APTS 2007-8 lecture material

Computationally-Intensive
Statistical Methods

(© 2008 B. D. Ripley

1 What is ‘Computationally-Intensive Statistics’?

‘Computationally-intensive statistics’ is statistics that could only be done with ‘modern‘ com-
puting resources, typically either

e Statistical inference on small problems which needs a lot of computation to do at all,
or to do well. Quite small datasets can need complex models to explain, and even
simple models can need a lot of computation for a realistic analysis (especially where
dependence is involved).

e Statistical inference on ‘huge’ problems.

All of these terms are relative, and I was reminded of just how relative by Sir David Cox’s
comment in the verbal discussion of Ripley (2005) that when he was a PhD student inverting
a 5 x 5 matrix was the work of hours.

One very important idea for doing statistical inference ‘well” on analytically intractable sta-
tistical models (that is, most real-world ones) is to make use of simulation. So most of this
module could be subtitled simulation-based inference, as in Geyer (1999)’s comments about
MCMC for spatial point processes:

If you can write down a model, I can do likelihood inference for it, not only maxi-
mum likelihood estimation, but also likelihood ratio tests, likelihood-based confi-
dence intervals, profile likelihoods, whatever. That includes conditional likelihood
inference and inference with missing data.

This is overstated, of course. ... But analyses that can be done are far beyond
what is generally recognized.

(even 20 years after my thesis work).

These lecture notes go beyond what will be covered in lectures — they are intended to give
pointers to further issues and to the literature.

2 Simulation-based Inference

The basic idea is quite simple — simulate data from one or more plausible models (or for
a parametric model, at a range of plausible parameter values), apply the same (or similar)
procedure to the simulated datasets as was applied to the original data, and then analyse the
results. In this section we consider some of the ‘classical’ applications, but bootstrapping is
another.

The main reference for this section is Ripley (1987, §7.1).

Monte-Carlo tests

Suppose we have a fully-specified null hypothesis, and a test statistic 7" for which small values
indicate departures from the null hypothesis. We can always simulate m samples tq,...,%,,
under the null hypothesis, and use these to obtain an indication of where the observed value T
lies on the null distribution. For example, consider a dataset on the amounts of shoe wear in
an experiment reported by Box, Hunter and Hunter (1978). There were two materials (A and
B) that were randomly assigned to the left and right shoes of 10 boys.

Table 1: Data on shoe wear from Box, Hunter and Hunter (1978).

boy A B

1 13.2 (L) 14.0 (R)
2 8.2 (L) 8.8 (R)
3 10.9 (R) 11.2 (L)
4 14.3 (L) 14.2 (R)
5 10.7 (R) 11.8 (L)
6 6.6 (L) 6.4 (R)
7 9.5 (L) 9.8 (R)
8 10.8 (L) 11.3 (R)
9 8.8 (R) 9.3 (L)
10 13.3 (L) 13.6 (R)

A paired t-test gives a t-value of —3.3489 and two-tailed p-value of 0.85% for no difference
between the materials. The sample size is rather small, and one might wonder about the
validity of the ¢-distribution. An alternative for a randomized experiment such as this is to
base inference on the permutation distribution of d = B-A. Figure 1 shows that the agreement
is very good.

Monte Carlo tests' are a closely related (but not identical) idea. If the null hypothesis is true,
we have m + 1 samples from the null distribution, one natural and m by simulation. Thus the
probability that 7" is the kth smallest or smaller is exactly k/(m + 1) provided we can ignore
ties. To do so we now assume that 7" has a continuous null distribution.

By choosing k& and m suitably, say (1,19), (5,99), (50,999) we can derive an exact signifi-
cance test at any desired level. Note that the experiment can be stopped early if k£ simulated

!'Usually attributed to a comment by George Barnard in 1963.

2

Empirical and Hypothesized t CDFs

- o [| — Permutation dsn
< = --- t9cdf _r,r—rf/
d a
[oe]
[}
e
o
©
[}
N
[}
<
[}
-
S N
[=}
< o
o IS
-4 2 0 2 4 -4 -2 0 2 4
diff solid line is the empirical d.f.

Figure 1: Histogram and empirical CDF of the permutation distribution of the paired {—test in the shoes
example. The density and CDF of tg are shown overlaid. (Figure 5.5 of Venables and Ripley (2002).)

values less than 7" have been observed — if the null hypothesis is true this will happen after an
average 2k trials. However, doing the test indicates some evidence against the null hypothesis,
so we should not expect early stopping to be typical.

Power considerations

One common objection to Monte-Carlo tests is that different statisticians will get different
results. One answer is

So what?q; they would have used different test statistics, or deleted different out-
liers, or chosen different significance levels or . ..

