributions as represented by samples and so know many
ways to make use of that sample as a surrogate for the distribution.

Note that this does not apply directly to marginals in conditional distributions, as we would
need to be able to simulate from the conditional distribution. For example, the Lauritzen–
Spiegelhalter message-passing algorithm’s raison d’être is to be able to compute marginals
after conditioning on evidence. This is not a problem in the standard Bayesian context where
we simulate from the posterior distribution, that is the distribution conditional on the observed
data. It is an issue when exploring model fits, where we often want to explore how much one
(or more) observation is influencing the results, or even to correct data after discovering large
influence.

6

Conditioning is an issue in the Bayesian setting known as ABC.3 This is a rejection method of
sampling from P (θ |Y = y) by first sampling from a distribution (maybe the prior) for θ, then
from P (Y | θ) and accepting samples of θ for which Y = y. Of course in realistic scenarios
this never happens, so instead samples are retained for which some summary of Y is close to
that summary of y.

In the examples we will be using anywhere from a handful to 10,000 samples to represent
a marginal distribution. It is important to remember that we only have an approximation to
the distribution. A few thousand samples seems like a lot when we are looking at univari-
ate marginals (as people almost invariably do), but we are most often looking at univariate
marginals because this is easy to do, not because they are the sole or main interest. In the pre-
liminary exercises you were asked to compare simulations of 71 points in a square with some
data – this is a 142-dimensional problem and we have4 sophisticated multi-dimensional ways
to compare such patterns. For another example, ways to look for outliers in multidimensional
datasets (Cook & Swayne, 2007) may screen 1,000s or more two-dimensional projections.

SIR

The so-called sampling-importance-resampling is a technique for improving on an approxi-
mate distribution. Suppose we have M samples xi simulated from an approximation q to a
target distribution p. Then importance sampling is the idea of estimating

E h(X) =

∫
h(x) p(x) dx =

∫
h(x)

p(x)

q(x)
q(x) dx

by the weighted average of h(xi) with weights wi = p(xi)/q(xi). So we can represent distri-
bution p by a weighted sample from distribution q. For many purposes it is more convenient
to have an unweighted sample, and SIR achieves this approximately by taking a subsample of
size m < M by weighted sampling without replacement from the current sample. That is we
repeat m times

Select one of the remaining xi with probability proportional to wi and remove it
from the (xi).

(See Gelman et al., 2004, pp. 316f, 450.) (Others, including Rubin’s original version5 in
the discussion of Tanner & Wong (1987) describe SIR as the version with replacement: the
difference will be small if m�M .) Despite the name, this is a form of rejection sampling.

We have already seen importance sampling used to explore nearby parameter values, and
resampling can be used in the same way. Both can be used to perturb Bayesian analyses,
e.g. to vary the prior (perhaps away from one chosen for tractability towards something more
realistic), as changing the prior just re-weights the posterior samples. Another perturbation
sometimes of interest is to consider their influence by dropping observations one at a time:
and for independent observations this rescales the posterior density by the contribution of the

3originally Approximate Bayesian Computation, http://en.wikipedia.org/wiki/Approximate_

Bayesian_computation.
4including the human visual system.
5by this name: the idea is older.

7

http://en.wikipedia.org/wiki/Approximate_Bayesian_computation
http://en.wikipedia.org/wiki/Approximate_Bayesian_computation

observation to the likelihood. If we have n independent observations,

p(θ |y) ∝
n∏
i=1

`(yi; θ)p(θ)

and hence the posterior discarding observation j is proportional to

p(θ |y)/`(yj; θ)

For a pre-MCMC perspective on the potential role of SIR in Bayesian statistics, see Smith &
Gelfand (1992).

If the proposal used in ABC is not the prior, SIR can be used to reweight the sample.

Stochastic Approximation

An alternative is to solve equation (2) by iterative methods, usually called Robbins–Monro
methods or stochastic approximation. Suppose we seek to solve

Φ(θ) = Eφ(θ, ε) = 0

for increasing Φ, and that we can draw independent samples from φ(θ, ε). A sequence of
estimates is defined recursively by

θn+1 = θn − anφ(θn, εn)

for an → 0, e.g. an ∝ n−γ for 0 < γ ≤ 1. Kushner & Lin (2003) and Ripley (1987,
p. 185) gives further details and more sophisticated variants, which include averaging over
recent values of θn.

The SIENA program6 for fitting models of social networks is almost entirely based on these
ideas. These are networks with a finite set of nodes (actors) but with links that evolve through
time (e.g. who is ‘best friends’ with whom in a school). Snijders (2006) writes

These models can be simulated on computers in rather straightforward ways (cf.
Snijders, 2005). Parameter estimation, however, is more complicated, because
the likelihood function or explicit probabilities can be computed only for uninter-
esting models. This section presents the Methods of Moments estimates proposed
in Snijders (2001). [. . .]

This is just a Big Name for the idea we have illustrated for the Strauss model, equating empir-
ical and simulated moments, mainly by using stochastic approximation.

6‘Simulation Investigation for Empirical Network Analysis’: http://www.stats.ox.ac.uk/siena.

8

http://www.stats.ox.ac.uk/siena

0 2000 4000 6000 8000 10000

0.
40

0.
45

0.
50

0.
55

0.
60

iterations

re
s

Figure 3: Five runs of fitting the Strauss model (1) by stochastic approximation from U(0.4, 0.6)
starting values with γ = 0.7.

Simulated annealing

Simulated annealing is an idea for optimizing functions of many variables, most often discrete
variables so a combinatorial optimization problem. The name comes from Kirkpatrick et al.
(1983) and from annealing, a process in a metallurgy in which molten metal is cooled ex-
tremely slowly to produce a (nearly) stress-free solid. Since annealing is a process to produce
a low-energy configuration of the atoms, it is natural7 to consider its application to optimiza-
tion of complex problems.

The ground was set by Pincus (1970), based on the idea that if f is continuous over a compact
set D and has a unique global maximum at x∗ then

x∗ = lim
λ→∞

∫
D
x exp λf(x) dx∫
D

exp λf(x) dx

So if we take a series of samples from density proportional to

exp λf(x)

for increasing λ, then the distribution of the samples will become increasingly concentrated
about x∗. And this procedure is particularly suited to the iterative simulation methods of

7at least to those with some knowledge of statistical physics.

9

MCMC since we can use the sample(s) at the previous value of λ to start the iterative process.
However, the rate at which λ needs to be increased is very slow, with some studies suggesting
that λ ∝ log(1 + t) with t the number of iterative steps completed.

Despite the unpromising theoretical behaviour, simulated annealing has proved useful in find-
ing improved solutions to both continuous and combinatorial optimization problems – see e.g.
Aarts & Korst (1989)

For some examples, look at the examples for the optim function in R, e.g.

?optim
example(optim)

or try out http://www.stats.ox.ac.uk/~ripley/APTS2012/SimulatedAnnealing.R

10

http://www.stats.ox.ac.uk/~ripley/APTS2012/SimulatedAnnealing.R

3 Bootstrapping

Suppose we were interested in inference about the correlation coefficient θ of n IID8 pairs
(xi, yi) for moderate n, say 15 (as Efron (1982) apparently was). If we assume that the sam-
ples are jointly normally distributed, we might know that there is some approximate distri-
bution theory (using Fisher’s inverse tanh transform), but suppose we do not wish to assume
normality?

We could do a simulation experiment: repeat R times sampling n pairs and compute their
correlation, which gives us a sample of size R from the population of correlation coefficients.
But to do so, we need to assume both a family of distributions for the pairs and a particular
parameter value (or a distribution of parameter values).

The bootstrap procedure is to take m samples from x with replacement and to calculate θ̂∗

for these samples, where conventionally the asterisk is used to denote a bootstrap resample.
Note that the new samples consist of an integer number of copies of each of the original data
points, and so will normally have ties. Efron’s idea9 was to assess the variability of θ̂ about the
unknown true θ by the variability of θ̂∗ about θ̂. For example, the bias of θ̂ might be estimated
by the mean of θ̂∗ − θ̂.

Efron coined the term the bootstrap in the late 1970s, named after Baron Münchhausen who,
it is said,

‘finding himself at the bottom of a deep lake,
thought to pull himself up by his bootstraps’

or sometimes from a swamp or marsh by his ‘pigtail’. (Fictional, of course, ca 1785, although
the Baron was a historical person.)

and said

Bootstrap and jackknife algorithms don’t really give you something for nothing.
They give you something you previously ignored.

How can we use the bootstrap resamples to do inference on the original problem, and under
what circumstances is such inference valid? Note that the bootstrap resample is unlike the
original sample in many ways, perhaps most obviously that (with very high probability) it
contains ties.

Bootstrapping is most commonly used

• as part of a procedure to produce more accurate confidence intervals for parameters than
might be obtained by classical methods (including those based on asymptotic normal-
ity). Often this is very similar to using more refined asymptotic statistical theory, and I
once heard bootstrapping described as

‘a way to do refined asymptotics without employing the services of Peter Hall’

• to alleviate biases.
8independent and identically distributed.
9Others have claimed priority: for example Simon claims in the preface of Simon (1997) to have discovered

it in 1966. See also Hall (2003).

11

In part because it is so simple to describe and easy to do, bootstrapping has become popular
and is not infrequently used when it is not valid. For a careful account by two authorities
on the subject, see Davison & Hinkley (1997). For another viewpoint by an evangelist of
bootstrapping for model validation, see Harrell (2001, Chapter 5). Efron & Tibshirani (1993),
Shao & Tu (1995) and Chernick (2008) are complementary material. Hall (1992) covers the
(asymptotic) theory. Statistical Science 18(2) (May 2003) has several articles commemorating
the Silver Anniversary of the Bootstrap.

Efron’s original bootstrap is an IID sample of the same size as the original dataset from the
empirical distribution function. so it is another example of simulation-based inference, using
a non-parametric rather than parametric model of the data. The idea can easily be extended
to other non-parametric models, and using a kernel-density estimate10 of the underlying dis-
tribution is called a smoothed bootstrap. So that instead of assuming a particular parametric
fit, we assume a particular non-parametric fit. This may be more flexible11, but in both cases
we have a plug-in estimator—that is we fit a single model from our family and act as if it were
the true model.

As a very simple first example, suppose that we needed to know the medianm of the galaxies
data of Roeder (1990) shown in Figure 4. The obvious estimator is the sample median, which
is 20 834 km/s. How accurate is this estimator? The large-sample theory says that the median
is asymptotically normal with mean m and variance 1/4n f(m)2. But this depends on the
unknown density at the median. We can use our best density estimators to estimate f(m), but
we can find considerable bias and variability if we are unlucky enough to encounter a peak (as
in a unimodal symmetric distribution). The density estimates give f(m) ≈ 0.13. Let us try
the bootstrap:

1/(2*sqrt(length(gal))*0.13)
[1] 0.42474
> library(boot)
> gal.boot <- boot(gal, function(x,i) median(x[i]), R=1000)
> gal.boot
Bootstrap Statistics :

original bias std. error
t1* 20.834 0.038747 0.52269

which was effectively instant and confirms the adequacy of the large-sample mean and vari-
ance for our example (if Efron’s idea is correct). In this example the bootstrap resampling can
be avoided, for the bootstrap distribution of the median can be found analytically (Efron, 1982,
Chapter 10; Staudte & Sheather, 1990, p. 84), at least for odd n. The bootstrap distribution of
θ̂i about θ̂ is far from normal (Figure 5). Choosing the median (a discontinuous function of the
data) disadvantaged the simple bootstrap and e.g. a smoothed bootstrap would be preferred in
practice.

Note that the bootstrap principle, that the variability of θ̂ about the unknown true θ can be
assessed by the variability of θ̂∗ about θ̂, is not always valid. For example, the bias of θ̂ is not
mirrored in the bias of θ̂∗ when bootstrapping density estimation or curve fitting (Bowman &

10Note that sampling from a constant-bandwidth kernel-density estimate amounts to resampling from the
original data and then adding a random variable drawn from the kernel as a density, so this is the procedure
known as jittering.

11although large parametric families such as spline models for log densities and neural networks can be arbi-
trarily flexible.

12

velocity of galaxy (1000km/s)

de
ns

ity

0 10 20 30 40

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 4: Density estimates for the 82 points of the galaxies data. The solid and dashed lines
are Gaussian kernel density estimates with bandwidths chosen by two variants of the Sheather–Jones
method. The dotted line is a logspline estimate. From Venables & Ripley (2002).

res
20.0 20.5 21.0 21.5 22.0

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 5: Histogram of the bootstrap distribution for the median of the galaxies data, with a kernel
density estimate (solid) and a logspline density estimate (dashed). From Venables & Ripley (2002).

13

Azzalini, 1997, pp. 44, 82). To quote lecture notes by Peter Hall

There is a “meta theorem” which states that the standard bootstrap, which in-
volves constructing a resample that is of (approximately) the same size as the
original sample, works (in the sense of consistently estimating the limiting dis-
tribution of a statistic) if and only if that statistic’s distribution is asymptotically
Normal.

It does not seem possible to formulate this as a general, rigorously provable result,
but it nevertheless appears to be true.

Although unstated, it seems clear that this is not intended to cover semi-parametric problems
such as density estimation. It hints at other exceptions, for example extreme-value statistics.12

For more examples, see Davison et al. (2003).

The principle is valid often enough that users miss the exceptions and apply it uncritically. To
quote the wisdom of Davison & Hinkley (1997, p. 4)

Despite its scope and usefulness, resampling must be carefully applied. Unless
certain basic ideas are understood, it is all too easy to produce a solution to
the wrong problem, or a bad solution to the right one. Bootstrap methods are in-
tended to help avoid tedious calculations based on questionable assumptions, and
this they do. But they cannot replace clear critical thought about the problem, ap-
propriate design of the investigation and data analysis, and incisive presentation
of conclusions.

Perhaps the only point here that is particularly apposite to bootstrapping is the “all too easy”.
It is also easy to apply regression methods to datasets that have other structure (for example,
were collected in groups, so mixed-effects models might be more appropriate), and indeed
outside simple textbook problems choosing a suitable non-parametric resampling model is
no easier than choosing a suitable parametric model. Think about survival problems or time
series or spatial patterns or complex surveys for example. Even if missing data are present we
have to model the way in which it might occur in other samples.

Contrast this with the embittered comments of Simon (1997)

The simple fact is that resampling devalues the knowledge of conventional math-
ematical statisticians, and especially the less competent ones. By making it possi-
ble for each user to develop her/his own method to handle each particular prob-
lem, the priesthood with its secret formulaic methods is rendered unnecessary.

This seems more generally aimed at simulation-based inference than just resampling.

Performance assessment

which is the main part of what Harrell (2001) calls model validation. Suppose we have selected
a model for, say, regression or classification. Then we expect the model to perform better on
our dataset than in future, because both the model (variables used, transformations etc) and the

12for which the ‘m-out-of-n bootstrap’ when m < n and m/n→ 0 provides an alternative with valid theory:
see Politis et al. (1999).

14

parameter values have been chosen by looking at that dataset. Part of performance assessment
is to predict how well the chosen procedure will do in real-world testing—most of the many
approaches are discussed in Ripley (1996, §2.7).

One computer-intensive approach is cross-validation, to repeatedly keep back a small part of
the dataset, do the model selection on the rest and then predict performance on the part held
back and then (in some sense) average to estimate the ‘out-of-sample’ performance. That is
a very general method and used sensibly gives very reliable results—but that has not stopped
some developers of competitor methods giving it a bad press.

An extreme form is sometimes used: in leave-one-out cross-validation each case is left in left
out in turn and compared with its prediction from the rest. This is more problematic than
leaving out say 10% each time (Ripley, 1996).

To be concrete, suppose we have a classification procedure and the performance measure is
the error rate, the proportion of examples incorrectly classified. Then the ‘apparent’ misclas-
sification rate on the training data will clearly be biased downwards. Estimating how much
bias was a simple (and early) application of the bootstrap. Take a series of new training sets
by resampling the original, and fit a model to each new training set, and predict at the origi-
nal training set. The problem here is that the new and original training sets are not distinct,
and Efron (1983); Efron & Tibshirani (1997) proposed the ‘.632’ bootstrap. This weights the
apparent error rate and the error rate on those original examples which do not appear in the re-
sampled training set as 0.368 : 0.632. Here 0.632 is shorthand for (1− 1/e), the large-sample
probability that a given example appears in the resampled training set.

Note that here we are trying to estimate what Harrell calls the optimism of the whole model
fitting procedure. He rightly points out in a quote that

In spite of considerable efforts, theoretical statisticians have been unable to anal-
yse the sampling properties of [usual multistep modeling strategies] under realis-
tic conditions

but then fallaciously goes on to conclude

that the modeling strategy must be completely specified and then bootstrapped to
get consistent estimates of variances and other sampling properties.

The fallacy is asserting that bootstrapping is the only game in town, whereas many other
simulation-based inference methods could be (and have been) used.

Confidence intervals

One approach to a confidence interval for the parameter θ is to use the quantiles of the boot-
strap distributions; this is termed the percentile confidence interval and was the original ap-
proach suggested by Efron. The bootstrap distribution in our example is quite asymmetric,
and the intervals based on normality are not adequate. The ‘basic’ intervals are based on the
idea that the distribution of θ̂∗ − θ̂ mimics that of θ̂− θ. If this were so, we would get a 1− α
confidence interval as

1− α = P (L ≤ θ̂ − θ ≤ U) ≈ P (L ≤ θ̂∗ − θ̂ ≤ U)

15

so the interval is (θ̂−U, θ̂−L) where L+ θ̂ and U + θ̂ are the α/2 and 1− α/2 points of the
bootstrap distribution, say kα/2 and k1−α/2. (It will be slightly more accurate to estimate these
as the (R+ 1)α/2th and (R+ 1)(1−α/2)th ordered values of a sample of size R of θ̂∗.) Then
the basic bootstrap interval

(θ̂ − U, θ̂ − L) = (θ̂ − [k1−α/2 − θ̂], θ̂ − [kα/2 − θ̂]) = (2θ̂ − k1−α/2, 2θ̂ − kα/2)

which is the percentile interval reflected about the estimate θ̂. (This is the same derivation
as the Monte-Carlo confidence interval, applied to a non-parametric model.) In asymmetric
problems the basic and percentile intervals will differ considerably (as here), and the basic
intervals seem more rational. For our example we have

boot.ci(gal.boot, conf=c(0.90, 0.95), type=c("norm","basic","perc","bca"))

Level Normal Basic Percentile BCa
90% (19.94, 21.65) (19.78, 21.48) (20.19, 21.89) (20.18, 21.87)
95% (19.77, 21.82) (19.59, 21.50) (20.17, 22.07) (20.14, 21.96)

The BCa intervals are an attempt to shift and scale the percentile intervals to compensate for
their biases, apparently unsuccessfully in this example. The idea is that if for some unknown
increasing transformation g we had g(θ̂) − g(θ) ∼ F0 for a symmetric distribution F0, the
percentile intervals would be exact. Suppose more generally that if φ = g(θ),

g(θ̂)− g(θ) ∼ N(−w σ(φ), σ2(φ)) with σ(φ) = 1 + a φ

Let U = g(θ̂). Then U = φ+ (1 + a φ)(Z − w) for Z ∼ N(0, 1) and hence

log(1 + aU) = log(1 + a φ) + log(1 + a (Z − w))

which is a pivotal equation in ζ = log(1 + a φ). Thus we have a α confidence limit for ζ , as

ζα = log(1 + a u)− log((1 + a (−zα − w))

(using −zα = z1−α) and hence one for φ as

φα = u+ (1 + a u)
w + zα

1− a (w + zα)

Then the limit for θ is θα = g−1(φα). We do not know g, but if u = g(θ̂) and U∗ = g(θ̂∗)

P ∗(θ̂∗ < θα | θ̂) = P ∗(U∗ < φα |u) = Φ

(
w +

φα − u
1 + a u

)
= Φ

(
w +

w + zα
1− a(w + zα)

)
Thus the α confidence limit for θ is given by the α̂ percentile of the bootstrap distribution,
where

α̂ = Φ
(
w +

w + zα
1− a(w + zα)

)
Thus if a = w = 0 the percentile interval is exact. This is very unlikely, but we can estimate
a and w from the bootstrap samples. Now w essentially measures the offset of centre of the
distribution, and

P ∗(θ̂∗ < θ̂ | θ̂) = P ∗(U∗ < u |u) = Φ(w)

16

and so w can be estimated by

ŵ = Φ−1

(
#{θ̂∗ ≤ θ̂}
R + 1

)

Estimating a is a little harder: we make a linear approximation to θ̂ (as a function of the data
points) and take one sixth its skewness (third moment divided by standard deviation cubed) in
the bootstrap distribution.

For a smaller, simpler example, consider the data set on page 2.

> t.test(B - A)
95 percent confidence interval:
0.133 0.687
> shoes.boot <- boot(B-A, function(x,i) mean(x[i]), R=1000)
> boot.ci(shoes.boot, type = c("norm", "basic", "perc", "bca"))

Level Normal Basic Percentile BCa
95% (0.186, 0.644) (0.180, 0.650) (0.170, 0.640) (0.210, 0.652)

There is a fifth type of confidence interval that boot.ci can calculate, which needs a variance
v∗ estimate of the statistic θ̂∗ from each bootstrap sample. Then the confidence interval can be
based on the basic confidence intervals for the studentized statistics (θ̂∗ − θ̂)/

√
v∗.

mean.fun <- function(d, i) {
n <- length(i)
c(mean(d[i]), (n-1)*var(d[i])/n^2)

}
> shoes.boot2 <- boot(B - A, mean.fun, R = 1000)
> boot.ci(shoes.boot2, type = "stud")

Level Studentized
95% (0.138, 0.718)

Some caution is needed here. First, despite three decades of work and lots of theory that
suggest bootstrap methods are well-calibrated, we can get as large discrepancies as we have
here. Second, this is only univariate statistics, and standard bootstrap resampling is only
applicable to IID samples.

Note that the bootstrap distribution provides some diagnostic information on the assumptions
being made in the various confidence intervals.

Theory for bootstrap confidence intervals

There are two ways to compare various types of bootstrap confidence intervals. One is em-
pirical comparisons as above. Another is to work out the asymptotic theory to a high enough
level of detail to differentiate between the methods.

The principal property of a confidence interval or limit is its coverage properties. We want for
an upper confidence limit θ̂α that

Pθ(θ ≤ θ̂α) = α +O(n−a)

17

for a large a. Obviously we would like exact confidence limits (no remainder term), but they
are in general unattainable, and so we aim for the best possible approximation.

Two points to note: a confidence interval or limit can have good coverage but be far from
optimal (as measured by length, say), and a confidence interval can have good coverage but
be far from equi-tailed.

We can consider a hierarchy of methods of increasing accuracy.

• A normal-based confidence interval, for example with standard deviation based on the
bootstrap distribution, and with a bootstrap bias correction. This has a = 1/2 (in gen-
eral, but we won’t keep mentioning that).

• Basic bootstrap confidence limits. These have a = 1/2, but confidence intervals have
a = 1 and are said to be second-order accurate.

• Percentile limits and intervals. The same story as the basic limits and intervals. As
we have seen empirically, both of these tend to fail to centre the interval correctly, so
achieve second-order accuracy for intervals at the expense of having unequal tails.

• BCa limits and intervals both have a = 1, provided a and w are estimated to O(n−1/2).

• The studentized method also has a = 1, provided the variance estimate used is accurate
to O(n−1/2).

To make the limitations of these results clearer, note that they apply equally to any continuous
monotone transformation φ(θ) (for example a log or arcsin or logistic transformation), but em-
pirical studies (e.g. Davison & Hinkley, 1997, §5.7) show that using the right transformation
can be crucial.

Double bootstrapping

Another idea is to re-calibrate a simpler confidence limit or interval, that is to use θ̂β for some
β 6= α to achieve more accurate coverage properties. How do we choose β? The double
bootstrap uses a second tier of bootstrapping to estimate the coverage probability of θ̂β , and
then solves for β on setting this estimate equal to α.

It transpires that applying this idea to the normal confidence interval produces the studentized
confidence interval, but applied to the basic confidence interval it produces coverage accurate
to a = 2.

Double bootstrapping appears to require large numbers of replications, say a million samples
if we take 1000 in each of the tiers. This can be reduced to more manageable numbers by
using polysampling (page 6, Davison & Hinkley (1997, §9.4.4) and Morgenthaler & Tukey
(1991)), but computers may be fast enough these days.

Bootstrapping linear models

In statistical inference we have to consider what might have happened but did not. Linear mod-
els can arise exactly or approximately in a number of ways. The most commonly considered

18

form is
Y = Xβ + ε

in which only ε is considered to be random. This supposes that in all (hypothetical) repetitions
the same x points would have been chosen, but the responses would vary. This is a plausi-
ble assumption for a designed experiment and for an observational study with pre-specified
factors.

Another form of regression is sometimes referred to as the random regressor case in which
the pairs (xi, yi) are thought of as a random sample from a population and we are interested
in the regression function f(x) = E{Y |X = x} which is assumed to be linear. However,
it is common to perform conditional inference in this case and condition on the observed xs,
converting this to a fixed-design problem. For example, in the Scottish hill races dataset13

the inferences drawn depend on whether certain races, notably Bens of Jura, are included in
the sample. As they were included, conclusions conditional on the set of races seems most
pertinent.

These considerations are particularly relevant when we consider bootstrap resampling. The
most obvious form of bootstrapping is to randomly sample pairs (xi, yi) with replacement,14

which corresponds to randomly weighted regressions. However, this may not be appropriate
in not mimicking the assumed random variation and in some examples of producing singular
fits with high probability. The main alternative, model-based resampling, is to resample the
residuals. After fitting the linear model we have

yi = xiβ̂ + ei

and we create a new dataset by yi = xiβ̂ + e∗i where the (e∗i) are resampled with replacement
from the residuals (ei). There are a number of possible objections to this procedure. First,
the residuals need not have mean zero if there is no intercept in the model, and it is usual to
subtract their mean. Second, they do not have the correct variance or even the same variance.
Thus we can adjust their variance by resampling the modified residuals ri = e1/

√
1− hii

which have variance σ2.

I see bootstrapping as having little place in least-squares regression. If the errors are close
to normal, the standard theory suffices. If not, there are better methods of fitting than least-
squares! One issue that is often brought up is that of heteroscedasticity, which some bootstrap
methods accommodate—but then so do Huber–White ‘sandwich’ estimators.

The distribution theory for the estimated coefficients in robust regression is based on asymp-
totic theory, so we could use bootstrap estimates of variability as an alternative. Resampling
the residuals seems most appropriate for the phones data of Venables & Ripley (2002, p. 157)

library(MASS); library(boot)
fit <- lm(calls ~ year, data=phones)
summary(fit)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -260.059 102.607 -2.535 0.0189

13Venables & Ripley (2002, p. 8–10, 152–5).
14Davison & Hinkley (1997) call this case-based resampling. Shao & Tu (1995) call it the paired bootstrap,

in contrast to the residual bootstrap we consider next.

19

year 5.041 1.658 3.041 0.0060

ph <- data.frame(phones, res=resid(fit), fitted=fitted(fit))
ph.fun <- function(data, i) {

d <- data
d$calls <- d$fitted + d$res[i]
coef(update(fit, data=d))

}
ph.lm.boot <- boot(ph, ph.fun, R=999)
ph.lm.boot

....
original bias std. error

t1* -260.0592 6.32092 100.3970
t2* 5.0415 -0.09289 1.6288

fit <- rlm(calls ~ year, method="MM", data=phones)
summary(fit)

Coefficients:
Value Std. Error t value

(Intercept) -52.4230 2.9159 -17.9783
year 1.1009 0.0471 23.3669

ph <- data.frame(phones, res=resid(fit), fitted=fitted(fit))
ph.rlm.boot <- boot(ph, ph.fun, R=999)
ph.rlm.boot

....
original bias std. error

t1* -52.4231 3.232142 30.01894
t2* 1.1009 -0.013896 0.40648

(The rlm bootstrap is not nowadays computer-intensive, but took about 10 mins in S-PLUS
for the third edition in 1997.) These results suggest that the asymptotic theory for rlm is
optimistic for this example, but as the residuals are clearly serially correlated the validity of
the bootstrap results is equally in doubt. Statistical inference really does depend on what one
considers might have happened but did not.

Shao & Tu (1995, Chapters 7–8) and Davison & Hinkley (1997, Chapters 6–7) consider linear
models and extensions such as GLMs and survival models.

How many bootstrap resamples?

Our examples have been based on 1000 resamples θ∗. Largely that figure was plucked from
thin air: it was computationally feasible. Is it enough? To answer that question we need to
consider the various sources of error. The Monte-Carlo error due to the resampling is one, and
since the resampling is independent, the size of the Monte Carlo error will be OP (R−1/2) for
R samples. On the other hand, the size of the confidence interval will be OP (n−1/2) and this
suggests that to make the Monte Carlo error negligible we should take R to be some multiple
of n. Some calculations (Davison & Hinkley, 1997, pp. 35–6) suggest a multiple of 10–40.

However, this is not all there is to it. If we want to compute confidence intervals, we need to be
able to estimate fairly extreme quantiles, which suggests we need R around 1000. (R = 999
is popular as the (R + 1)pth quantile is a data point for most popular p.) Moreover, the BCa

20

method often needs considerably more extreme quantiles than the originals, and so can require
very large bootstrap samples.

Further, there are other sources of (systematic) error, not least the extent to which the dis-
tribution of θ∗ − θ̂ mimics that of θ̂ − θ. It may be more important to choose a (monotone
invertible) transformation φ(θ) for which that approximation is more accurate, in particular
to attempt variance stabilisation. Finally, if the samples were not independent, then simple
bootstrapping will be inappropriate.

Diagnostics

It is (I hope) familiar that after fitting a parametric model such as a regression we look at
diagnostics to see if the assumptions have been violated.

In one sense the problem is easier with bootstrap models as they are non-parametric and so
make fewer assumptions. However fewer but often more critical ones, e.g. independent and
identically distributed. So we would still like to know if there are observations that are partic-
ularly influential on our conclusions. That is hard enough for linear regression!

There is one general approach to bootstrap diagnostics, the use of jackknife-after-bootstrap
(Davison & Hinkley, 1997, §3.10). We could consider dropping each observation j in turn and
redoing the analysis (including all the resampling). However, we can avoid this by looking
only at bootstrap resamples in which observation j does not occur and applying the jackknife
method of the next section.

The Jackknife

The jackknife15 is an older resampling idea, most often used to attempt bias reduction.

Consider an i.i.d. sample X1, . . . , Xn ∼ F , and consider a statistic θn = θ(Fn) for the
empirical CDF Fn.. Then the ‘true value’ is θ(F). Any statistic which is independent of the
ordering of the sample can be written in this form.

The jackknife estimates the bias from the n sub-samples of size n − 1. Let θ̂(i) denote the
estimate from the sample omitting Xi. Then the estimate of bias is

B̂IAS = (n− 1)
(1

n

∑
θ̂(i) − θ̂

)
It can be shown that if

bias(θ̂) = E(θ̂)− θ(F) = a1/n+ a2/n
2 + · · ·

then θ̂ − B̂IAS has a bias of O(n−2). For example, applied to the variance functional it
replaces the divisor n by n− 1. The assumption will be true for smooth functionals θ, but not,
for example, for the median.

15a Tukey-ism for an idea of Quenouille: in American usage a jackknife is a pocket knife, most often one that
has a single blade and folds away into its handle.

21

Another way to look at the jackknife is via the pseudo-values given by

θ̃i = θ̂ + (n− 1)(θ̂ − θ̂(i))

Then these can be regarded as a new ‘sample’, and the mean and variance estimated from
them. Then B̂IAS is θ̂ minus the mean of the pseudo-values.

The jackknife estimate of the variance of a statistic is the variance of the pseudo-values divided
by n. The pseudo-values could be used to give a confidence interval, but that has proved to be
no better than the normal-based confidence intervals based on the mean and variance of the
pseudo-values.

Jackknife ideas have been fruitful for bias and (especially) variance estimation, for example
in sample surveys—see Rao & Wu (1988) and Shao & Tu (1995, Chapter 6). (Note that this
is another area where naı̈ve applications of the bootstrap may be invalid.)

Note that the jackknife and leave-one-out cross-validation use the same resampling plan but
a different analysis of the resamples: as a result leave-one-out cross-validation is often incor-
rectly called jackknifing.

Bootstrapping as simulation

Bootstrapping is ‘just’ simulation-based inference, sampling from a particularly simple model.
As such it is subject to all the ways known in the simulation literature16 to reduce variability.
Davison & Hinkley (1997, Chapter 9) discuss many of them, but there are few examples in the
many application studies using bootstrapping. If you use bootstrapping in your work, please
take heed!

Software

Basic bootstrap resampling is easy, as you saw in the preliminary notes—e.g. just use the R
function sample.

As for most uses of simulation-based inference the task for software falls into two halves

• Generate the simulations, in this case the resamples.

• Analyse the simulated data.

Once we move away from looking at univariate IID sampling, both become more complicated
and less general.

R ships with a package boot which is support software for Davison & Hinkley (1997) writ-
ten17 largely by Angelo Canty. The workhorse here is function boot, which allows several
types of resampling/simulation.

sim = "ordinary" which has stype as one of "i" (give indices into the data set), "f" (give
frequencies for each item) and "w" (normalized to one)

16and sketched in the preliminary material.
17for S-PLUS, and ported to R by me.

22

sim = "parametric" see below.

sim = "balanced" stratification.

sim = "permutation" resampling without replacement.

sim = "antithetic" induce negative correlations in pairs of bootstrap resamples.

It is also possible to specify strata, and importance sampling weights.

sim = "parametric" is intended for parametric bootstrapping, but is a completely general
mechanism. Here is how it is used for the smoothed bootstrap in the solutions to the prelimi-
nary exercises:

s <- 0.1 # the standard deviation of a normal kernel
ran.gen <- function(data, mle) {

n <- length(data)
rnorm(n, data[sample(n, n, replace = TRUE)], mle)

}
out3 <- boot(nerve, median, R = 1000, sim = "parametric",

ran.gen = ran.gen, mle = s)

Here mle is an object representing the parameters to be passed to the simulation routine.

There are two other specialised simulation functions, censboot for censored data, and tsboot
for time series.

The main analysis function is boot.ci.

Recent versions of package boot support parallel operations on multi-core computers. Al-
though in general the re-sampling is not independent (it is for sim = "ordinary" and sim =

"parametric") once that is done the evaluation of the statistic for the re-samples (usually the
time-consuming part) can be done in parallel.