Effectively the actual significance level conditional on the simulations varies and only has
average «. This will be reflected in a loss in power. Detailed calculations by Jockel (1986)
give

_ - 1/2
powerofMCtest>1_E\Z a\zl_[l a}

power of exact test — 2a 2mma

where Z ~ beta(a(m + 1), (1 — a)(m + 1)). This is a lower bound, and ranges, for o« = 5%,
from 64% for m = 19 through 83% for m = 99 to 94.5% for m = 999. Asymptotic results
show better behaviour if the statistic is asymptotically normal, for example.

Note that our discussion has been entirely about simple null hypotheses. There have been
some suggestions about how to use Monte Carlo tests for composite null hypotheses, and of
course there are many standard arguments to reduce composite null hypotheses to simple ones.

Monte-Carlo confidence intervals

as named by Buckland (1984). These differ in a small but important detail from the bootstrap
confidence intervals.

Monte Carlo tests are only defined for a single null hypothesis, so can not easily be inverted
to form a confidence interval. Some pivotal quantity is needed. Suppose € is a consistent
estimator of & with corresponding CDF Fj. Let 6" be a sample from ;. We want to use the

variation of 0* about @ to infer the variation of 8 about 6.
Suppose we have a location family. Then
0—0~Fy, 0"—0~F,
so we can obtain upper and lower prediction limits for 6* by
L = F:'(a/2)=0+F;"(a/2)
U = F'1-0a/2)=0+F'(1-a/2)

either analytically or via simulation from the empirical CDF of 6*. The conventional (1 — «)
confidence interval for 6 is

0 e (5— Frl(1—a/2),0 - Fo—l(a/z)) — (20— U, 20— L)

Thus we get a confidence interval for 6 by reflecting the distribution of 6* about 0. This is the
Monte-Carlo confidence interval. If the family is only locally a location family, the confidence
interval is only approximately correct. With local scale families, the same arguments apply to
log 6.

Note carefully the difference between this and the bootstrap. The bootstrap resamples (with
replacement) from the data. These methods sample from the fitted distribution—sometimes
they are called the parametric bootstrap, as distinct from the non-parametric bootstrap. If we
had fitted a completely general class of distributions, the fitted distribution F}; would be the
empirical distribution function F** which assigns mass 1/n to each data point. Then indepen-
dent sampling from F™ is bootstrap resampling, and the Monte-Carlo confidence intervals are
what are known as basic bootstrap intervals.

Monte Carlo Likelihood

as termed by Geyer and Thompson (1992). In general the likelihood equations for a canonical
exponential family equate the observed value to the expectation of a sufficient statistic, the
parameter controlling the expectation. The difficulty can arise in evaluating the expectation.

Consider the so-called Strauss model of spatial inhibition (Ripley, 1988, §4), which has pdf
for n points z; € D C R? of

fe(l’l, . ,xn) — a(e)et(11 Tn) (1)

where ¢() computes the number of pairs of points closer than distance R, and 0 < 6 < 1. (0
corresponds to ¢ in the preliminary material.) The log-likelihood includes log a(#) and this is
unknown.

However, we do not actually need a(f), for the MLE of 0 satisfies
t(z, ... 2n) = B5lt(Xq,..., X,)] 2)

where the right-hand side can not be expressed in a simple form. We can however estimate the
RHS by simulation from the density (1), as in the preliminary material. An example is given
in Figure 2, for a data set in which the observed value of ¢(z1, ..., z,) was 30. Note that by
importance sampling we can estimate the RHS of (2) for a range of § from simulations at one
value, an idea sometimes known as polysampling. The idea is that

fo(Xq,..., X,)
foo (X1, ..., X0)

so we can take a series of samples at § = 6, replace the expectation on the RHS by an
average over those samples, and thereby estimate the LHS for any #. The rub of course is that
the estimator is likely to be a good estimator only for near 6. What does ‘near’ mean? Well,
this is an experiment and standard statistical methods (e.g. response surface designs) can be
employed to answer such questions. So-called bridge sampling (Meng and Wong, 1996) uses
this idea for simulations at two values of 6. Note that these ideas do need at least ratios of
a(f). See exercise 3.

Eglt(Xy, ..., X,)] = Eg, [t(Xy,...,X})

Stochastic Approximation

An alternative is to solve equation (2) by iterative methods, usually called Robbins-Monro
methods or stochastic approximation. Suppose we seek to solve

®(0) = E¢(6,¢) =0

for increasing ®, and that we can draw independent samples from ¢(0,¢). A sequence of
estimates is defined recursively by

en-‘,—l - Hn - anﬁb(@n, en)

for a, — 0,e.g. a, cx n”7 for 0 < v < 1. Kushner and Lin (2003) and Ripley (1987,
p- 185) gives further details and more sophisticated variants, which include averaging over
recent values of 6,,.