23

4 Markov Chain Monte Carlo

The idea of Markov Chain Monte Carlo is to simulate from a probability distribution as the
stationary distribution of a Markov process. This is normally employed for quite highly struc-
tured problems, typically involving large numbers of dependent random variables. Such prob-
lems first arose in statistical physics, and the ideas were re-discovered in spatial statistics in the
1970s and 1980s. Then those wanting to implement Bayesian models jumped on the band-
wagon around 1990, rarely giving credit to those whose work in spatial statistics they had
taken the ideas from.

The key questions about MCMC from a practical viewpoint are

1. How do we find a suitable Markov process with our target distribution π as its stationary
distribution?

2. Assuming we cannot start from the stationary distribution (since if we could we would
know another way to simulate from the process), how rapidly does the process reach
equilibrium? And how can we know that it is already close to equilibrium?

3. How correlated are successive samples from the process, or (to put it another way),
how far apart do we need to take samples for them to contain substantially different
information?

These points are all interrelated—a good MCMC sampling scheme will be one for which each
step is computationally quick, and which mixes well, that is traverses the sample space quickly.

The previous paragraph assumes that these goals are achievable, but people do attempt to use
MCMC in problems with millions of random variables. Almost inevitably there are some
aspects of the process that mix slowly and some that mix fast, and so the choice of MCMC
sampling scheme does often need to be linked to the questions of interest.

MCMC can be approached from several angles. The preliminary material took on one ap-
proach based on my personal experience, and for variety these notes take another.

Some of the statements made here about convergence need technical conditions which are
omitted. It is generally accepted that the cases that are being excluded are pathological, and
since MCMC allows a lot of freedom to design a suitable scheme the conditions are easily
satisfied in practice. The clearest and most accessible account of the relevant theory I have
seen is Roberts & Rosenthal (1998).

Data augmentation

Suppose we have a parametric model p(Y | θ) for some observable random variables Y . It
is rather common for this to be the manifestation of a richer model p(Y, Z | θ) for both the
manifest variables Y and some latent (unobserved, ‘missing’) variables Z. This can arise in
many ways, including

• Missing data, so Z represents e.g. responses from a survey that were unobserved.

• Partial observation, e.g. in social networks we only observe the links at some times: in
family studies we have genetic data on only some members.

24

• Censored data, e.g. lifetimes in which all we know for some subjects is that they were
still alive on a particular date. So for each subject we have two pieces of information,
whether they were alive at the end of the study, and the actual date of death. For all
subjects the first is part of Y whereas for some the second is part of Y and for some part
of Z.

• Latent variable/class problems in which Z is some unobserved ‘true’ characteristic such
as intelligence or the component of a mixture distribution. In genetics Y might be the
phenotype and Z the genotype.

For simplicity of exposition we will take a Bayesian viewpoint with a prior probability distri-
bution on θ, and the main object of interest is then the posterior distribution g(θ) = p(θ |Y).
Note that

g(θ) = p(θ |Y) =

∫
p(θ |Y, Z)p(Z |Y) dZ

and
P (Z |Y) =

∫
p(Z | θ, Y)p(θ |Y) dθ

and hence g satisfies

g(θ) =

∫
K(θ, φ) g(φ) dφ, where K(θ, φ) =

∫
p(θ |Y, Z) p(Z |φ, Y) dZ (3)

Under mild conditions we can solve (3) by successive substitution,18 but we do have to inte-
grate out the unobserved variables Z. Tanner & Wong (1987) (see also Tanner, 1996) call a
Monte Carlo version data augmentation. This alternates the steps

a. Generate a sample (zi) of size m from the current approximation to p(Z |Y). This will
probably be done by first sampling θ∗i from the current approximation g(θ) and then sam-
pling zi from p(z | θ∗i , Y).

b. Use this sample to update the approximation to g(θ) = p(θ |Y) as the average of p(θ | zi, Y).

So what this is doing is approximating p(θ |Y) by a finite mixture from (p(θ | z, Y)). As iter-
ation progresses we might want to take larger and larger samples to get better approximations.

This is closely related to the notion of multiple imputation in the analysis of sample surveys,
where missing data are replaced by a sample of their uncertain values. So data augmentation
alternates between multiple imputation of the unobserved variables in the model and inference
based on the augmented data. From a theoretical viewpoint, the multiple imputations are being
used to approximate the integral in the definition of K at (3) by an average over samples.

However, we can take another point of view, as K is the transition kernel of a Markov chain,
and successive substitution will converge to the stationary distribution of that Markov chain.
Suppose that we just simulate from the Markov chain? This alternates

a. Generate a single sample z from p(Z | θ, Y) with the current θ.

b. Use z to sample θ from p(θ | z, Y).

18Start with some candidate g for p(θ |Y), and repeatedly use (3) to obtain a new and better candidate. Under
mild conditions this does work – there is a unique solution, the new candidate is closer in L1 norm to that solution
and convergence is geometric.

25

In this version we give up both multiple imputation and any attempt to keep probability distri-
butions in partially analytical form—rather we represent distributions by a single sample, and
run the Markov chain as a stochastic process on parameter values θ (rather than iterating an
integral operator). This variant is called chained data augmentation by Tanner (1996). Clearly
we would eventually want more than one sample, but we can get that by simulating the whole
Markov chain multiple times, rather than simulating each step multiple times.

In a particle filter19 evolving distributions are represented by a finite set of values, not just
one, that is by a finite mixture, usually but not always unweighted.

The observable data Y have played a passive rôle throughout this subsection: what we have
been considering is a way to simulate from the joint distribution of (θ, Z) conditional on Y .
So we do not need an explicit Y , and ‘chained data augmentation’ gives us a way to simulate
from any joint distribution of two groups of random variables by alternately simulating from
each of the two conditional distributions of one conditioned on the other.

Logistic and probit regression models

We can illustrate data augmentation by logit and probit regression models. These can be
described as taking a linear predictor η = Xβ which gives the location of a logistic or normal
random variable, the propensity Z. The propensity is unobserved, hence latent: only its sign
is observed, and conventionally ‘success’ corresponds to a negative sign.

This is a natural problem for an MCMC algorithm based on data augmentation, and for the
probit case it was given by Albert & Chib (1993). The conditional distribution of Z given the
data and β is a truncated normal distribution (truncated because we have observed the sign),
and so easy to sample from, provided we choose a suitable (conjugate, multivariate normal)
prior for β.

For a logit model the conditional distribution of Z is no longer of standard form. Holmes &
Held (2006) overcome this by extending the model, and regarding the logistic distribution as
a scale-mixture of normals: thus for each observation we get a pair of latent variables (Z, φ)
where Z is again normal with random multiplier φ. Again for a multivariate normal prior on
β they offer a (rather complicated) data augmentation algorithm to sample from the posterior.

Detailed balance

Data augmentation and the spatial birth-and-death processes of the preliminary notes provide
‘mechanistic’ approaches to developing an MCMC algorithm, but in general MCMC algo-
rithms can be unrelated to any hypothesized stochastic generative mechanism. Especially in
such cases, we need to be able to show formally20 that we do indeed have a Markov pro-
cess with the desired stationary distribution, and that the stationary distribution is the limiting
distribution.

A key concept is detailed balance, which is connected to reversibility of the Markov pro-
cess. Reversibility just means that the joint distribution of the process at a series of times is

19http://en.wikipedia.org/wiki/Particle_filter, Robert & Casella (2004, Chapter 14).
20for some value of ‘formal’!

26

http://en.wikipedia.org/wiki/Particle_filter

unchanged if the direction of time is reversed—clearly this only makes sense for a station-
ary process as for any other Markov process the convergence towards equilibrium reveals the
direction of time.

For a discrete-time discrete-state-space Markov process reversibility entails

P (Xt = i,Xt+1 = j) = P (Xt+1 = i,Xt = j) = P (Xt = j,Xt+1 = i)

so if (πi) is the stationary distribution,

πiPij = πjPji (4)

for transition matrix Pij . This equation is known as detailed balance.

If we know there is a unique stationary distribution, and we can show detailed balance for our
distribution π, we have shown that it is the unique stationary distribution. If we also know21

that the Markov process converges to its stationary distribution, we have a valid MCMC sam-
pling scheme.

Similar considerations apply to continuous-state-space Markov processes, e.g. detailed bal-
ance can apply to the density of the stationary distribution.

Gibbs sampler

so named by Geman & Geman (1984) but published some years earlier by Ripley (1979) and
as examples in earlier papers.

This applies to a multivariate distribution, so we can think of Y as m-dimensional. The sim-
plest Gibbs sampler consists of selecting a random component i of Y , and replacing Yi by a
sample from p(Yi |Y−i), where Y−i denotes all the variables except Yi.

This can easily be shown to satisfy detailed balance.

Chained data augmentation is a simple example of the Gibbs sampler. It alternately samples
from the conditional distributions of Z and θ given the remaining variables.

In practice the Gibbs sampler is often used with a systematic selection of i rather than a random
one (as in chained data augmentation). The theory is then not so simple as the process is no
longer necessarily reversible—this is discussed in Geman & Geman (1984) and some22 of the
references. One simple modification that makes the process reversible is to use a systematic
order of the m components, and then run through them in reverse order (chained DA is an
example).

When we have anm-dimensional distribution, it is not necessary to think of each component in
the Gibbs sampler as a single random variable. Sometimes the variables naturally form blocks,
and it is the blocks to which the Gibbs sampler should be applied. Once again, chained DA
provides the simplest example.

21e.g. by showing it is aperiodic and irreducible, and for continuous state-spaces Harris recurrent.
22e.g. Gamerman & Lopes (2006, §5.3.2).

27

Note that the Gibbs sampler does not necessarily converge to the stationary distribution: there
are conditions which need to be checked and are related to when a joint distribution is deter-
mined by all of its univariate conditionals. Consider the simple example of a two-dimensional
joint distribution of (X, Y) in which X has a standard normal distribution and Y = X .

Metropolis-Hasting schemes

A general way to construct a Markov chain with a given stationary distribution π was given
by Metropolis et al. (1953) which was given added flexibility by Hastings (1970).

These MCMC schemes start with a transition kernel q(x, y) of a Markov process on the state
space. Given a current state Yt this is used to generate a candidate next state Y ∗. Then either
the transition is accepted and Yt+1 = Y ∗ or it is not when Yt+1 = Yt. The probability that the
move is accepted is α(Yt, Y

∗) where

α(x, y) = min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
It is a simple exercise to show that this satisfies detailed balance and the stationary distribution
is π. For the stationary distribution to be also the limiting distribution we need the chain to be
aperiodic: note that it will be aperiodic if there is a positive probability of rejecting a move.

This satisfies detailed balance: taking rejection into account this requires

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

and both sides simplify to
min{π(x)q(x, y), π(y)q(y, x)}

The original Metropolis et al. scheme had a symmetric transition kernel, so the move is
accepted with probability min{1, π(y)/π(x)}. That is, all moves to a more or equally plausible
state are accepted, but those to a less plausible state are accepted only with a probability less
than one, the ratio of the probabilities.

That only the ratio of the probabilities enters is often exploited. If x is a high-dimensional
state vector, choosing transitions such that y differs from x only in one or a few components
can simplify greatly the computation of π(Y ∗)/π(Yt), and also avoid rejecting most proposed
moves (which will happen if π(Y ∗) is almost always very much smaller than π(Yt)). Indeed,
the Gibbs sampler is a special case of the Metropolis-Hastings sampler in which only single-
component moves are considered, and q(x, y) = p(xi |x−i) where i is the chosen component
(and hence α(x, y) ≡ 1).

A couple of other special cases are worth mentioning. One suggested by Hastings (1970) and
others is a random-walk sampler in which q specifies a random walk (and so makes most sense
when the state space is a vector space, but could apply to a lattice). Another is an independence
sampler in which q(x, y) = q(y), so the proposed move is independent of the current state.

For a gentle introduction to the many choices in implementing a Metropolis-Hastings MCMC
scheme see Chib & Greenberg (1995).

28

So-called Metropolis within Gibbs schemes use a Metropolis MCMC sampler (usually a ran-
dom walk sampler) for an update step of a Gibbs sampler. We do not need to run the Metropo-
lis sampler until convergence and early proposals suggested a few steps, say 5. Nowadays
most often only one Metropolis update is used at each Gibbs step, which is also a valid MCMC
scheme. (See Gamerman & Lopes (2006, §6.4.2) and Robert & Casella (2004, §10.3.3).)

Slice sampling

Slice sampling is an MCMC sampling scheme that is sometimes used for a single update
step in the Gibbs sampler: for fuller details see Neal (2003) and Robert & Casella (2004,
Chapter 8).

We only consider sampling a univariate variable with pdf proportional to f . Consider the
region U = {(x, y) | 0 ≤ y ≤ f(x)}, which has finite area (area one if f really is the pdf)
so we can sample (X, Y) uniformly from U , and X has the desired distribution. Sampling
uniformly from U is not easy in general, and generic Gibbs sampler software needs to sample
from pretty arbitrary univariate distributions. So we consider using a Gibbs sampler to sample
uniformly from U : this alternates steps

• Sample Y ∼ U(0, f(x)) for the current value x of X .

• SampleX uniformly from S(Y) = {x | f(x) = Y }, a horizontal slice through the graph
of f , hence the name of the sampler.

The difficulty is to find S(y), which (at least for continuous f) is a union of intervals. If the
support23 of the pdf is within a finite interval I = (L,R), we can use rejection sampling from a
uniform variable on I , but this may be inefficient and does not work with unbounded support,
so increasingly complex schemes have been suggested.

A Java applet illustrating slice sampling where the computation of S(y) is trivial can be found
at http://www.probability.ca/jeff/java/slice.html. This is for f(x) ∝ expx−1/d:
try small values of a = 1/d, which is the example of slow convergence by Roberts & Rosen-
thal mentioned on Robert & Casella (2004, p. 332).

A R demonstration script is available at http://www.stats.ox.ac.uk/~ripley/APTS2012/
scripts/slice.R.

Other schemes

The only limit on the plethora of possible MCMC schemes is the ingenuity of developers. We
saw another scheme, spatial birth-and-death processes, in the preliminary notes. A similar
idea, the reversible jump MCMC of Green (1995), has been applied to model choice in a
Bayesian setting.

Silce sampling is an example of a class of auxiliary variable schemes in which we add artificial
random variables either to get simpler steps or to walk around the sample space (‘mix’) better.

23The support is {x | f(x) > 0}.

29

http://www.probability.ca/jeff/java/slice.html
http://www.stats.ox.ac.uk/~ripley/APTS2012/scripts/slice.R
http://www.stats.ox.ac.uk/~ripley/APTS2012/scripts/slice.R

We do not even need to confine attention to Markov processes which jump: Grenander &
Miller (1994) and others have used Langevin methods, that is diffusions. See Robert & Casella
(2004, §7.8.5) for a brief account.

Using a MCMC sampler

So far we have described using a Markov chain to obtain a single sample from a stochastic
process by running it for an infinite number of steps. In practice we run it for long enough to
get close to equilibrium (called a ‘burn-in’ period) and then start sampling every m ≥ 1 steps
(calling thinning). We can estimate any distributional quantity via the law of large numbers

HN =
1

N

N∑
i=1

h(Xmi)→ E h(X)

for any m, so if h() is cheap to compute we may as well average over all steps. In practice
we often take m large enough so that samples are fairly dissimilar—thinning is also used to
reduce storage requirements.

There are many practical issues – where do we start? How do we know when we are ‘close
to equilibrium’? And so on. Note that the issue of whether we are yet close to equilibrium
is critical if we are simulating to get an idea of how the stochastic process behaves – Geman
& Geman (1984) based all their intuition on processes which were far from equilibrium, but
incorrect intuition led to interesting statistical methods.

A run of an MCMC algorithm provides a time series of correlated observations. There is a lot
of earlier work on analysing such time series from other simulation experiments, for example
of queueing problems: see Ripley (1987, Chapter 6). Most of these need a Central Limit
Theorem, which holds if the Markov chain is geometric ergodic, for example. (Roberts &
Rosenthal (1998, p.10) give an example of an MCMC scheme where the CLT fails to hold.)

One very useful concept is the effective sample size, the number of independent samples we
would have had to have taken to get the same variance asHN . We know (Ripley, 1987, p. 144)
that

NvarHN → σ2

[
1 + 2

∞∑
1

ρs

]
= 2πf(0)

where σ2, (ρs) and f are the variance, the autocorrelation sequence and spectral density24 of
the stationary time series h(Xmi). When you see ‘Time-series SE’ in the CODA summary, it
is estimated using the RHS25 of this formula.

Thus the ESS is, asymptotically,

N/

[
1 + 2

∞∑
1

ρs

]
= Nσ2/2πf(0)

24under at least one of its definitions!
25with f(0) estimated by fitting a lower-order polynomial (default linear) near the origin to to the periodogram

as estimated by spectrum.

30

Convergence diagnostics

Or ‘How do we know when we are close to equilibrium?

This led to much heated discussion in the early 1990s, and several survey papers. The scale of
the problem is often dramatically underestimated – more than twenty years ago we found an
example (Ripley & Kirkland, 1990) in which the Gibbs sampler appeared to have converged
after a few minutes, but jumped to a very different state after about a week.26 In statistical
physics such behaviour is sometimes call metastability.

The proponents have split into two camps, those advocating running a single realization of the
chain, and after a ‘burn-in’ period sampling it every m steps, and those advocating running
several parallel realizations, and taking fewer samples from each. Note that the computing
environment can make a difference, as the simplest and computationally most efficient way to
make use of multiple CPUs is to use parallel runs.

Writing about this, Robert & Casella (2004) (which is a second edition) say (p. X)

We also spend less time on convergence control, because some of the methods
presented [in the 1999 first edition] did not stand the test of time. The methods we
preserved in Chapter 12 have been sufficiently tested to be considered reliable.

and (p. 512)

Chapter 12 details the difficult task of assessing the convergence of an MCMC
sampler, that is, the validity of the approximation θ(T) ∼ π(x), and, correspond-
ingly, the determination of a “long enough” simulation time. Nonetheless, the
tools presented in that chapter are mostly hints of (or lack of) convergence, and
they very rarely give a crystal-clear signal that θ(T) ∼ π(x) is valid for all simu-
lation purposes.

Readers of other accounts (including their first edition) may come away with a very different
impression.

If we knew something about the rate of convergence of the Markov chain to equilibrium we
could use such knowledge to assess how long the ‘burn-in’ period needed to be. But this is
very rarely helpful, for

(i) we rarely have such knowledge,

(ii) when we do it is in the form of upper bounds on convergence rates and those upper
bounds are normally too crude, and

(iii) the theory is about convergence from any initial distribution of all aspects of the dis-
tribution. Many of the MCMC schemes converge fast for some aspects of the target
distribution and slowly for others—hopefully the scheme was chosen so that the former
are the aspects we are interested in.

Nevertheless, there are some exceptions: e.g. simple ones in Roberts & Rosenthal (1998, §5)
(some of which apply to slice sampling of log-concave densities: Robert & Casella (2004,
§8.3)) and an application to randomized graph-colouring algorithms in Jerrum (1995) (see
also Asmussen & Glynn, 2007, §XIV.3).

26on a 25MHz computer.

31

Figure 6: Diagnostic plots from two realizations of an MCMC simulation. Note the different scales.
These are for two estimators of a quantity known to be β = 1.5. From Ripley & Kirkland (1990).

Figure 7: Two snapshots of the second MCMC simulation. From Ripley & Kirkland (1990).

32

After all those notes of caution, here are some of the main ideas. Let (Xt) be the output from
a single MCMC run, possibly sub-sampled every m steps and of one (usually) or more aspects
of interest.

• Tests of stationarity. If the output is stationary, we can divide into two or more parts
which will have the same distribution, and apply a test for equality of distribution such
as the Kolomogorov–Smirnov test. Such tests are usually most sensitive to changes in
location (which is normally of most interest here), and designed for IID samples (and so
need adjustment, as done by Heidelberger & Welch (1983) and Geweke (1992)). Tests
of drift such as CUSUM charts (Yu & Mykland, 1998) come into this category.

• Regeneration. Some of the most powerful ideas in the analysis of discrete-event simula-
tions (Ripley, 1987, Chapter 6) are based on the idea that the process will from time-to-
time come back to an identifiable state and excursions from that state are independent
(by the strong Markov property). (Think for example of a queueing system emptying
completely.) Regeneration may be too rare to be useful, but this is one of the few fully
satisfactory approaches.

• Coverage. The idea is to assess how much of the total mass of π has been explored. For
a one-dimensional summary and sorted values X(t) the Riemann sum

T∑
t=1

|X(t+1) −X(t)| π(X(t))

provides an approximation to
∫
π(x)dx = 1, and so its convergence to one is a measure

of coverage of the MCMC to date. This is only applicable if there is a one-dimensional
summary of which we know the marginal distribution explicitly (so we can evaluate
π(X(t))), and it only tells us about coverage of that marginal.

• Multiple chains. If we have a small number of runs from suitable starting points we can
compare the variability within and between runs, and when the between-run variability
has reduced to that predicted from the within-run variability all the runs should be close
to equilibrium. The series (Xt) is autocorrelated, and we need to take that into account
in assessing the within-run variability: but that is a standard problem in the simulation
literature. This approach is principally associated with Gelman & Rubin (1992). The
problem is to choose suitable starting points so the runs considered do representatively
sample π.

• Discretization. Some methods look at a discretization of (Xt) to a process with a small
number of states. The original proposal by Raftery & Lewis (1992) was to reduce to
a two-state process. The discretized process will not normally be Markov, but a sub-
sampled process (every m steps) might be approximately so and if so we know enough
about two-state Markov chains to study their convergence, estimating the two parame-
ters of the transition matrix from the observed data. The issues are the Markov approxi-
mation and whether convergence of the discretized version tells us enough useful about
convergence of the original (although non-convergence definitely does).

Another cautionary note: these diagnostic tests must not be used as stopping rules, as that
would introduce bias.

33

Quite a lot of software has been written for convergence diagnostics. Two of the main suites,
coda and boa, are available as R packages. Our examples use coda: see Appendix B.

A less brief introduction to convergence with an emphasis on the methods in coda is given in
Robert & Casella (2010, §8.2–4).

There are some methods for using MCMC to produce a sample exactly from π. Propp &
Wilson (1996) called these exact sampling, but Wilfrid Kendall’s term perfect simulation has
stuck (see, e.g. Kendall, 2005). They cover only a limited set of circumstances and are most
definitely computer-intensive.27 So these are not techniques for mainstream use (and probably
never will be), but they could be used for example

• as a reference against which to compare cheaper simulation schemes, and

• to provide a small number (e.g. one) of samples from which to start an MCMC sampler.

See also Asmussen & Glynn (2007), Casella et al. (2001) and Robert & Casella (2004, Chap-
ter 13). One possibly more practical idea that arises from Propp & Wilson’s work is the idea of
monotonicity of MCMC samplers. Suppose there are some extreme states for the distribution
of interest, e.g. an image coloured entirely white or black. Then if we start an MCMC scheme
at those states, and the realizations become ‘similar’, there is some hope that realizations start-
ing from any initial state would have become similar by that time. ‘Monotonicity’ provides a
theoretical guarantee of this and it (or similar ideas) underlies most perfect sampling schemes.

Further reading

MCMC can be approached from wide range of viewpoints – from theoretical to practical,
as a general technique or purely Bayesian, and at different levels (especially in probability
background). Texts which have interesting perspectives include Chen et al. (2000), Gamerman
& Lopes (2006), Gelman et al. (2004), Gilks et al. (1996), Liu (2001) and Robert & Casella
(2004). Roberts & Tweedie (2005) cover the Markov chain theory. As a topic in simulation,
it is covered in Ripley (1987) and Dagpunar (2007),28 and as a method of integration in Evans
& Swartz (2000).

Gelman et al. (2004) and Jackman (2009) provide accessible introductions to the computa-
tional aspects of applied Bayesian work with non-trivial worked examples.

Software

Because MCMC is a meta-algorithm, there are very many specific applications and corre-
sponding software including many R packages. (See also http://cran.r-project.org/

web/views/Bayesian.html and the March 2006 issue of R News at http://www.r-project.
org/doc/Rnews/Rnews_2006-1.pdf.)

The examples and labs will use R package MCMCpack, which is a collection of MCMC al-
gorithms for Bayesian inference on specific models, coded in C++ with an R interface and

27I understood (from Persi Diaconis) that Propp & Wilson ran a simulation for six weeks without any knowl-
edge of how long it would actually take to reach an exact sample.

28and at a higher mathematical level, Asmussen & Glynn (2007).

34

http://cran.r-project.org/web/views/Bayesian.html
http://cran.r-project.org/web/views/Bayesian.html
http://www.r-project.org/doc/Rnews/Rnews_2006-1.pdf
http://www.r-project.org/doc/Rnews/Rnews_2006-1.pdf

producing output suitable for analysis by coda. The choice of models is slanted towards so-
cial science applications,29 but includes linear regression, logit, probit, log-linear and factor
analysis models.

Creating general software for MCMC is close to impossible, and all attempts known to me
restrict themselves in one or both of two ways. Some confine attention to a family of sam-
pling schemes—e.g. the grandly-named R package mcmc works with “normal random-walk”
Metropolis and perhaps the best-known software, BUGS, works with the Gibbs sampler. Oth-
ers confine attention to a particular class of statistical models and to a particular way to ap-
proach inference on those models. One common restriction is to the Bayesian analysis of
hierarchical or graphical models.

BUGS30 was a program developed from 1989 at MRC’s Biostatistics Unit in Cambridge,
coded in an arcane language that has restricted the platforms it could run on. It used an R-like
language (see Appendix A) to specify graphical models for which it then creates a Gibbs sam-
pling scheme, plus the ability to simulate from the created sampler. That version is now known
as ‘classic BUGS’ and spawned WinBUGS31 (Lunn et al., 2000) with a GUI interface: this
was then re-implemented as OpenBUGS.32 Ntzoufras (2009) describes how to use WinBUGS
as a standalone Windows program. See Lunn et al. (2009) for some of the history of BUGS.

JAGS33 is an Open Source program by Martyn Plummer written in C++ that re-implements
the BUGS language. It is much more recent and does not (yet) have so well-tuned internal
algorithms so can be slower: conversely it has a richer language and is much easier to extend.
It does have the great advantage of running on Linux, Mac OS X, Solaris . . . as well as
(32-bit and 64-bit) Windows. Despite its blurb, the examples in Jackman (2009) are done in
JAGS—for he is a Mac user.

From the BUGS website

Health warning

‘The programs are reasonably easy to use and come with a wide range of exam-
ples. There is, however, a need for caution. A knowledge of Bayesian statistics is
assumed, including recognition of the potential importance of prior distributions,
and MCMC is inherently less robust than analytic statistical methods. There is no
in-built protection against misuse.’

About JAGS:

‘JAGS uses essentially the same model description language but it has been com-
pletely re-written. Independent corroboration of MCMC results is always valu-
able!’

29such as item response models
30Bayesian inference Using Gibbs Sampling.
31which as its name suggests is for Windows only, http://www.mrc-bsu.cam.ac.uk/bugs: as a 32-bit

program it runs under both 32- and 64-bit Windows. People have managed to run it on ix86 Linux via WINE
and on Mac OS X via WINE or CrossOver—but others have failed.

32http://www.openbugs.info/; this is Open Source but is de facto also restricted to i386 Windows and
Linux (although the i386 version can be run on x86 64 Linux). OpenBUGS is compiled by Oberon Microsys-
tems’ ‘BlackBox’ development system on 32-bit Windows: the i386 Linux version is cross-compiled.

33http://www-fis.iarc.fr/~martyn/software/jags/.

35

http://www.mrc-bsu.cam.ac.uk/bugs
http://www.openbugs.info/
http://www-fis.iarc.fr/~martyn/software/jags/

Note that all the BUGS-like programs require a proper Bayesian model, so exclude improper
priors. There are frequent references in Gelman & Hill (2007) to crashes34 in ‘Bugs’ (pre-
sumably WinBUGS) with difficult-to-fit models, and it seems that at least WinBUGS and
OpenBUGS are less robust to numerical issues than programs such as R. One of those numer-
ical issues seems to be attempts to specify very diffuse (but still proper) priors as surrogates
for improper priors.

There are R interface packages BRugs, R2OpenBUGS, R2WinBUGS and rjags.

We will also look briefly at R package LearnBayes, which is a companion to Albert (2009):
the latter includes examples of MCMC both via LearnBayes and via WinBUGS.

34‘Nobody could get the developers of BUGS under the trade descriptions act.’ quoth
http://www.senns.demon.co.uk/Confuseus.htm.

36

http://www.senns.demon.co.uk/Confuseus.htm

5 MCMC examples

This section sets the background for the examples of MCMC to be used in the practicals.

Binomial logistic regression

Venables & Ripley (2002, §7.2) explore the following example.

Consider first a small example. Collett (1991, p. 75) reports an experiment on the
toxicity to the tobacco budworm Heliothis virescens of doses of the pyrethroid
trans-cypermethrin to which the moths were beginning to show resistance. Batches
of 20 moths of each sex were exposed for three days to the pyrethroid and the
number in each batch that were dead or knocked down was recorded. The results
were

Dose

Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

The doses were in µg. We fit a logistic regression model using log2(dose) since
the doses are powers of two.

1 2 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dose

pr
ob

M

M

M

M

M

M

F

F

F

F

F

F

Figure 8: Probability of death of tobacco budworm moths vs dose (on log scale) of pyrethroid. The
observed frequencies are marked by M (for male moths) and F (for female moths), together with fitted
curves for separate logistic regressions.

The interest is in estimating the dose required for a particular probability p of death, especially
that for p = 0.5 called LD50. A frequentist analysis using glm is given in Venables & Ripley
(2002), but here we consider a Bayesian analysis.

37

We start by using R package MCMCpack: this works with Bernoulli and not binomial data, so
we must disaggregate the results. The default prior for β is an improper uniform prior, but
others can be supplied – see ?MCMClogit.

ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
resp <- rep(rep(c(1,0), 12), times = t(SF))
budworm <- data.frame(resp, ldose = rep(ldose, each = 20),

sex = rep(sex, each = 20))

library(MCMCpack) # loads package ’coda’
fit <- MCMClogit(resp ~ sex*ldose, data = budworm)
summary(fit)
effectiveSize(fit)
plot(fit)
acfplot(fit) # suggests thinning
fit <- MCMClogit(resp ~ sex*ldose, data = budworm, thin = 20)
summary(fit)
HPDinterval(fit)

Package MCMCpack is to a large extent a black box: you get whatever MCMC scheme the
authors decided to implement, and for example quite different schemes are used for logit
(random-walk Metropolis) and the closely related probit regression (data augmentation à la
Albert & Chib).

This is illustrating the posterior distribution of the parameters, but that is not what we are
interested in. With simulation-based inference it is trivial to transform the problem: simply
transform the samples.

ld50F <- as.mcmc(2 ^ (-fit[,1]/fit[,3]))
ld50M <- as.mcmc(2 ^ (-(fit[,1]+fit[,2])/(fit[,3] + fit[,4])))
ld50 <- mcmc(cbind(M = ld50M, F = ld50F))

gives the posterior distribution of LD50 (for the original scale of the dose).

There is an issue with LD50, pointed out by Gelman et al. (2004, p. 93): we are really only
interested in positive slopes. In this example the chance of a negative fitted slope is negligible,
but in theory LD50 is a non-linear function of the parameters, something simulation-based
inference takes in its stride. So we can more accurately compute the samples for LD50 for
female moths by

ld50F <- ifelse(fit[,3] > 0, 2^(-fit[,1]/fit[,3]), ifelse(fit[,1] > 0, 0, Inf))

Even though this is a discontinuous non-linear transformation of the model fit, transforming
the samples remains just a matter of writing a suitable R function.

38

Our second approach uses JAGS via rjags. We need to specify the JAGS model, which we
will do in a file budworm.jags:

model {
for(i in 1:6) {

numdead[i] ~ dbin(p[i], 20)
logit(p[i]) <- alphaM + betaM * ldose[i]

}
for(i in 7:12) {

numdead[i] ~ dbin(p[i], 20)
logit(p[i]) <- alphaF + betaF * ldose[i]

}
betaM ~ dnorm(0.0, 0.001)
alphaM ~ dnorm(0.0, 0.001)
betaF ~ dnorm(0.0, 0.001)
alphaF ~ dnorm(0.0, 0.001)

}

This is simple rather than general, and specifies rather vague independent priors for the pa-
rameters. The syntax is deceptively similar to R, but note that dnorm has arguments mean and
precision (reciprocal variance).

To run the MCMC simulation we use

library(rjags)
inits <- list(list(alphaM = 0, betaM = 0, alphaF = 0, betaF = 0))
vars <- c("alphaM", "alphaF", "betaM", "betaF")
budworm.jags <- jags.model("budworm.jags", inits = inits, n.chains = 1,

n.adapt = 500)
budworm.sim <- coda.samples(budworm.jags, vars, n.iter = 10000)
summary(budworm.sim)
plot(budworm.sim)
effectiveSize(bd.sims)

with printout

terations = 501:10500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alphaF -3.0863 0.5485 0.005485 0.02216
alphaM -2.9135 0.5593 0.005593 0.01914
betaF 0.9342 0.1657 0.001657 0.00677
betaM 1.3014 0.2166 0.002166 0.00747

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alphaF -4.2345 -3.4368 -3.060 -2.717 -2.073
alphaM -4.0372 -3.2812 -2.890 -2.544 -1.856
betaF 0.6329 0.8232 0.928 1.041 1.279
betaM 0.8957 1.1553 1.295 1.441 1.744

39

> effectiveSize(bd.sims)
alphaF alphaM betaF betaM

624.3288 799.2533 645.4253 773.8282

We should explore other starting points, and will do so in the practical.

Looking at the posterior simulations shows a potential problem with naı̈ve use of the Gibbs
sampler—the intercept and slope are quite correlated. Only extreme correlations will give
problems in a classical analysis of a GLM, but here quite modest correlations can slow down
convergence of the automatically constructed Gibbs sampler. (The classic remedy in both
cases is to centre the explanatory variables.)

For a third approach, consider a random-walk Metropolis scheme. We start with the aggre-
gated classical fit, and use its asymptotic distribution to suggest the (multivariate normal)
distribution of the random-walk step.

w <- rep(20, 12)
fit <- glm(numdead/w ~ sex*ldose, weights = w, family = binomial)
X <- model.matrix(fit)
logpost <- function(beta)

sum(dbinom(numdead, w, plogis(X %*% drop(beta)), log = TRUE))

library(LearnBayes)
scale <- 0.25
fit2 <- rwmetrop(logpost, list(var = vcov(fit), scale = scale),

coef(fit), m = 1000)
fit2$accept
sims <- as.mcmc(fit2$par) # make a coda object.