The SIENA program? for fitting models of social networks is almost entirely based on these
ideas. These are networks with a finite set of nodes (actors) but with links that evolve through
time (e.g. who is ‘best friends’ with whom in a school). Snijders (2006) writes

These models can be simulated on computers in rather straightforward ways (cf.
Snijders, 2005). Parameter estimation, however, is more complicated, because
the likelihood function or explicit probabilities can be computed only for uninter-

esting models. This section presents the Methods of Moments estimates proposed
in Snijders (2001). [...]

This is just a Big Name for the idea we have illustrated for the Strauss model, equating empir-
ical and simulated moments, mainly by using stochastic approximation (other ideas including
using polysampling and MCMC to approximate likelihoods are under investigations).

2‘Simulation Investigation for Empirical Network Analysis’: http://stat.gamma.rug.nl/snijders/
siena.html.

http://stat.gamma.rug.nl/snijders/siena.html
http://stat.gamma.rug.nl/snijders/siena.html

Figure 4.5 Plot of E, Y(R) against ¢ estimated by simulation. The
solid Bne is without edpe correction, the dashed line with torosdal

edge correction.
55}': s
) p
404 P
b A
] W
3{}": _,".'
-
= 4
- i
)
7 -
26 i/
1 -
b I
o F
A /!
04 %
'G T T Y T l T T T 13 i L) [il | T { T T T T ; F T ¥ F F
0 4.2 0.4 GG 0.8 1.4

Figure 46 An cnlarged part of figure 4.5 for toreidal edge correction.
The line was fitted by regression.

344

3

FEYTTEI Ty FEYITATTFETTEY FRLEILE REEEE ALY UL |

0.38 D40 042 0.44 046 048 (.50 052 034 056

Figure 2: Figures from (Ripley, 1988, p. 72) on fitting the Strauss model (1). These will be explored
in the first practical.

Simulated annealing

Simulated annealing is an idea for optimizing functions of many variables, most often discrete
variables so a combinatorial optimization problem. The name comes from Kirkpatrick et al.
(1983) and from annealing, a process in a metallurgy in which molten metal is cooled ex-
tremely slowly to produce a (nearly) stress-free solid. Since annealing is a process to produce
a low-energy configuration of the atoms, it is natural® to consider its application to optimiza-
tion of complex problems.

The ground was set by Pincus (1970), based on the idea that if f is continuous over a compact
set D and has a unique global maximum at x* then

. . Jpmexp Af(x)dx
¥ = lim
A—oo [exp Mf(x) dx

So if we take a series of samples from density proportional to

exp Af ()

for increasing A, then the distribution of the samples will become increasingly concentrated
about z*. And this procedure is particularly suited to the iterative simulation methods of
MCMC since we can use the sample(s) at the previous value of) to start the iterative process.
However, the rate at which A needs to be increased is very slow, with some studies suggesting
that \ o< log(1 + t) with ¢ the number of iterative steps completed.

Despite the unpromising theoretical behaviour, simulated annealing has proved useful in find-
ing improved solutions to both continuous and combinatorial optimization problems — see e.g.
Aarts and Korst (1989)

Finding marginals

A great deal of statistics is about finding marginal distributions of quantities of interest. This
occurs in both frequentist and Bayesian settings—especially the latter, where almost all ques-
tions boil down to finding a marginal distribution.

Finding those marginals is often difficult, and textbook examples are chosen so that the inte-
grations needed can be done analytically. A great deal of ingenuity has been used in finding
systematic ways to compute marginals: examples include the Lauritzen and Spiegelhalter
(1988) message-passing algorithm for graphical models.

It is an almost trivial remark that simulation provides a very simple way to compute marginals.
Suppose we have a model that provides a joint distribution for a (finite) collection (X;) of
random variables. Then if we have a way to simulate from the joint distribution, taking a
subset of the variables provides a painless way to get a marginal distribution of that subset.
You should be used to thinking of distributions as represented by samples and so know many
ways to make use of that sample as a surrogate for the distribution.

3at least to those with some knowledge of statistical physics.

Note that this does not apply directly to marginals in conditional distributions, as we would
need to be able to simulate from the conditional distribution. For example, the Lauritzen—
Spiegelhalter message-passing algorithm’s raison d’étre is to be able to compute marginals
after conditioning on evidence. This is not a problem in the standard Bayesian context where
we simulate from the posterior distribution, that is the distribution conditional on the observed
data. It is an issue when exploring model fits, where we often want to explore how much one
(or more) observation is influencing the results, or even to correct data after discovering large
influence.

In the examples we will be using anywhere from a handful to 10,000 samples to represent
a marginal distribution. It is important to remember that we only have an approximation to
the distribution. A few thousand samples seems like a lot when we are looking at univari-
ate marginals (as people almost invariably do), but we are most often looking at univariate
marginals because this is easy to do, not because they are the sole or main interest. In the pre-
liminary exercises you were asked to compare simulations of 71 points in a square with some
data — this is a 142-dimensional problem and we have* sophisticated multi-dimensional ways
to compare such patterns. For another example, ways to look for outliers in multidimensional
datasets (Cook and Swayne, 2007) may screen 1,000s or more two-dimensional projections.