This assumes a flat prior, but priors are easily incorporated into logpost. The tuning constant
scale re-scales the size of the step: this needs to be chosen to get a reasonable acceptable rate
(often 10–50%) and large effective sample size—and will be in the practical.

Poisson change-point models

Consider the much-used data set of annual counts of British coal mining ‘disasters’ from 1851
to 1962.35

Looking at the data suggests that the rate of accidents decreased sometime around 1900, so a
plausible first model is that the counts are independent Poisson with mean λ1 before time τ
and mean λ2 from time τ onwards, where we expect λ2 < λ1. This is the simplest possible
case, and we could consider more than one changepoint.

For a Bayesian analysis we need a prior distribution on the three parameters (τ, λ1, λ2). If
we take them as independent and of conjugate form, the posterior can be found analytically
(Gamerman & Lopes, 2006, pp. 143ff), but a realistic prior will have a dependent distribution
for (λ1, λ2). That is easy to do in the MCMC framework by re-weighting—for a more complex
application to radiocarbon dating see Gilks et al. (1996, Chapter 25).

We will consider computing posterior distributions via MCMC in two ways. R package
MCMCpack has a function MCMCpoissonChange with an MCMC scheme coded in C++, im-

35These were derived from Jarrett (1979) and refer to explosions.

40

1860 1880 1900 1920 1940 1960

0
1

2
3

4
5

6

year

co
un

t

Figure 9: Number of explosions per year in British coal mines.

plementing the method of Chib (1998). This has independent gamma priors for the rates and
beta priors for the transition point(s). The R code is simple:

D is an integer vector of N = 112 counts.
library(MCMCpack)
fit <- MCMCpoissonChange(D ~ 1, m = 1, c0 = 1, d0 = 1,

burnin = 10000, mcmc = 10000,
marginal.likelihood = "Chib95") # bug workaround

plot(fit); par(mfrow=c(1,1))
summary(fit)
plotState(fit)
plotChangepoint(fit, start = 1851)

The arguments say that we are looking for m = 1 changepoints, and specify a gamma(1, 1)
prior for the mean counts λi. In that approach, someone else has done all the work in design-
ing and coding a suitable MCMC scheme—this is fast but not general. MCMCpack produces
samples ready for analysis by R package coda.

Our second approach follows Albert (2009, §11.4) and uses vague priors. Rather than use
specific code, we use JAGS and hence a Gibbs sampler somewhat tailored by the program to
the problem. The first step is to tell JAGS what the model is using a model file containing

model {
for (year in 1:length(D)) {

D[year] ~ dpois(mu[year])
log(mu[year]) <- b[1] + step(year - changeyear) * b[2]

}
for (j in 1:2) { b[j] ~ dnorm(0.0, 1.0E-6) }
changeyear ~ dunif(1, length(D))

}

This version uses a slightly different parametrization, with the first element of b as log λ1 and
the second as log λ2 − log λ1. The data are the counts in D. The change-year is modelled as
continuous, but we could also model it with a discete distribution.

We can then use rjags to ask JAGS to simulate from the posterior distribution of this model,

41

Posterior Density of Regime Change Probabilities

1860 1880 1900 1920 1940 1960

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 10: Posterior distribution for the year of change in disaster rate. The red dashed line marks the
median.

by e.g.

library(rjags)
inits <- list(list(b = c(0, 0) , changeyear = 50),

list(b = rnorm(2), changeyear = 30),
list(b = rnorm(2), changeyear = 70))

cm.jags <- jags.model("coalmining.jags", inits = inits, n.chains = 3)
coalmining.sim <- coda.samples(cm.jags, c("changeyear","b"), n.iter = 5000)

As MCMC is an iterative scheme we have to supply initial values of the parameters: it is
possible to supply (as a list of lists as here) separate starting values for each run, or a function
that will give a list result.

The result object can be summarized and plotted. The printout looks like

> summary(coalmining.sim)

Iterations = 1001:6000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
b[1] 0.9711 0.2448 0.001999 0.003086
b[2] -1.4779 0.4891 0.003993 0.023831
changeyear 58.7470 26.9659 0.220176 0.105376

...

42

Survival

Parametric survival models are not easily fitted in a Bayesian setting, and we consider fitting a
Weibull accelerated life model to a subset of the Australian AIDS data of Venables & Ripley
(2002, §13.5). To reduce computation time we consider only the 1116 patients from NSW
and ACT (an enclave within NSW). To take account of the introduction of Zidovudine (AZT),
time was run at half speed from July 1987.

library(MASS); library(survival)
Aidsp <- make.aidsp() # MASS ch13 script
fit <- survreg(Surv(survtime + 0.9, status) ~ T.categ + age,

data = Aidsp, subset = (state == "NSW"))
summary(fit)

This model has 9 coefficients in the linear prediction, and one (σ) for the shape of the Weibull,
which is estimated to be very close to exponential.

We can make use of an improved version of the code in Albert (2009):

library(LearnBayes)
weibullpost <- function(theta, data)
{ ## this version is 4x faster than the original

p <- length(theta); shape <- theta[p]; beta <- theta[-p]
lp <- data[, -(1:2), drop=FALSE] %*% beta
zi <- (log(data[,1]) - lp)/shape
Si <- -exp(zi)
fi <- zi + Si - log(shape)
ind <- data[,2] == 1
lterm <- Si; lterm[ind] <- fi[ind]
sum(lterm)

}
start <- c(coef(fit), shape = fit$scale)
mf <- model.frame(fit)
d <- cbind(mf[[1]], model.matrix(terms(fit), mf))
fit0 <- laplace(weibullpost, start, d)

This computed the posterior density for the parameters (β, σ) for a vague (improper) prior,
and then finds the posterior mode (which is here the MLE). One might need to handle the
constraint σ > 0 by for example a log transformation, but in this example σ is almost surely
close to 1 so we use a simpler (and faster) version.

Simulation is then done by a random-walk Metropolis algorithm as before:

proposal <- list(var = fit0$var, scale = 0.5)
bf <- rwmetrop(weibullpost, proposal, fit0$mode, 1000, d)
bf$accept
res <- bf$par
colnames(res) <- names(start)
library(coda)
res <- as.mcmc(res)
plot(res)
acfplot(res)
effectiveSize(res)

This results in about 45% acceptance in the Metropolis step and apparently reasonable con-
vergence well within 1000 steps. However, there is a high autocorrelation, so the effective

43

D
en

si
ty

0
5

10
15

0.95 1.00 1.05 1.10 1.15

shape

0.
0

1.
0

2.
0

3.
0

6.2 6.4 6.6 6.8 7.0

(Intercept)

0.
0

0.
5

1.
0

1.
5

2.
0

−0.5 0.0 0.5

T.categhsid
0.

0
0.

5
1.

0

−0.5 0.0 0.5 1.0 1.5

T.categid

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2

T.categhet

0.
0

0.
5

1.
0

1.
5

−1.0 −0.5 0.0 0.5 1.0

T.categhaem

0.
00

.5
1.

01
.5

2.
02

.5

−0.4 −0.2 0.0 0.2 0.4 0.6

T.categblood

0.
0

0.
1

0.
2

0.
3

0 5 10

T.categmother
0.

0
0.

5
1.

0
1.

5
−0.5 0.0 0.5 1.0

T.categother

0
20

40
60

80
12

0

−0.030 −0.025 −0.020 −0.015 −0.010

age

Figure 11: Kernel density estimates of the univariate posteriors from MCMC estimation of a Weibull
survival model for the NSW/ACT AIDS data.

sample size is 10–30. More steps (and more time) are needed to get adequate coverage of the
posterior density:

res <- rwmetrop(weibullpost, proposal, fit0$mode, 4e4, d)$par
colnames(res) <- names(start)
res <- window(as.mcmc(res), thin = 40)
effectiveSize(res)
acfplot(res)
densityplot(res)
summary(res)

Regression models

Albert (2009, § 9.3) considers a dataset on the number of puffin nesting burrows in 38 study
areas with 4 explanatory variables.

Although the data are counts, Albert treated this as a regression problem, and so initially will
we. For a Bayesian analysis via MCMC we can use

library(LearnBayes) # for the dataset

44

library(MCMCpack)
Bfit <- MCMCregress(Nest ~ Grass + Soil + Angle + Distance, data = puffin,

burnin = 1000, mcmc = 25000, thin = 25)
summary(Bfit)
densityplot(Bfit)

or as a JAGS model. A general way to set up regression models in rjags is

library(rjags)
X <- model.matrix(~ Grass + Soil + Angle + Distance, data = puffin)
inits <- list(list(beta = rep(0, 5), sigma = 1))
p.jags <- jags.model("puffin.jags", data = list(Nest = puffin$Nest, X = X),

inits = inits, n.chain = 1)
p.sims <- coda.samples(p.jags, c("beta", "sigma"), n.iter = 10000, thin = 10)

with model file puffin.jags given by

model{
for(i in 1:38) { Nest[i] ~ dnorm(mu[i], sigma^-2) }
mu <- X %*% beta
for(i in 1:5) { beta[i] ~ dnorm(0, 0.01) }
sigma ~ dunif(0, 10)

}

(See the scripts for how to get the samples labelled by the regression coefficient names and
not just e.g beta[3].)

A Poisson regression model would appear to be more appropriate: the classical version would
be

pfit <- glm(Nest ~ Grass + Soil + Angle + Distance, poisson, data = puffin)
summary(pfit)

but note that exhibits considerable over-dispersion and the dataset does have 13/38 zero counts
(and none of one or two). If for the moment we ignore that, we could use

Bpfit <- MCMCpoisson(Nest ~ Grass + Soil + Angle + Distance,
data = puffin, burnin = 1000, mcmc = 25000, thin = 25)

summary(Bpfit)

but we really need a better model. Package MCMCpack runs out of road here, but we can turn
to JAGS.

Changing to a Poisson regression in JAGS is a simple change: the model file is puffin2.jags:

model{
for(i in 1:38) { Nest[i] ~ dpois(exp(eta[i])) }
eta <- X %*% beta
for(i in 1:5) { beta[i] ~ dnorm(0, 0.01) }

}

run by

inits <- function() list(beta = c(2, rep(0, 4)))
p2.jags <- jags.model("puffin2.jags", data = list(Nest = puffin$Nest, X = X),

inits = inits, n.chain = 3)
p2.sims <- coda.samples(p2.jags, "beta", n.iter = 10000, thin = 25)
summary(p2.sims)
effectiveSize(p2.sims)

45

To change to a negative binomial regression, we need to know a bit more about how that is
done classically (Venables & Ripley, 2002, §7.4) :

library(MASS)
nbfit <- glm.nb(Nest ~ Grass + Soil + Angle + Distance, data = puffin,

maxit = 50)
summary(nbfit)

This uses a parametrization of the negative binomial that makes the model a GLM: this differs
from rnbinom in R, which JAGS follows. So we can either use a model file like

model{
for(i in 1:38) {

Nest[i] ~ dnegbin(p[i], theta)
lambda[i] <- exp(eta[i])
p[i] <- theta/(theta + lambda[i])

}
eta <- X %*% beta
for(i in 1:5) { beta[i] ~ dnorm(0, 0.01) }
theta ~ dunif(1, 50) # a guess, the classical fit is about 9

}

or we can make use of the characterization of the negative binomial as a gamma-distributed
mixture of Poissons as

model{
for(i in 1:38) {

Nest[i] ~ dpois(exp(eta[i]) * e[i]/theta)
e[i] ~ dgamma(theta, 1)

}
eta <- X %*% beta
for(i in 1:5) { beta[i] ~ dnorm(0, 0.01) }
theta ~ dunif(1, 50)

}

We can handle zero-inflation (where the count is a mixture of two distributions, one of which
is always zero) in a similar way.

Hierarchical linear models

Straightforward linear models of the form

Y = Xβ + ε, ε ∼ N(0, σ2I)

have p+1 parameters θ = (β, σ2). A Bayesian analysis needs a prior for θ, and for convenient
priors the posterior can be found explicitly. However, if we allow non-IID errors (so ε ∼
N(0, κΣ(ψ))) then simulation-based methods become much more convenient, and perhaps
essential.

One common way for such structured variance matrices to arise is what is called in the classical
literature mixed effects models. Suppose that

Y = Xβ + Zγ + ε, ε ∼ N(0, σ2I)

where γ is regarded as random vector. In a Bayesian setting β is already regarded as a random
vector so this is no real change, but impact comes from thinking of this hierarchically. In the

46

simplest case, suppose we have two levels of units, say observations on classes in schools or
repeated measurements on individuals. Rather than the exchangeability that the IID assump-
tion entails, we now have a multi-level invariance amongst groups of observations. With two
levels of units, the Bayesian model has three groups of random variables

• data points Yij , observed at the lowest level,

• random effects ηi on level-one units, unobserved, and

• parameters in the distribution.

Note though that it is just a linear model for the observed data with a parametrized variance
matrix of correlated errors.

This is fertile ground for use of a Gibbs sampling scheme to simulate from the posterior
distribution given the observed data, so many schemes have been proposed. Here are the basic
ideas.

(a) a grouped Gibbs sampler, in which all the variables in one of the three groups are updated
at once. Generally the conditional distributions of the groups given the rest are simple
to simulate from, although the variance parameters may need a Metropolis step. How
well this works depends strongly on how well the hierarchical model mimics the real
dependence structure.

(b) an ‘all-at-once’ Gibbs sampler. This flattens the hierarchical model to two levels, the
linear coefficients and the distributional parameters, and alternates between them. Effec-
tively it fits a weighted regression for known variance parameters, then simulates variance
parameters conditional on the residuals from the weighted regression. It is in general easy
to implement and quick (in steps) to converge, but the flattened model can be much larger.

(c) a single-variable Gibbs sampler, updating one variable at a time. Again this is usually
simple to implement, and simulating the individual regression parameters is fast. The
problem is that the latter can be highly correlated and so the Gibbs sampler moves slowly:
this can often be overcome by a linear transformation of the regression parameters, one
which can be approximated by a pilot run.

(d) parameter expansion. All of these schemes can be slow to converge when estimated hi-
erarchical variance parameters are near zero, since this will ensure that the corresponding
random effects are estimated as rather similar and then at the next step the variance pa-
rameters is estimated as small. We can circumvent this by adding further parameters, e.g.
a multiplicative effect on all the random effects in a group.

For more details on simulation-based Bayesian approaches to regression-like problems see
Gelman & Hill (2007) and Gelman et al. (2004). Gamerman & Lopes (2006, §6.5) have
complementary material.

Package rjags has the option

load.module("glm")

which makes further algorithms available for (generalized) linear models. At one point that
made for appreciably faster convergence, but it seems at present often to be counter-productive.

47

6 Large datasets

What is ‘large’ about large datasets or the 2010s buzzword, Big Data?

• Many cases. This is perhaps the most common, for example

– Oxford’s library catalogue has 5 million items, the British Library’s 13 million and
the Library of Congress contains 21 million books and 141 milion items in total.

– Insurance companies have records for all their customers, and all those they have
offered quotes to, and they tend to share information with other companies. So
there is a database with about 70 million records on US drivers.

– Medical registries (in countries which have them) will have pretty much complete
coverage of particular diseases (e.g. haemophilia) and typically these are of up to
tens of thousands of subjects.

– Inventories and sales records are often for many thousands of items.

– Banks have records for every customer (several million in large countries) which
they use to target their marketing (and especially their mailshots).

A variant on this is recording at high frequency for a long time, e.g. flight recorders,
tick-by-tick financial trading.

• Many pieces of information per case. This tends to be rarer, but with genome-wide
screening it is common to have thousands (and sometimes tens of thousands) of pieces
of information for each of a modest number (perhaps 100) subjects.

We have been working on group studies in fMRI.36 These have at most tens of sub-
jects, and maybe thousands of brain images each of a hundred thousand voxels for each
subject.

Remote sensing provides another example—complex images on few occasions.

• Many cases and many pieces of information on each. This is currently unusual, and the
only one I have encountered is CRM.37 You probably all have a ‘loyalty’ card—that is
a means to bribe you to collect information about you. So the consortium owning the
card know the buying patterns of every customer but also associations between items.
You have probably used sites such as Amazon and been offered suggestions, maybe

People who purchased this book also purchased . . . ’

Perhaps national censuses come into this category: although full censuses usually have
a modest number of questions, it is common to ask more of a, say, 10% sample and
perhaps even follow those up yearly.

A typical dataset can be thought of as a rectangular table: the most common case is a ‘long’
table with the second and third bullet points corresponding to ‘wide’ and ‘both long and wide’
tables.

36functional Magnetic Resonance Imaging.
37‘Customer Relationship Management’.

48

The largest dataset I have been involved with was one planned by my colleagues in genetics
who are envisaging 20TB38 of raw data.