SIR

The so-called sampling-importance resampling is a technique for improving on an approxi-
mate distribution. Suppose we have M samples x; simulated from an approximation ¢ to a
target distribution p. Then importance sampling is the idea of estimating

Eh(X):/h(x)dx:/h(x)@dx

by the weighted average of h(z;) with weights w; = p(x;)/q(z;). So we can represent distri-
bution p by a weighted sample from distribution ¢. For many purposes it is more convenient to
have an unweighted sample, and SIR achieves this by taking a subsample of size m < M by
weighted sampling without replacement from the current sample. That is we repeat m times

Select one of the remaining z; with probability proportional to w; and remove it
from the (z;).

(See Gelman et al., 2004, pp. 316f, 450.) (Others, including Rubin’s original version® in the
discussion of Tanner and Wong (1987) describe SIR as the version with replacement: the
difference will be small if m < M.) Despite the name, this is a form of rejection sampling.

We have already seen importance sampling used to explore nearby parameter values, and
resampling can be used in the same way. Both can be used to perturb Bayesian analyses,
e.g. to vary the prior (perhaps away from one chosen for tractability towards something more
realistic), as changing the prior just re-weights the posterior samples.

4including the human visual system.
by this name: the idea is older.

3 Bootstrapping

Suppose we were interested in inference about the correlation coefficient § of n IID® pairs
(x;,y;) for moderate n, say 15 (as Efron (1982) apparently was). If we assume that the sam-
ples are jointly normally distributed, we might know that there is some approximate distri-
bution theory (using Fisher’s inverse tanh transform), but suppose we do not wish to assume
normality?

We could do a simulation experiment: repeat 2 times sampling n pairs and compute their
correlation, which gives us a sample of size R from the population of correlation coefficients.
But to do so, we need to assume both a family of distributions for the pairs and a particular
parameter value (or a distribution of parameter values).

The bootstrap procedure is to take m samples from x with replacement and to calculate 0
for these samples, where conventionally the asterisk is used to denote a bootstrap resample.
Note that the new samples consist of an integer number of copies of each of the original data
points, and so will normally have ties. Efron’s 1 idea’ was to assess the variability of f about the
unknown true 6 by the variability of 6* about §. For example, the bias of) might be estimated
by the mean of 0 — 0.

How can we use the bootstrap resamples to do inference on the original problem, and un-
der what circumstances is such inference valid? Note that the bootstrap resample is unlike
the original sample in many ways, perhaps most obvious that (with very high probability) it
contains ties.

Bootstrapping is most commonly used

e as part of a procedure to produce more accurate confidence intervals for parameters than
might be obtained by classical methods (including those based on asymptotic normal-
ity). Often this is very similar to using more refined asymptotic statistical theory, and I
once heard bootstrapping described as

‘a way to do asymptotics without employing the services of Peter Hall’
e to alleviate biases.

In part because it is so simple to describe and easy to do, bootstrapping has become popular
and is often used when it is not valid. For a careful account by two authorities on the subject,
see Davison and Hinkley (1997). For another viewpoint by an evangelist of bootstrapping for
model validation, see Harrell (2001, Chapter 5). Efron and Tibshirani (1993), Shao and Tu
(1995) and Chernick (2008) are complementary material. Hall (1992) covers the (asymptotic)
theory. Statistical Science 18(2) (May 2003) has several articles commemorating the Silver
Anniversary of the Bootstrap.

Efron’s original bootstrap is an I[ID sample of the same size as the original dataset from the
empirical distribution function. so it is another example of simulation-based inference, using
a non-parametric rather than parametric model of the data. The idea can easily be extended

bindependent and identically distributed.
"Others have claimed priority: for example Simon claims in the preface of Simon (1997) to have discovered
it in 1966. See also Hall (2003).

density
0.10 0.15 0.20 0.25 0.30

0.05

fo A\ .

RSN N 11111 T B
0 10 20 30 40
velocity of galaxy (1000km/s)

Figure 3: Density estimates for the 82 points of the galaxies data. The solid and dashed lines
are Gaussian kernel density estimates with bandwidths chosen by two variants of the Sheather—Jones
method. The dotted line is a logspline estimate. From Venables and Ripley (2002).

to other non-parametric models, and using a kernel-density estimate® of the underlying distri-
bution is called a smoothed bootstrap. So that instead of assuming a particular parametric fit,
we assume a particular non-parametric fit. This may be more flexible’, but in both cases we
have a plug-in estimator—that is we fit a single model from our family and act as if it were
the true model.

As a very simple first example, suppose that we needed to know the median m of the galaxies
data of Roeder (1990), Figure 3. The obvious estimator is the sample median, which is 20 833
km/s. How accurate is this estimator? The large-sample theory says that the median is asymp-
totically normal with mean m and variance 1/4n f(m)?. But this depends on the unknown
density at the median. We can use our best density estimators to estimate f(m), but we can
find considerable bias and variability if we are unlucky enough to encounter a peak (as in a
unimodal symmetric distribution). The density estimates give f(m) ~ 0.13. Let us try the
bootstrap:

1/(2*sqrt (length(gal))*0.13)

[1] 0.42474

> library(boot)
> gal.boot <- boot(gal, function(x,i) median(x[i]), R=1000)

8Note that sampling from a constant-bandwidth kernel-density estimate amounts to resampling from the
original data and then adding a random variable drawn from the kernel as a density, so this is the procedure
known as jittering.

%although large parametric families such as spline models for log densities and neural networks can be arbi-
trarily flexible

10

2.0

15

1.0

0.5

0.0

20.0 20.5 21.0 215 22.0

Figure 4: Histogram of the bootstrap distribution for the median of the galaxies data, with a kernel
density estimate (solid) and a logspline density estimate (dashed). From Venables and Ripley (2002).

> gal.boot
Bootstrap Statistics :

original bias std. error
tix 20.834 0.038747 0.52269

which was effectively instant and confirms the adequacy of the large-sample mean and vari-
ance for our example (if Efron’s idea is correct). In this example the bootstrap resampling
can be avoided, for the bootstrap distribution of the median can be found analytically (Efron,
1982, Chapt/e\r 10; Stiudte and Sheather, 1990, p. 84), at least for odd n. The bootstrap dis-
tribution of ; about 6 is far from normal (Figure 4). Choosing the median (a discontinuous
function of the data) disadvantaged the simple bootstrap and e.g. a smoothed bootstrap would
be preferred in practice.

Note that the bootstrap principle, that the variability of f about the unknown true 0 can be
assessed by the variability of 0* about 0 is not always valid. For example, the bias of 0 is
not mirrored in the bias of #* when bootstrapping density estimation or curve fitting (Bowman
and Azzalini, 1997, pp. 44, 82). To quote lecture notes by Peter Hall

There is a “meta theorem” which states that the standard bootstrap, which in-
volves constructing a resample that is of (approximately) the same size as the
original sample, works (in the sense of consistently estimating the limiting dis-
tribution of a statistic) if and only if that statistic’s distribution is asymptotically
Normal.

It does not seem possible to formulate this as a general, rigorously provable result,
but it nevertheless appears to be true.

Although unstated, it seems clear that this is not intended to cover semi-parametric problems

11

such as density estimation. It hints at other exceptions, for example extreme-value statistics.!”
For more examples, see Davison et al. (2003).

The principle is valid often enough that users miss the exceptions and apply it uncritically. To
quote the wisdom of Davison and Hinkley (1997, p. 4)

Despite its scope and usefulness, resampling must be carefully applied. Unless
certain basic ideas are understood, it is all too easy to produce a solution to
the wrong problem, or a bad solution to the right one. Bootstrap methods are in-
tended to help avoid tedious calculations based on questionable assumptions, and
this they do. But they cannot replace clear critical thought about the problem, ap-
propriate design of the investigation and data analysis, and incisive presentation
of conclusions.

Perhaps the only point here that is particularly apposite to bootstrapping is the “all too easy”.
It is also easy to apply regression methods to datasets that have other structure (for example,
were collected in groups, so mixed-effects models might be more appropriate), and indeed
outside simple textbook problems choosing a suitable non-parametric resampling model is
no easier than choosing a suitable parametric model. Think about survival problems or time
series or spatial patterns or complex surveys for example. Even if missing data are present we
have to model the way in which it might occur in other samples.

Contrast this with the embittered comments of Simon (1997)

The simple fact is that resampling devalues the knowledge of conventional math-
ematical statisticians, and especially the less competent ones. By making it possi-
ble for each user to develop her/his own method to handle each particular prob-
lem, the priesthood with its secret formulaic methods is rendered unnecessary.

This seems more generally aimed at simulation-based inference than just resampling.

Performance assessment

which is the main part of what Harrell (2001) calls model validation. Suppose we have selected
a model for, say, regression or classification. Then we expect the model to perform better on
our dataset than in future, because both the model (variables used, transformations etc) and the
parameter values have been chosen by looking at that dataset. Part of performance assessment
is to predict how well the chosen procedure will do in real-world testing—most of the many
approaches are discussed in Ripley (1996, §2.7).

One computer-intensive approach is cross-validation, to repeatedly keep back a small part of
the dataset, do the model selection on the rest and then predict performance on the part held
back and then (in some sense) average to estimate the ‘out-of-sample’ performance. That is
a very general method and used sensibly gives very reliable results—but that has not stopped
some developers of competitor methods giving it a bad press.

To be concrete, suppose we have a classification procedure and the performance measure is
the error rate, the proportion of examples incorrectly classified. Then the ‘apparent’ misclas-

10for which the “m-out-of-n bootstrap’ when m < n and m/n — 0 provides an alternative with valid theory:
see Politis et al. (1999).