And what is meant by ‘large’? Unwin et al. (2006, Chapter 1) trace some history and quotes
the following table (from Huber in 1992 and Wegman in 1995)

Size Description Bytes
Tiny Can be written on a blackboard 102

Small Fits on a few pages 104

Medium Fills a floppy disk 106 (1MB)
Large Fills a tape 108 (100MB)
Huge Needs many tapes 1010 (10GB)
Monster 1012 (1TB)

Some more examples:

Eighteen months ago, Li & Fung, a firm that manages supply chains for retailers,
saw 100 gigabytes of information flow through its network each day. Now the
amount has increased tenfold.
(Economist, 2010 Feb 25)

Tesco, a British retailer, collects 1.5 billion nuggets of data every month and uses
them to adjust prices and promotions. Williams-Sonoma, an American retailer,
uses its knowledge of its 60m customers (which includes such details as their in-
come and the value of their houses) to produce different iterations of its catalogue.
(Economist, 2011 May 26.)

As a file on disk, the Netflix Prize data (a matrix of about 480,000 members’
ratings for about 18,000 movies) was about 65Gb in size. But not every member
rated every movie: there were only about 99 million ratings.
(Bryan Lewis’ blog, 2011 May 31)

Hardware considerations

Currently we are towards the end of the transition from ‘32-bit’ to ‘64-bit’ computing. These
transitions happen every (quite a) few years—Windows went from 16-bit to 32-bit with Win-
dows 95.39

What is it that was ‘32-bit’? Several things. Almost all current computers work with bytes,
units of 8-bits. So ‘32-bits’ refers to the way that bytes are addressed—by using a 32-bit
pointer we can address 232 separate bytes, that is about 4 billion. What are these bytes? At
least

• Virtual memory for a user process (the address space).

• Virtual memory for the operating system.

• Bytes in a file.

3820 terabytes, about 20,000 GB or 2× 1013 bytes or 40 entry-level hard discs.
39in 1995, with some 32-bit support in previous versions.

49

However, because programmers used signed integers which can hold numbers−231 . . . 231−1,
most effective limits for 32-bit systems were 2GB.

File sizes of 2GB seemed large until recently, but with current disc sizes of around 500GB,
2GB files are no longer rare. Most 32-bit OSes have a means to support larger files, and R has
made use of those facilities for some years.

These days 2GB of RAM is entry-level,40 so it is reasonable to expect to use 2GB of memory
in a single process. In fact 32-bit OSes limit per-process user address spaces to that or a bit
more, and it is that address limit that pushed the move to 64-bit OSes. (Most CPUs currently
on sale are 32/64-bit.) Multi-user servers with 128–512GB of RAM are no longer rare.

R has a limit of 231 − 1 elements for a vector (which for numeric data takes 16GB of address
space), but that will be raised to 252 in the version expected to be released as 2.16.0 in Spring
2013.

To put this in some perspective, I moved to Oxford in 1990 and we equipped an MSc teaching
lab with 20MHz 8MB Sun workstations running a 32-bit OS, and had about 600MB of disc
space for all the graduate students. Our current (and about to be replaced) teaching lab has
3GHz dual-core machines with 4GB RAM running 64-bit Windows 7 and we have about 2TB
of user disc space.

DBMSs

Large amounts of data are not usually stored in simple files but in databases. Generally a
database is thought of as the actual numeric or character data plus metadata.

Although some people use Excel spreadsheets as databases, professional-level uses of databases
are via DataBase Management Systems (DBMS), which are designed to efficiently retrieve
(and in some cases update) parts of the data. DBMSs lie behind a great deal of what we ex-
perience: when a call centre says ‘I will just bring up your details’,41 what they are actually
doing is using a DBMS to extract records from several tables in one or more databases. Also,
when you ask for a page on many websites, it is retrieved from various tables in a DBMS.

DBMSs vary greatly in scale, from personal (such as Microsoft Access, MySQL) through
department-level servers (Microsoft SQL Server, MySQL, PostgreSQL) to enterprise-wide
(Oracle, DB2 and upscaled department-level systems).

Most of these systems work with SQL (Structured Query Language)42 to access parts of the
data. There is a series of ISO standards for SQL, but unfortunately most of the DBMS vendors
have their own dialects.

It has been a long time coming, but it will become increasingly common for statisticians to be
working with data stored in a DBMS. So some knowledge of SQL will become increasingly
valuable.

There are several R packages which interface with DBMSs. The most universal is RODBC,
which uses a standard called ODBC to talk to the DBMS and virtually all DBMSs have ODBC

40thanks to the memory usage of Windows Vista/7.
41usually followed by ‘the system is rather slow today’.
42http://en.wikipedia.org/wiki/SQL.

50

http://en.wikipedia.org/wiki/SQL

drivers. Then there are direct interfaces in packages RMySQL, ROracle and RPostgreSQL. A
DBMS we have not yet mentioned is SQLite, which as its name suggests is a lightweight SQL
engine that can be incorporated into other applications43, and has been in packages RSQLite
(and can also be accessed via ODBC). The Bioconductor project use SQLite to distribute much
of their genomic metadata as binary databases.

Strategies for handling large datasets

The increase in volume of data available has been driven by automated collection, but com-
puter power is growing faster than human activity. So in many fields we have already reached
or are close to having all the data that will be relevant. For example, the motor insurance
databases are as large as they are ever going to be, the medical registries have all current cases
of rare diseases (and new cases are by definition rare), and so on.

So already some of the strategies needed in the past are no longer required.

A decade ago, Bill Venables and I heard a talk at a conference about some new capabilities in
a software package for ‘large data’ regressions, illustrated by a simulated regression problem
with 10,000 cases. Over dinner we discussed if we had even seen such a problem in real life
(no) and if we ever would (we thought not). The issue is that large regression problems are
almost never homogeneous—they lump together data from different groups (e.g. different
centres in a clinical trial). So the first strategy is

Divide the dataset into naturally occurring groups, analyse each group separately
and do a meta-analysis.

In a random regression problem each case adds the same amount of (Fisher) information,
so collecting more cases reduces the variance of the estimator of the parameters at a known
rate. As the regression model is false,44 there will be a fixed amount of bias in its predictions
irrespective of the sample size and for large enough sample sizes the bias will dominate the
variance. So

With homogeneous datasets we can often achieve close to maximally accurate45

results using a small sample of the dataset.

It is hard to give detailed guidance as large homogeneous datasets are so rare, but it seems
exceptional to need to do a regression on more than 1000 cases. Such problems may exist, but
all those we have been offered as counter-examples have crumbled on close examination.

Do be careful in sampling heterogeneous datasets. We once had a motor insurance database
of 700,000 cases to which we were fitting binomial and gamma generalized linear models.
Because the Fisher information per case is not uniform in such models, some observations are
much more important than others, and we found that using a 10% random sample was giving
much less good predictions than the whole dataset, and we needed to use a stratified sample.
But that was in 2001 and the computers used had about 256MB of RAM, so sampling would
no longer be needed. In fact a very important strategy is

43it is used by several OSes.
44apart from in a perfectly constructed simulation
45http://en.wikipedia.org/wiki/Accuracy.

51

http://en.wikipedia.org/wiki/Accuracy

Get a bigger computer, or even several of them.

As a student it may be hard to appreciate that the time of analysts (and particularly trained
statisticians) is very valuable, and computers are cheap. If someone with a large dataset or a
computer-intensive method does not have use of a multi-core computer with at least several
GB of RAM 24 hours/day, then their time is not being valued correctly.

If these strategies are not sufficient, we need to consider how to do the actual computations. In
some statistical problems, only some summaries of the data are required to do the computation.
It is tempting to think that this is the case in statistical models with low-dimensional sufficient
statistics, but that is not in general the case as ‘data’ is not necessarily regarded as random
in the model. Consider first a regression problem with response vector Y and an n × p data
matrix X . The sufficient statistics are XTY , but that is not enough information to find the
parameter estimates. We can however find the parameter estimates from XTX and XTY ,
involving dimensions of size p but not n. However, to compute residuals, we need to go back
to the data matrix X .

Now consider fitting a GLM. As you know, the commonest method is Iteratively (Re)Weighted
Least Squares, which involves solving problems equivalent to

(XTWX)b = XTWY

where W is a diagonal matrix which varies for each iteration. We can use the summarization
approach here, provided we are prepared to make multiple passes over the data. Note to
the cognoscenti: we do not really solve these normal equations as stated, as that would be
needlessly inaccurate. Rather one can make use of a row-wise QR decomposition, most often
using Givens rotations.

This leads to another general strategy:

Consider algorithms needing multiple passes over the data.

These are almost inevitably slower, but can need fewer resources at any one time and so may
be feasible. This is how programs from long ago like SAS46 work, and there is an R package
biglm which takes this approach for linear models and GLMs.

Another general strategy is to

Make use of multiple CPUs by parallelizing the computations.

Increasingly computers are coming with multiple CPU cores—even basic machines have two
CPUs on a single chip and up-market servers have (in 2012) 4–10 cores/chip and two, four
or more such chips. This trend is bound to continue for quite a while, and computer systems
containing 256 or more47 CPU cores are now fairly common. Programming parallel computa-
tions is not easy, and the available hardware is beginning to run far ahead of available software.
There are at least two fundamental problems

• Location of data. Many statistical algorithms need repeated use of the same pieces of
data and of data created from earlier computations (as we have seen e.g. for GLMs).
Moving that data around between multiple computers is a bottleneck. Even where the

46still using a design from the 1960s and 70s.
47up to 100,000s

52

CPUs are in the same computer or even on the same chip, moving data around can be
an issue since modern CPUs get their speed by maintaining two or three levels of local
cache memory.

• Synchronization. Somehow calculations need to be arranged so that CPUs are not wait-
ing for too long for other CPUs to finish.

There are also loosely connected ‘clusters’ of separate computers, including using idle time
on people’s desktops.

The one relevant area where a lot of work has been done on parallelization is numerical linear
algebra—experience is that gains with just two CPUs are often small, but with 4 or 8 or more
it is possible to get a substantial speedup. However, it is also possible for the data-passing
issues to dominate so that using multiple CPUs is several times slower than using just one. It
is not easy to anticipate when this might happen, as the authors of the mixed-effect models
packages for R such as lme4 have found. Indeed, the reason that parallel computation is not
currently enabled for vector and matrix arithmetic in R is the difficulty in determining when it
is worthwhile (and on Mac OS X and Windows with the standard implementation, OpenMP,
the problems need to be very large48 for it to be worthwhile).

The most trivial form of parallel computation, using several CPUs for separate simulations,
is particularly well suited to the methods of this module. This is sometimes known as ‘em-
barrassingly parallel’ programming. For example, the R = M = 999 case of the double
bootstrap example took 55s on one core of my 8-core Linux server. Running 8 processes in
parallel via package parallel took 11s elapsed time, 73s CPU time. On a (slower) 16-core
system it took 8.6s (against 90s on one CPU). There are worthwhile speedups even on a Win-
dows laptop: my hyperthreaded dual-core Core i7 took 26s using 4 processes vs 45s using
one.

Note that it may become increasingly important to use multiple CPUs, as the conventional
folk-wisdom version of Moore’s Law (‘computer power doubles every 18 months’) has slowed
down considerably. My 5-year-old home desktop is a 2.4GHz Intel Core 2 Duo49 — when I
contemplated replacing it earlier this year I found that current machines were less than twice
the speed (although I could get 4 cores). My laptop50 failed at Easter after 3.5 years — the
replacement is still dual-core, maybe 75% faster, but with twice the RAM at half the price.

These days ‘supercomputers’ are massively parallel. E.g. the current leader (Nov 2011,
http://www.top500.org/) is the Japanese ‘Kei’ machine, currently with 88,128 8-core
CPUs (Fujitsu Sparc64 chips).

GPUs

Thanks to the insatiable appetite for more realistic computer games, the graphics cards in
some computers contain one or several separate CPUs called GPUs, and nowadays these have
a highly parallel architecture. Conversely, low-end computers and most laptops have simple
on-board graphics. But that is changing as OSes make more use of visual effects, and most

48Perhaps vector lengths of 100,000 or matrices of milions of elements.
49The Warwick lab machines are 2.2GHz Core 2 Duos.
50a MacBook Air.

53

http://www.top500.org/

recent low-end CPU chips contain very capable GPUs, and even laptops often have separate
GPUs.

There have been moves to harness such GPUs for more general computation, and recent gen-
erations have reasonable floating-point performance. The best known is Nvidia’s CUDA and
its Tesla ‘personal supercomputer’. These have many hundreds of cores, which demands a
very different way to think about organizing computations.

So far people are mainly trying to use GPUs with R to speed up linear algebra, e.g. special-
ized BLAS routines and packages cudaBayesreg and gputools. The real-world performance
gains in linear algebra are not dramatic: one Tesla C2050 (which has 448 cores and shipped in
May 2010) shows in http://www.microway.com/pdfs/TeslaC2050-Fermi-Performance.
pdf only a few times the performance of a quad-core Intel Core i7 CPU.

For some specialist tasks GPUs can be alarmingly fast—for cracking passwords see
http://www.pcpro.co.uk/blogs/2011/06/01/

how-a-cheap-graphics-card-could-crack-your-password-in-under-a-second/.

Four of the current top 10 supercomputers include GPUs (and the LINPACK benchmark used
is rather favourable to GPU computation).

Visualization

Visualization of large datasets is an important topic – see Unwin et al. (2006) for the view-
points of the Augsburg school. One dataset explored in their Chapter 11 is discussed at
http://www.public.iastate.edu/~hofmann/infovis/ (with videos).

Sampling can help here, unless the aim is to spot outliers and other exceptional cases.

Large datasets in R

R is often criticized for needing too much memory as it holds its working data in memory
(and often several copies of it). However the people who make this criticism most often have
an axe to grind or a favourite package to promote. Note that

• The capacity of computers is growing faster than the size of datasets (in most fields).

• ‘Memory’ here means virtual memory not RAM and on OSes which manage VM well
(not Windows) this can be a very effective way to store data on disc.

• We have already mentioned the strategy of holding data in a DBMS and using that to
extract pieces as needed.

Nevertheless, some users are condemned to work with 32-bit Windows and there are several
R packages which aim to make working with large datasets easier—although some are merely
amateur implementations of virtual memory or DBMSs.

Package biglm uses the multiple pass approach for linear models and GLMs.

Packages bigmemory, filehash and ff all provide ways to store objects on disc.

54

http://www.microway.com/pdfs/TeslaC2050-Fermi-Performance.pdf
http://www.microway.com/pdfs/TeslaC2050-Fermi-Performance.pdf
http://www.public.iastate.edu/~hofmann/infovis/

References

Aarts, E. and Korst, J. (1989) Simulated Annealing and Boltzmann Machines. John Wiley and Sons.
Albert, J. (2009) Bayesian Computation with R. Second Edition. New York: Springer.
Albert, J. and Chib, S. (1993) Bayesian analysis of binary and polychotomous response data. Journal

of the American Statistical Association 88, 669–679.
Asanovic, K. and ten others (2006) The landscape of parallel computing research: A view from Berke-

ley. Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley.
Asmussen, S. and Glynn, P. W. (2007) Stochastic Simulation. Algorithms and Analysis. New York:

Springer.
Bowman, A. and Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis: The Kernel

Approach with S-Plus Illustrations. Oxford: Oxford University Press.
Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978) Statistics for Experimenters. New York: John

Wiley and Sons.
Buckland, S. T. (1984) Monte Carlo confidence intervals. Biometrics 40, 811–817.
Carlin, B. P. and Louis, T. A. (2009) Bayesian Methods of Data Analysis. CRC Press.
Casella, G., Lavine, M. and Robert, C. (2001) Explaining the perfect sampler. American Statstician 55,

299–305.
Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000) Monte Carlo Methods in Bayesian Computation.

New York: Springer.
Chernick, M. R. (2008) Bootstrap Methods. A Practioner’s Guide. Second Edition. New York: Wiley.
Chib, S. (1998) Estimation and comparison of multiple change-point models. J. Econometrics 86,

221–241.
Chib, S. and Greenberg, E. (1995) Understanding the Metropolis–Hastings algorithms. American

Statistician 49, 327–335.
Collett, D. (1991) Modelling Binary Data. London: Chapman & Hall.
Congdon, P. (2003) Applied Bayesian Modelling. Chichester: Wiley.
Congdon, P. (2005) Bayesian Models for Categorical Data. Chichester: Wiley.
Congdon, P. (2006) Bayesian Statistical Modelling. Second Edition. Chichester: Wiley.
Congdon, P. (2009) Applied Bayesian Hierarchical Models. London: Chapman & Hall.
Cook, D. and Swayne, D. F. (2007) Interactive and Dynamic Graphics for Data Analysis. New York:

Springer.
Dagpunar, J. (2007) Simulation and Monte Carlo. With Applications in Finance and MCMC. Chich-

ester: Wiley.
Davison, A. C. and Hinkley, D. V. (1997) Bootstrap Methods and Their Application. Cambridge:

Cambridge University Press.
Davison, A. C., Hinkley, D. V. and Young, G. A. (2003) Recent developments in bootstrap methodol-

ogy. Statistical Science 18, 141–157.
Efron, B. (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia: Society for

Industrial and Applied Mathematics.
Efron, B. (1983) Estimating the error rate of a prediction rule. improvements on cross-validation. Jour-

nal of the American Statistical Association 78, 316–331.
Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. New York: Chapman & Hall.
Efron, B. and Tibshirani, R. (1997) Improvements on cross-validation: The .632 bootstrap method.

Journal of the American Statistical Association 92, 548–560.

55

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

Evans, M. and Swartz, T. (2000) Approximating Integrals via Monte Carlo and Deterministic Methods.
Oxford: Oxford University Press.

Gamerman, D. and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Second Edition. London: Chapman & Hall/CRC Press.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004) Bayesian Data Analysis. Second Edition.
Chapman & Hall/CRC Press.