12

sification rate on the training data will clearly be biased downwards. Estimating how much
bias was a simple (and early) application of the bootstrap. Take a series of new training sets
by resampling the original, and fit a model to each new training set, and predict at the original
training set. The problem here is that the new and original training sets are not distinct, and
Efron (1983); Efron and Tibshirani (1997) proposed the ‘.632’ bootstrap. This weights the
apparent error rate and the error rate on those original examples which do not appear in the re-
sampled training set as 0.368 : 0.632. Here 0.632 is shorthand for (1 — 1/e), the large-sample
probability that a given example appears in the resampled training set.

Note that here we are trying to estimate what Harrell calls the optimism of the whole model
fitting procedure. He rightly points out in a quote that

In spite of considerable efforts, theoretical statisticians have been unable to anal-
yse the sampling properties of [usual multistep modeling strategies|] under realis-
tic conditions

but then fallaciously goes on to conclude

that the modeling strategy must be completely specified and then bootstrapped to
get consistent estimates of variances and other sampling properties.

The fallacy is asserting that bootstrapping is the only game in town, whereas many other
simulation-based inference methods could be (and have been) used.

Confidence intervals

One approach to a confidence interval for the parameter 6 is to use the quantiles of the boot-
strap distributions; this is termed the percentile confidence interval and was the original ap-
proach suggested by Efron. The bootstrap distribution in our example is quite asymmetric,
and the intervals based on normality are not adequate. The ‘basic’ intervals are based on the
idea that the distribution of #* — & mimics that of § — 6. If this were so, we would getal —«
confidence interval as

l—a=P(L<0—-0<U)~P(L<G —0<U)

so the interval is ((/9\— U,6— L) where L + § and U + 6 are the a/2 and 1 — /2 points of the
bootstrap distribution, say k,/ and k;_ /2. (It will be slightly more accurate to estimate these

as the (R+1)a/2th and (R+ 1)(1 — «/2)th ordered values of a sample of size R of 0*.) Then
the basic bootstrap interval

O —U,0—1L)= (0= [k1-ajo — 0),0 — [kay2 — 0]) = (20 — k1_0j2, 20 — kas2)

which is the percentile interval reflected about the estimate) (This is the same derivation
as the Monte-Carlo confidence interval, applied to a non-parametric model.) In asymmetric
problems the basic and percentile intervals will differ considerably (as here), and the basic
intervals seem more rational. For our example we have

boot.ci(gal.boot, conf=c(0.90, 0.95), type=c("norm","basic","perc","bca"))
Level Normal Basic Percentile BCa

90% (19.94, 21.65) (19.78, 21.48) (20.19, 21.89) (20.18, 21.87)
95% (19.77, 21.82) (19.59, 21.50) (20.17, 22.07) (20.14, 21.96)

13

The BC, intervals are an attempt to shift and scale the percentile intervals to compensate for
their biases, apparently unsuccessfully in this example. The idea is that if for some unknown
increasing transformation g we had g(0) — g(0) ~ Fy for a symmetric distribution Fy, the
percentile intervals would be exact. Suppose more generally that if ¢ = g(6),

90) = 9(6) ~ N(~w0(9),0*(0)) witho(9) =1+a¢
Let U = g(f). Then U = ¢+ (1 + a ¢)(Z — w) for Z ~ N(0, 1) and hence
log(14+aU) =log(l+a¢)+log(l+a(Z —w))
which is a pivotal equation in (= log(1 + a ¢). Thus we have a « confidence limit for , as
Co =log(1+au) —log((1+a(—2z4 —w))

(using —z, = 21_) and hence one for ¢ as

Go =u+ (1+au)

1 —a(w+ z,)

~ -~

Then the limit for 6 is 6, = g~'(¢,). We do not know g, but if u = g(#) and U* = g(6*)

> ~ Pa —u W+ Zq
P (0" <6,]0)=P(U" < ¢, =0 =0 —_——
7 <010 = P07 <ulw) =0 (w220 0 (w ;
Thus the « confidence limit for @ is given by the & percentile of the bootstrap distribution,
where
- W+ 24
a=9 <w + —>
1—alw+ zy)
Thus if @ = w = 0 the percentile interval is exact. This is very unlikely, but we can estimate
a and w from the bootstrap samples. Now w essentially measures the offset of centre of the
distribution, and

~

PO < 0)8) = P(U* < ul|u) = d(w)

and so w can be estimated by

L (#0r< 6y
w—¢l<—§17—>

Estimating a is a little harder: we make a linear approximation to g(as a function of the data
points) and take one sixth its skewness (third moment divided by standard deviation cubed) in
the bootstrap distribution.

For a smaller, simpler example, consider the data set on page 2.

> t.test(B - A)
95 percent confidence interval:

0.133 0.687

> shoes.boot <- boot(B-A, function(x,i) mean(x[i]), R=1000)

> boot.ci(shoes.boot, type = c("norm", "basic", "perc", "bca"))
Level Normal Basic Percentile BCa

95% (0.186, 0.644) (0.180, 0.650) (0.170, 0.640) (0.210, 0.652)

14

There is a fifth type of confidence interval that boot . ci can calculate, which needs a variance
v* estimate of the statistic 6* from each bootstrap sample. Then the confidence interval can be
based on the basic confidence intervals for the studentized statistics (0* — 0)/v/v*.

mean.fun <- function(d, i) {

n <- length(i)
c(mean(d[i]), (n-1)*var(d[il)/n"2)

}
> shoes.boot2 <- boot(B - A, mean.fun, R = 1000)
> boot.ci(shoes.boot2, type = "stud")

Level Studentized
95% (0.138, 0.718)

Some caution is needed here. First, despite three decades of work and lots of theory that
suggest bootstrap methods are well-calibrated, we can get as large discrepancies as we have
here. Second, this is only univariate statistics, and standard bootstrap resampling is only
applicable to IID samples.

Note that the bootstrap distribution provides some diagnostic information on the assumptions
being made in the various confidence intervals.

Theory for bootstrap confidence intervals

There are two ways to compare various types of bootstrap confidence intervals. One is em-
pirical comparisons as above. Another is to work out the asymptotic theory to a high enough
level of detail to differentiate between the methods.

The principal property of a confidence interval or limit is its coverage properties. We want for
an upper confidence limit 6, that

Py(0 < 0,) =a+0(n

for a large a. Obviously we would like exact confidence limits (no remainder term), but they
are in general unattainable, and so we aim for the best possible approximation.

Two points to note: a confidence interval or limit can have good coverage but be far from
optimal (as measured by length, say), and a confidence interval can have good coverage but
be far from equi-tailed.

We can consider a hierarchy of methods of increasing accuracy.

e A normal-based confidence interval, for example with standard deviation based on the
bootstrap distribution, and with a bootstrap bias correction. This has a« = 1/2 (in gen-
eral, but we won’t keep mentioning that).

e Basic bootstrap confidence limits. These have a = 1/2, but confidence intervals have
a = 1 and are said to be second-order accurate.

e Percentile limits and intervals. The same story as the basic limits and intervals. As
we have seen empirically, both of these tend to fail to centre the interval correctly, so
achieve second-order accuracy for intervals at the expense of having unequal tails.

e B(C, limits and intervals both have a = 1, provided a and w are estimated to O(n~'/2).

15

e The studentized method also has a = 1, provided the variance estimate used is accurate
to O(n~1/2).

To make the limitations of these results clearer, note that they apply equally to any monotone
transformation ¢(6) (for example a log or arcsin or logistic transformation), but empirical
studies (e.g. Davison and Hinkley, 1997, §5.7) show that using the right transformation can
be crucial.

Double bootstrapping

Another idea is to re-calibrate a simpler confidence limit or interval, that is to use 55 for some
f # « to achieve more accurate coverage properties. How do we choose 3?7 The double
bootstrap uses a second tier of bootstrapping to estimate the coverage probability of 63, and
then solves for 3 on setting this estimate equal to a.

It transpires that applying this idea to the normal confidence interval produces the studentized
confidence interval, but applied to the basic confidence interval it produces coverage accurate
toa = 2.

Double bootstrapping appears to require large numbers of replications, say a million samples if
we take 1000 in each of the tiers. Fortunately this can be reduced to more manageable numbers
by using polysampling (page 5, Davison and Hinkley (1997, §9.4.4) and Morgenthaler and
Tukey (1991)).

Bootstrapping linear models

In statistical inference we have to consider what might have happened but did not. Linear mod-
els can arise exactly or approximately in a number of ways. The most commonly considered
form is

Y =X[+¢€

in which only € is considered to be random. This supposes that in all (hypothetical) repetitions
the same z points would have been chosen, but the responses would vary. This is a plausi-
ble assumption for a designed experiment and for an observational study with pre-specified
factors.

Another form of regression is sometimes referred to as the random regressor case in which
the pairs (z;,y;) are thought of as a random sample from a population and we are interested
in the regression function f(x) = E{Y | X = x} which is assumed to be linear. However,
it is common to perform conditional inference in this case and condition on the observed xs,
converting this to a fixed-design problem. For example, in the Scottish hill races dataset!!
the inferences drawn depend on whether certain races, notably Bens of Jura, are included in
the sample. As they were included, conclusions conditional on the set of races seems most
pertinent.

"Venables and Ripley (2002, p. 8-10, 152-5).