Gelman, A. and Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press.

Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences (with
discussion). Statistical Science 7, 457–511.

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741.

Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior mo-
ments. In Bayesian Statistics 4, eds J. M. Bernado, J. O. Berger, A. P. Dawid and A. F. M. Smith,
pp. 169–193. Oxford: Clarendon Press.

Geyer, C. (1999) Likelihood inference for spatial point processes. In Stochastic Geometry. Likelihood
and Computation, eds O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, Chapter 3,
pp. 79–140. London: Chapman & Hall/CRC.

Geyer, C. J. and Thompson, E. A. (1992) Constrained Markov chain maximum likelihood for dependent
data (with discussion). Journal of the Royal Statistical Society series B 54, 657–699.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo in Practice.
London: Chapman & Hall.

Green, P. J. (1995) Reversible junp Markov chain Monte Carlo computation and Bayesian model de-
termination. Biometrika 82, 711–732.

Grenander, U. and Miller, M. (1994) Representations of knowledge in complex systems (with discus-
sion). Journal of the Royal Statistical Society series B 56, 549–603.

Hall, P. (1992) The Bootstrap and Edgeworth Expansion. Springer-Verlag.
Hall, P. (2003) A short pre-history of the bootstrap. Statistical Science 18, 158–167.
Harrell, Jr., F. E. (2001) Regression Modeling Strategies, with Applications to Linear Models, Logistic

Regression and Survival Analysis. New York: Springer-Verlag.
Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57, 97–109.
Heidelberger, P. and Welch, P. D. (1983) Simulation run length control in the presence of an initial

transient. Operations Research 31, 1109–1144.
Holmes, C. C. and Held, L. (2006) Bayesian auxiliary models for binary and multinomial regression.

Bayesian Analysis 1, 145–168.
Jackman, S. (2009) Bayesian Analysis for the Social Sciences. New York: Wiley.
Jarrett, R. G. (1979) A note on the interval between coal-mining disasters. Biometrika 66, 191–3.
Jerrum, M. (1995) A very simple algorithm for estimating the number of k-colorings of a low-degree

graph. Random Structures and Algorithms 7, 157–165.
Jöckel, K.-H. (1986) Finite sample properties and asymptotic efficiency of Monte Carlo tests. Annals

of Statistics 14, 336–347.
Kendall, W. S. (2005) Notes on perfect simulation. In Markov Chain Monte Carlo. Innovations and

Applications, eds W. S. Kendall, F. Liang and J.-S. Wang, pp. 93–146. Singapore: World Scientific.
Kirkpatrick, S., Gelatt, Jr, C. D. and Vecchi, M. P. (1983) Optimization by simulated annealing. Science

220, 671–680.

56

Kushner, H. J. and Lin, G. G. (2003) Stochastic Approximation and Recursive Algorithms and Appli-
cations. Second Edition. New York: Springer-Verlag.

Lancaster, T. (2004) An Introduction to Modern Bayesian Econometrics. Oxford: Blackwell.
Lauritzen, S. and Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical struc-

tures and their application to expert systems (with discussion). Journal of the Royal Statistical
Society series B 50, 157–224.

Liu, J. S. (2001) Monte Carlo Strategies in Scientific Computing. New York: Springer.
Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009) The BUGS project: Evolution, critique

and future directions (with discussion). Statistics in Medicine 28, 3049–3082.
Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000) Winbugs – a Bayesian modelling frame-

work: concepts, structure, and extensibility. Statistics and Computing 10, 325–337.
Meng, X. L. and Wong, W. H. (1996) Simulating ratios of normalizing constants via a simple identity:

a theoretical exploration. Statistica Sinica 6, 831–860.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953) Equations of state

calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1091.
Morgenthaler, S. and Tukey, J. W. eds (1991) Configural Polysampling. A Route to Practical Robust-

ness. John Wiley and Sons.
Neal, R. M. (2003) Slice sampling. Annals of Statistics 31, 705–767.
Ntzoufras, I. (2009) Bayesian Modelling Using WinBUGS. Hoboken: Wiley.
Pincus, M. (1970) A Monte-Carlo method for the approximate solution of certain types of constrained

optimization problems. Operations Research 18, 1225–1228.
Politis, D. N., Romano, J. P. and Wolf, M. (1999) Subsampling. New York: Springer-Verlag.
Propp, J. and Wilson, D. (1996) Exact sampling with coupled Markov chains and applications to sta-

tistical mechanics. Random Structures and Algorithms 9, 223–252.
Raftery, A. E. and Lewis, S. M. (1992) One long run with diagnostics: Implementation strategies for

Markov chain Monte Carlo. Statistical Science 7, 493–497.
Rao, J. N. K. and Wu, C. F. J. (1988) Resampling inference with complex survey data. Journal of the

American Statistical Association 83, 231–241.
Ripley, B. D. (1979) Algorithm AS137. Simulating spatial patterns: dependent samples from a multi-

variate density. Applied Statistics 28, 109–112.
Ripley, B. D. (1987) Stochastic Simulation. New York: John Wiley and Sons.
Ripley, B. D. (1988) Statistical Inference for Spatial Processes. Cambridge: Cambridge University

Press.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University

Press.
Ripley, B. D. (2005) How computing has changed statistics. In Celebrating Statistics: Papers in Hon-

our of Sir David Cox on His 80th Birthday, eds A. C. Davison, Y. Dodge and N. Wermuth, pp.
197–211. Oxford University Press.

Ripley, B. D. and Kirkland, M. D. (1990) Iterative simulation methods. Journal of Computational and
Applied Mathematics 31, 165–172.

Robert, C. P. and Casella, G. (2004) Monte Carlo Statistical Methods. Second Edition. New York:
Springer.

Robert, C. P. and Casella, G. (2010) Introducing Monte Carlo Methods with R. New York: Springer.
Roberts, G. O. and Rosenthal, J. S. (1998) Markov-chain Monte Carlo: Some practical implications of

theoretical results. Canadian Journal of Statistics 26, 5–31.
Roberts, G. O. and Tweedie, R. L. (2005) Understanding MCMC. New York: Springer.

57

Roeder, K. (1990) Density estimation with confidence sets exemplified by superclusters and voids in
galaxies. Journal of the American Statistical Association 85, 617–624.

Shao, J. and Tu, D. (1995) The Jackknife and the Bootstrap. New York: Springer.
Simon, J. L. (1997) Resampling: The New Statistics. Second Edition. Resampling Stats.
Smith, A. F. M. and Gelfand, A. E. (1992) Bayesian statistics without tears: a sampling–resampling

perspective. American Statistician 46, 84–88.
Snijders, T. A. B. (2001) The statistical evaluation of social network dynamics. In Sociological Method-

ology – 2001, eds M. Sobel and M. Becker, pp. 361–395. Boston and London: Basil Blackwell.
Snijders, T. A. B. (2006) Statistical methods for network dynamics. In Proceedings of the XLIII Scien-

tifc Meeting, Italian Statistical Society, pp. 281–296. Padova: CLEUP.
Staudte, R. G. and Sheather, S. J. (1990) Robust Estimation and Testing. New York: John Wiley and

Sons.
Tanner, M. A. (1996) Tools for Statistical Inference. Third Edition. Springer-Verlag.
Tanner, M. A. and Wong, W. H. (1987) The calculation of posterior distributions by data augmentation.

Journal of the American Statistical Association 82, 528–540.
Unwin, A., Theus, M. and Hofmann, H. (2006) Graphics of Large Datasets. Visualizing a Million.

Springer.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. New York:

Springer-Verlag.
Yu, B. and Mykland, P. (1998) Loooking at Markov samplers through cusum path plots: A simple

diagnostic idea. Statistics and Computing 8, 275–286.

58

A The BUGS language

The BUGS language is an R-like language for specifying a class of Bayesian models. It was
originally developed for classic BUGS and is used with some variations by its descendants
WinBUGS, OpenBUGS and JAGS. WinBUGS and OpenBUGS provide another way to spec-
ify these models on Windows via a point-and-click interface called ‘DoodleBUGS’.

This appendix gives some introductory notes on the BUGS language, enough to understand
the examples for this module. For more serious use, consult the manual of the variant of
BUGS you use, http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf,
http://www.openbugs.info/Manuals/Manual.html or
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x.

BUGS models are graphical models containing several types of nodes, specified in a model

statement in the script file.

The stochastic nodes are random variables whose distribution is specified via a formula con-
taining ~: the left-hand side of the formula is a variable name and the right-hand side is a call
to a BUGS function which specifies the prior distribution, often with parameters which are
values of other nodes. Thus in the puffins example

model{
for(i in 1:38) { Nest[i] ~ dnorm(mu[i], sigma^-2) }
mu <- X %*% beta
for(i in 1:5) { beta[i] ~ dnorm(0, 0.01) }
sigma ~ dunif(0, 10)

}

we (and the BUGS model compilers) can identify the stochastic nodes via the lines given
as formulae. We often (as here) want parameter values which are computed as functions of
the values at other nodes: these are called deterministic nodes51 and are specified by R-like
assignment lines. Then there are (obviously) constants, and finally some values that are not
specified: JAGS figures out for itself that the latter are data values, but BUGS needs to be told.
Each deterministic or stochastic node depends on others (called its parents), so the nodes form
a directed graph. In JAGS this graph must be acyclic—in BUGS under some circumstances52

cycles are allowed.

Deterministic nodes are not observables, so you cannot supply data values for them.

Note that as in the coal-mining example

log(mu[year]) <- b[1] + step(year - changeyear) * b[2]

functions can appear on the left-hand side of declarations of deterministic nodes. However,
this is restricted to known link functions log, logit, probit and cloglog and the corre-
sponding inverse functions53 can be used directly, so we could also use

model {
for (year in 1:length(D)) {

D[year] ~ dpois(exp(b[1] + step(year - changeyear) * b[2]))

51or logical nodes, especially in the BUGS manuals.
52e.g. for defining autoregressive and ordered priors
53exp, ilogit, phi and icloglog

59

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf
http://www.openbugs.info/Manuals/Manual.html
http://sourceforge.net/projects/mcmc-jags/files/Manuals/3.x

}
for (j in 1:2) { b[j] ~ dnorm(0.0, 1.0E-6) }
changeyear ~ dunif(1, length(D))

}

As we see in these examples, one-dimensional arrays can be specified, and 2 or more di-
mensions too (but like R as a convenient way to specify a univariate index). There are some
multivariate distributions (e.g. multinomial, Dirichlet, multivariate normal and t, Wishart), but
otherwise arrays are handled by R-like for loops (and the braces are essential, unlike R). In
BUGS the indices of arrays must be simple expressions, but the values of deterministic nodes
defined to compute more complex expressions can be used. As in R missing indices indicate
all elements, and ranges such as m:n are allowed.

Parentheses, the arithmetic operators + - * / plus a fairly short list of built-in functions are
allowed for deterministic nodes. The list includes the link functions and their inverses, abs,
sqrt, pow, cos, sin, loggam, logfact, phi (Φ, the standard normal CDF, not the density),
round, trunc, step (a Heaviside step function at 0), max, min, mean, sd, sum, prod, rank54

and sort. There are also some matrix functions such as t, inverse and logdet, plus in JAGS
matrix multiplication (%*%).

Note that there is no exponentiation operator in BUGS (unlike JAGS) so the pow function
must be used. There are some facilities for extending the language by adding distributions or
functions via compiled code: in addition OpenBUGS has a dgeneric distribution that allows
simulation by inversion.

The original intention was that the model block be purely declarative, but in BUGS it has been
extended to allow data transformations (which can equally well be done in an R interface).
JAGS does not allow these, but allows a separate data block.

Censoring and truncation

All the examples shown so far are valid R code, and the functions write.model in packages
BRugs and R2WinBugs exploit this to write a BUGS model file from an R expression.

However, there are exceptions used to indicate censoring and truncation, in ways that differ
between the BUGS dialects. In OpenBUGS we could write

y ~ dnorm(mu, tau) C(lo, hi)

where lo and hi are nodes or constants (and if one it omitted it indicates a half-infinite inter-
val). This represents censoring (values outside the restriction are known about, but the exact
value is not observed): the function T() has the same semantics but a different interpretation,
representing truncation (values outside the restriction will never be seen).

In WinBUGS C() is replaced by I() with no counterpart for truncation.

JAGS has T() but not C(): censoring is handled via its dinterval function with a separate
indicator variable: see the manual.

54but with different arguments in OpenBUGS and JAGS

60

Lexical restrictions

The following restrictions apply in classic BUGS: it is often unclear what is allowed in later
dialects.

Node names must start with a letter, contain letters, numbers or periods and not end in a
period. They are case sensitive, and in Classic BUGS limited to 32 chars. (Although unstated,
it seems that ‘letter’ means the English letters A-Z and a-z.) OpenBUGS also disallows two
successive periods. JAGS allows alphanumeric characters plus a period, starting with a letter.

Numeric constants are specified either as decimals, possibly including a decimal point, or
exponential notation such as 1.0E-6 with the exponent marked by E or, in some dialects, e.
(Classic BUGS requires a decimal point in exponential notation.)

Examples of BUGS code

Classic BUGS came with two volumes of examples, available at the same site as the manual.
This became three volumes for WinBUGS and OpenBUGS, and there are versions of the
Classic BUGS examples adapted for JAGS on the latter’s site.

Gelman & Hill (2007, p. 11) comment (their capitalization):

The two volumes of online examples for Bugs give some indication of the possi-
bilities — it fact it is common practice to write a Bugs script by starting with an
example with similar features and then altering it step-by-step to fit the particular
problem at hand.

Other extensive sources of examples of BUGS code are several recent textbooks such as Con-
gdon (2006, 2003, 2005, 2009), Jackman (2009), Lancaster (2004) and Ntzoufras (2009).

Model compilation

Given the model specification and the data, the first task is to identify all the unobserved
stochastic nodes (note that some of the ‘data’ might be missing values) and group them into
blocks for a Gibbs sampler. Then the conditional distribution of each block given the remain-
ing nodes is a distribution with parameters which are deterministic functions of other nodes.
This phase implicitly sets an order in which the blocks will be sampled.

The next step (which JAGS refers to as part of initialization) is to choose an algorithm to
sample the conditional distribution of each block. In rjags we can find out what sampling
algorithms were chosen by

> unlist(list.samplers(p.jags))
RealSlicer ConjugateNormal ConjugateNormal ConjugateNormal

"sigma" "beta[5]" "beta[4]" "beta[3]"
ConjugateNormal ConjugateNormal

"beta[2]" "beta[1]"
> unlist(list.samplers(p2.jags))
RealSlicer RealSlicer RealSlicer RealSlicer RealSlicer
"beta[5]" "beta[4]" "beta[3]" "beta[2]" "beta[1]"

61

Note that where conjugate priors are used the model compiler is able to recognize the analyt-
ical form of the posterior and so use a standard method to sample from a known distribution.
Slice sampling is used as a general-purpose sampler from a univariate continuous distribution.

Either slice or Metropolis (with random-walk proposals) samplers may be selected to sam-
ple from a single node: both are implemented adaptively, that is tune their parameters for
increased efficiency during the burn-in phase of sampling (which is then no longer a Markov
Chain, since many or all past values are used in choosing the sampling algorithm and hence
the next move).

Random number generators

Neither rjags nor BRugs use the R random number generators, rather those in JAGS and
OpenBUGS respectively which are by default initialized from the wall clock. In rjags you
can set both the generator to be used (it contains four based on those used by R: see ?RNGkind)
and the seed for each chain via the inits argument of jags.model, e.g.

inits2 <- lapply(1:5, function(i) c(inits(),
.RNG.name = "base::Mersenne-Twister",
.RNG.seed = i))

selects the ‘Mersenne Twister’ random number generator for each chain with seeds 1, 2, . . . ,
5. Unless you set .RNG.name, JAGS uses a different type of generator for each chain and
hence runs out of types after four chains.

WinBUGS and OpenBUGS each have an item on their Model menu to set the random number
seed(s). BRugs has functions modelGetSeed and modelSetSeed: however, the details needed
to make this useful are lacking in the documentation.

62

B Using CODA

The coda package in R is based on a set of S-PLUS functions, designed to take the output
from the standalone BUGS and (later) JAGS programs and provide a menu-driven interface
for those unfamiliar with the S language: that interface is still available via codamenu(). See
also the article by the authors in the March 2006 issue of R News at http://www.r-project.
org/doc/Rnews/Rnews_2006-1.pdf.

For our purposes the package is more useful as providing means to work with R objects of
classes "mcmc" and "mcmc.list". The first is used to represent a single MCMC run, and the
second a collection of parallel MCMC runs (of the same length). All the sampling functions
we use from packages MCMCpack, BRugs and rjags return objects of one of these classes,
and they can also be constructed from matrices by functions mcmc and as.mcmc: there are
examples in the practicals.

A single run is a multiple time series with observations at each time on each monitored vari-
able, and class "mcmc" closely resembles the "ts" class, in that it has methods for start(),
end() and window(). Rather than having a ‘frequency’, "mcmc" objects have a thinning pa-
rameter extracted by thin(), and can be re-thinned by the window() function. (Recall that
thinning is sampling every m ≥ 1 steps, so it is a different name for the concept of time-series
frequency.)

Individual runs can be extracted from class "mcmc.list" by [[]] indexing, and a subset of
runs by [] indexing, as one would expect for a list. Using [] on a single run operates on
the matrix of values, which has a (named) column for each monitored parameter.

Printing a CODA object prints all the values with a header (similar to a time series): using
summary() gives a compact summary. One part of the latter which may need further expla-
nation is the column Time-series SE: this is an estimate of the standard error of the quoted
mean estimate taking autocorrelation into account, and is used by function effectiveSize

to compute the equivalent sample size of independent samples (summed across runs).

A wide range of plotting facilities is provided. There are methods for the plot function,
and these (by default) call traceplot and densplot to produce line plots and density plots
respectively. There are methods for several of the plotting functions in package lattice, such
as xyplot, densityplot, qqmath and levelplot, and also a function acfplot for lattice
plots of autocorrelations. Function autocorr.plot is another way to plot autocorrelations,
and cumuplot another way to plot the series as cumulative means.

Function HPDinterval extracts Highest Posterior Density intervals for each monitored pa-
rameter (assuming monotonic tails of the posterior density).

Functions gelman.diag (Gelman & Rubin, 1992), geweke.diag (Geweke, 1992), heidel.diag
(Heidelberger & Welch, 1983) and raftery.diag (Raftery & Lewis, 1992) implement some
of the convergence diagnostics: gelman.plot and geweke.plot have corresponding graphi-
cal representations.

You may see messages from coda about ‘algorithm did not converge’ from glm.fit.
These result from using glm as part of the estimation of the spectral density at zero, used for
the Time-series SE estimates and by some of the convergence diagnostics.

63

http://www.r-project.org/doc/Rnews/Rnews_2006-1.pdf
http://www.r-project.org/doc/Rnews/Rnews_2006-1.pdf

Tuesday Practical

Scripts for the exercises can be found at
http://www.stats.ox.ac.uk/~ripley/APTS2012/scripts

as well as JAGS model files for the second and third practicals.

Ex 1 We so something similar to figure 1, using 9999 random permutations.

library(MASS)
shoes
with(shoes, t.test(A, B, paired = TRUE))
d <- with(shoes, A - B)
t.test(d)
R <- 9999
tperm <- numeric(R)
for(i in seq_len(R)) {

a <- 2*rbinom(10, 1, 0.5) - 1
tperm[i] <- t.test(a*d)$statistic

}

op <- par(mfrow = c(1, 2))
truehist(tperm, xlab = "diff", xlim = c(-5,5))
lines(density(tperm), lty = 2)
x <- seq(-5, 5, 0.1)
lines(x, dt(x,9))
plot(ecdf(tperm), xlim = c(-5,5), do.points = FALSE)
lines(x, pt(x,9), lty = 3)
par(op)

How can you use these data to perform a Monte Carlo test?

Ex 2 Dataset cd4 in package boot provides 20 ‘before’ and ‘after’ measurements of CD4
counts on HIV-positive patients. This exercise is based on Davison & Hinkley (1997, practi-
cals 2.3 and 5.5).

(a) Read the help page ?cd4 for the background.

(b) Find a 90% confidence interval for the correlation (as in the preliminary material).

(c) Let us start by finding a 90% Monte-Carlo confidence interval based on bivariate normal-
ity. As ever, there is more than one way to do compute this! Here’s an approach making
use of the facilities of package boot:

library(MASS); library(boot)
cd4.rg <- function(data, mle) mvrnorm(nrow(data), mlem, mlev)

cd4.mle <- list(m = colMeans(cd4), v = var(cd4))
cd4.boot <- boot(cd4, corr, R = 999,

sim = "parametric", ran.gen = cd4.rg, mle = cd4.mle)
cd4.boot
boot.ci(cd4.boot, type = c("norm", "basic"), conf = 0.9)
boot.ci(cd4.boot, type = c("norm", "basic"), conf = 0.9, h = atanh, hinv = tanh)

The "norm" type uses a normal approximation with the mean and variance of the simula-
tions, whereas type = "basic" is the ‘Monte-Carlo confidence interval’ in the sense of

64

http://www.stats.ox.ac.uk/~ripley/APTS2012/scripts

Buckland. This is a problem which is far from a location family, so we also consider the
scale given by Fisher’s transformation (as in the preliminary material).

(d) Now find a bootstrap confidence interval. corr is a function in package boot to compute
weighted correlations.

cd4.boot <- boot(cd4, corr, stype = "w", R = 999)
cd4.boot
boot.ci(cd4.boot, conf = 0.9)
boot.ci(cd4.boot, conf = 0.9, h = atanh, hinv = tanh)

(e) The last part gave a warning about being unable to compute Studentized intervals. We can
remedy that by

corr.fun <- function(d, w = rep(1, n))
{

x <- d[, 1]; y <- d[, 2]
n <- length(x); w <- w/sum(w)
m1 <- sum(x*w); m2 <- sum(y*w)
v1 <- sum(x^2*w) - m1^2; v2 <- sum(y^2*w) - m2^2
rho <- (sum(x*y*w) - m1*m2)/sqrt(v1 * v2)
i <- rep(1:n, round(n*w))
us <- (x[i] - m1)/sqrt(v1); xs <- (y[i] - m2)/sqrt(v2)
L <- us*xs - 0.5*rho*(us^2 + xs^2)
c(rho, sum(L^2)/n^2)

}
cd4.boot <- boot(cd4, corr.fun, stype = "w", R = 999)
boot.ci(cd4.boot, type = "stud", conf = 0.9)
boot.ci(cd4.boot, type = "stud", conf = 0.9,

h = atanh, hdot = function(r) 1/(1-r^2), hinv = tanh)

but you will need to consult Davison & Hinkley (1997, practical 2.3) to understand the
calculations.

(f) We can use the double bootstrap to see how well we have done at getting 90% coverage.
This will take a minute or so (depending on your machine): if you have less patience
decrease R and M to 499. This makes use of two cores: you can use more (and more
simulations) if you have them.

page(nested.corr) # a function in the ’boot’ package
cd4m <- unname(as.matrix(cd4))
R <- 999; M <- 999

on Mac or Linux use parallel = "multicore"
system.time(cd4.nest <- boot(cd4m, nested.corr, R = R, stype = "w",

t0 = corr(cd4), M = M,
parallel = "snow", ncpus = 2))

op <- par(pty = "s", xaxs = "i", yaxs = "i")
qqplot((1:R)/(R+1), cd4.nest$t[, 2], pch = ".", asp = 1,

xlab = "nominal", ylab = "estimated")
abline(a = 0, b = 1, col = "grey")
par(op)

Now work out what corrections are needed to get a more accurate 90% interval.

65

Ex 3 This replicates part of figure 2.

(a) First we quickly get a rough idea of where the MLE is by plotting the RHS of (2) against
θ (estimating the expectation by 100 simulations).

library(spatial)
towns <- ppinit("towns.dat")
tget <- function(x, r = 3.5) sum(dist(cbind(xx, xy)) < r)
t0 <- tget(towns)
c <- seq(0, 1, 0.2)
res[1] = 0
res <- c(0, sapply(c[-1], function(c)

mean(replicate(100, tget(Strauss(69, c = c, r = 3.5))))))
plot(c, res, type = "l", ylab = "E t")
abline(h = t0, col = "grey")

Here tget calculates the number of R-close pairs.

(b) This suggests zooming in to (0.4, 0.6). We can do more runs: computers are fast enough
these days. The scripts show how to do this in parallel.

c <- seq(0.4, 0.6, len = 6)
do_one <- function(c, R = 1000)
{

z <- replicate(R, tget(Strauss(69, c = c, r = 3.5)))
list(mean = mean(z), se = sd(z)/sqrt(R))

}
res <- lapply(c, do_one) # or a parallel version
means <- sapply(res, ‘[[‘, 1)
sds <- sapply(res, ‘[[‘, 2)
plot(c, means, type = "l", ylab = "E t")
abline(h = t0, col = "grey")
abline(lm(means ~ c))
arrows(c, means-1.96*sds, c, means+1.96*sds,

angle = 90, code = 3, length = 0.1, xpd = TRUE)

(c) Now make use of these results to estimate the MLE of c, and give some indication of the
inaccuracy. Choose some more simulations to do to get a more accurate result for the
same amount of computation.

(d) How well can we do with polysampling? We do need to estimate the ratio of normalizing
constants:

c0 <- 0.50
rs <- replicate(1000, tget(Strauss(69, c = c0, r = 3.5)))
c <- seq(0.4, 0.6, len = 20)
res <- numeric(length(c))
for(i in seq_along(c))

res[i] <- mean(rs * (c[i]/c0)^rs)/mean((c[i]/c0)^rs)
points(c0, mean(rs), col = "blue"); lines(c, res, col = "blue")

To understand this, consider the importance sampling identity

Ec t(X) = Ec0 t(X)
f(X; c)

f(X; c0)
=

a(c)

a(c0)
Ec0 t(X)

(
c

c0

)t(X)

66

For the first term we have

1/a(c) =

∫
ct(x) dx =

∫
ct(x)

f(x; c0)
f(x; c0) dx = 1/a(c0)Ec0

(
c

c0

)t(X)

so

Ec t(X) = Ec0 t(X)

(
c

c0

)t(X) /
Ec0

(
c

c0

)t(X)

(e) Now let us try stochastic approximation. The sequence (an) was chosen by trial-and-error.

R <- 1000
doit <- function(ave = FALSE, gam = 0.7) {

res <- numeric(R)
c <- runif(1, 0.4, 0.6) # initial guess.
for(i in seq_len(R)) {

a <- 0.5*(i+5)^-gam
err <- tget(Strauss(69, c = c, r = 3.5))/t0 - 1
c <- c - a*err
res[i] <- c

}
if(ave) cumsum(res)/(1:R) else res

}
res <- doit()
plot(res, type = "l", ylim = c(0.4, 0.6))
for(i in 2:5) lines(doit(), col = i)

The scripts contain a parallel version, which will run faster but you will need to wait to
see all the runs at once.

That was a näive form of Robbins–Munro. Clearly we can get a more accurate estimate by
local averaging, and in what is known as Polyak–Ruppert averaging we can get optimum
convergence rates, e.g.

res <- doit(TRUE)
plot(res, type = "l", ylim = c(0.4, 0.6))
for(i in 2:5) lines(doit(TRUE), col = i)

Experiment with other choices of an = An−γ: what is a good choice will depend on
whether averaging is done.

Again, the script illustrates a parallel version.

67

Wednesday Practical

Ex 4 We continue the LD50 example from the lectures. Using MCMCpack we had

ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
resp <- rep(rep(c(1,0), 12), times = t(SF))
budworm <- data.frame(resp, ldose = rep(ldose, each = 20),

sex = rep(sex, each = 20))
summary(glm(resp ~ sex*ldose, family = binomial, data = budworm))

library(MCMCpack) # loads package ’coda’
fit <- MCMClogit(resp ~ sex*ldose, data = budworm)
summary(fit)
effectiveSize(fit)
plot(fit)
acfplot(fit) # suggests thinning
crosscorr.plot(fit)
fit <- MCMClogit(resp ~ sex*ldose, data = budworm, mcmc = 1e5, thin = 20)
summary(fit)
HPDinterval(fit)

Now we can explore the posterior distribution of LD50: this uses translucent points so that a
build-up of colour indicates density.

plot beta (slope) vs alpha (intercept) for females
library(MASS)
contour(kde2d(fit[,1], fit[,3], n=50), xlab="alphaF", ylab="betaF")
points(fit[, c(1,3)], pch=20, cex=0.5, col=rgb(0,0,1,0.2))
create some new objects, the LD50s in a form suitable for coda.
ld50F <- as.mcmc(2 ^ (-fit[,1]/fit[,3]))
ld50M <- as.mcmc(2 ^ (-(fit[,1]+fit[,2])/(fit[,3] + fit[,4])))
range(ld50M); range(ld50F)
ld50 <- mcmc(cbind(M=ld50M, F=ld50F))
plot(ld50)
acfplot(ld50)
HPDinterval(ld50)

There is no hint of negative slopes, or we would have to work harder (see the lecture notes).

Ex 5 Now we try out JAGS via rjags. We use the model file budworm.jags given in the
notes.

library(rjags)
inits <- list(list(alphaM = 0, betaM = 0, alphaF = 0, betaF = 0))
discard 500, record 10000
bd.jags <- jags.model("budworm.jags", inits = inits, n.chains = 1,

n.adapt = 500)
vars <- c("alphaM", "alphaF", "betaM", "betaF")
bd.sims <- coda.samples(bd.jags, vars, n.iter = 10000)
summary(bd.sims)
plot(bd.sims)
effectiveSize(bd.sims)

68

Now experiment with multiple starting points. To do so we set up a function for inits. If we
give JAGS more than 4 chains we need to specify the RNG (and optionally the seeds)

inits <- function()
list(alphaM = rnorm(1,0,10), betaM = rnorm(1),

alphaF = rnorm(1,0,10), betaF = rnorm(1))
inits2 <- lapply(1:5, function(i) c(inits(),

.RNG.name = "base::Mersenne-Twister",

.RNG.seed = i))
bd.jags <- jags.model("budworm.jags", inits = inits2,

n.chains = 5, n.adapt = 500)
bd.sims <- coda.samples(bd.jags, vars, n.iter = 500)
summary(bd.sims)
plot(bd.sims)
gelman.plot(bd.sims)
densityplot(bd.sims) # and so on

Ex 6 For the random-walk Metropolis sampler we can use

w <- rep(20, 12)
fit <- glm(numdead/w ~ sex*ldose, weights = w, family = binomial)
X <- model.matrix(fit)
library(LearnBayes)
logpost <- function(beta)

sum(dbinom(numdead, w, plogis(X %*% drop(beta)), log = TRUE))

scale <- 0.25
fit2 <- rwmetrop(logpost, list(var = vcov(fit), scale = scale),

coef(fit), m = 1000)
fit2$accept
sims <- as.mcmc(fit2$par) # make a coda object.
colnames(sims) <- names(coef(fit))
effectiveSize(sims)

Experiment with changing the tuning constant scale.

Ex 7 There is code in the lecture notes for two appoaches to the change-point problem for
coal-mining disasters. Try them out. The data are55

D <- c(4,5,4,1,0,4,3,4,0,6,3,3,4,0,2,6,3,3,5,4,5,
3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,1,1,1,1,
1,3,0,0,1,0,1,1,0,0,3,1,0,3,2,2,0,1,1,1,0,1,0,
1,0,0,0,2,1,0,0,0,1,1,0,2,3,3,1,1,2,1,1,1,1,2,
4,2,0,0,0,1,4,0,0,0,1,0,0,0,0,0,1,0,0,1,0,1)

Compare the speed of the two approaches.

55This version from Gamerman & Lopes (2006, p. 145) has the correct total, unlike some others in the litera-
ture.

69

Thursday Practical

Ex 8 Consider the Australian AIDS survival example sketched in the lecture notes.

Try the code there, and experiment with tuning scale. To set the problem up you will need

library(MASS)
make.aidsp <- function() {

cutoff <- 10043 # 1987-07-01 with origin 1960-01-01
btime <- pmin(cutoff, Aids2$death) - pmin(cutoff, Aids2$diag)
atime <- pmax(cutoff, Aids2$death) - pmax(cutoff, Aids2$diag)
survtime <- btime + 0.5*atime
status <- as.numeric(Aids2$status)
data.frame(survtime, status = status - 1, state = Aids2$state,
T.categ = Aids2$T.categ, age = Aids2$age, sex = Aids2$sex)

}
Aidsp <- make.aidsp()
library(survival)
fit <- survreg(Surv(survtime + 0.9, status) ~ T.categ + age,

data = Aidsp, subset = (state == "NSW"))
summary(fit)

This gives a classical accelerated-life survival model. The lecture notes have a Bayesian
MCMC simulation for this model.

Use the mcmc function from package coda to convert the simulations to coda objects, and
explore the diagnostics of the latter package.

Would there be any advantage in centring the explanatory variables in this problem? If you
are unsure, try it.

Ex 9 We now turn to the puffin nesting data.

(a) Run a regression model using MCMCpack.

(b) Repeat using JAGS.

(c) Run a Poisson regression model using MCMCpack.

(d) Repeat using JAGS.

(e) Try both ways of fitting a negative binomial regression. Which runs faster? Which con-
verges faster?

70

	What is `Computer-Intensive Statistics'?
	Simulation-based Inference
	Monte-Carlo tests
	Power considerations

	Monte-Carlo confidence intervals
	Monte Carlo Likelihood
	Finding marginals and conditionals
	SIR
	Stochastic Approximation
	Simulated annealing

	Bootstrapping
	Performance assessment
	Confidence intervals
	Theory for bootstrap confidence intervals
	Double bootstrapping
	Bootstrapping linear models
	How many bootstrap resamples?
	Diagnostics
	The Jackknife
	Bootstrapping as simulation
	Software

	Markov Chain Monte Carlo
	Data augmentation
	Logistic and probit regression models

	Detailed balance
	Gibbs sampler
	Metropolis-Hasting schemes
	Slice sampling
	Other schemes
	Using a MCMC sampler
	Convergence diagnostics
	Further reading
	Software

	MCMC examples
	Binomial logistic regression
	Poisson change-point models
	Survival
	Regression models
	Hierarchical linear models

	Large datasets
	Hardware considerations
	DBMSs
	Strategies for handling large datasets
	Visualization
	Large datasets in R

	References
	The BUGS language
	Using CODA
	Tuesday Practical
	Wednesday Practical
	Thursday Practical