16

These considerations are particularly relevant when we consider bootstrap resampling. The
most obvious form of bootstrapping is to randomly sample pairs (z;, y;) with replacement,'?
which corresponds to randomly weighted regressions. However, this may not be appropriate
in not mimicking the assumed random variation and in some examples of producing singular
fits with high probability. The main alternative, model-based resampling, is to resample the
residuals. After fitting the linear model we have

yi = i + e

and we create a new dataset by y; = xﬁ + e where the (e) are resampled with replacement
from the residuals (e;). There are a number of possible objections to this procedure. First,
the residuals need not have mean zero if there is no intercept in the model, and it is usual to
subtract their mean. Second, they do not have the correct variance or even the same variance.
Thus we can adjust their variance by resampling the modified residuals r; = e1/v/1 — hy;
which have variance o2.

We see bootstrapping as having little place in least-squares regression. If the errors are close
to normal, the standard theory suffices. If not, there are better methods of fitting than least-
squares! One issue that is often brought up is that of heteroscedasticity, which some bootstrap
methods accommodate—but then so do Huber—White ‘sandwich’ estimators.

The distribution theory for the estimated coefficients in robust regression is based on asymp-
totic theory, so we could use bootstrap estimates of variability as an alternative. Resam-
pling the residuals seems most appropriate for the phones data of Venables and Ripley (2002,
p. 157)

library(MASS); library(boot)
fit <- 1m(calls ~ year, data=phones)
summary (fit)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -260.059 102.607 -2.535 0.0189
year 5.041 1.658 3.041 0.0060

ph <- data.frame(phones, res=resid(fit), fitted=fitted(fit))
ph.fun <- function(data, i) {

d <- data

d$calls <- d$fitted + d$res[il

coef (update(fit, data=d))

b
ph.lm.boot <- boot(ph, ph.fun, R=999)
ph.1lm.boot

original bias std. error
t1x -260.0592 6.32092 100.3970
t2% 5.0415 -0.09289 1.6288

fit <- rlm(calls ~ year, method="MM", data=phones)
summary (fit)

2Davison and Hinkley (1997) call this case-based resampling. Shao and Tu (1995) call it the paired bootstrap,
in contrast to the residual bootstrap we consider next.

17

Coefficients:

Value Std. Error t value
(Intercept) -52.4230 2.9159 -17.9783
year 1.1009 0.0471 23.3669

ph <- data.frame(phones, res=resid(fit), fitted=fitted(fit))
ph.rlm.boot <- boot(ph, ph.fun, R=999)
ph.rlm.boot

original bias std. error
tlx -52.4231 3.232142 30.01894
t2x 1.1009 -0.013896 0.40648

(The rlm bootstrap is starting to be computer-intensive at 45 secs, but took about 10 mins in
S-PLUS for the third edition in 1997.) These results suggest that the asymptotic theory for r1m
is optimistic for this example, but as the residuals are clearly serially correlated the validity of
the bootstrap results is equally in doubt. Statistical inference really does depend on what one
considers might have happened but did not.

Shao and Tu (1995, Chapters 7-8) and Davison and Hinkley (1997, Chapters 6—7) consider
linear models and extensions such as GLMs and survival models.

How many bootstrap resamples?

Our examples have been based on 1000 resamples 6*. Largely that figure was plucked from
thin air: it was computationally feasible. Is it enough? To answer that question we need to
consider the various sources of error. The Monte-Carlo error due to the resampling is one, and
since the resampling is independent, the size of the Monte Carlo error will be Op(R~1/2) for
R samples. On the other hand, the size of the confidence interval will be Op(n~'/2) and this
suggests that to make the Monte Carlo error negligible we should take 12 to be some multiple
of n. Some calculations (Davison and Hinkley, 1997, pp. 35-6) suggest a multiple of 10—40.

However, this is not all there is to it. If we want to compute confidence intervals, we need to be
able to estimate fairly extreme quantiles, which suggests we need R around 1000. (R = 999
is popular as the (R + 1)pth quantile is a data point for most popular p.) Moreover, the BC,
method often needs considerably more extreme quantiles than the originals, and so can require
very large bootstrap samples.

Further, there are Aother sources of A(systematic) error, not least the extent to which the dis-
tribution of #* — 6 mimics that of § — 6. It may be more important to choose a (monotone
invertible) transformation ¢(6) for which that approximation is more accurate, in particular
to attempt variance stabilisation. Finally, if the samples were not independent, then simple
bootstrapping will be inappropriate.

Diagnostics

It is (I hope) familiar that after fitting a parametric model such as a regression we look at
diagnostics to see if the assumptions have been violated.

18

In one sense the problem is easier with bootstrap models as they are non-parametric and so
make fewer assumptions. However fewer but often more critical ones, e.g. independent and
identically distributed. So we would still like to know if there are observations that are partic-
ularly influential on our conclusions. That is hard enough for linear regression!

There is one general approach to bootstrap diagnostics, the use of jackknife-after-bootstrap
(Davison and Hinkley, 1997, §3.10). We could consider dropping each observation j in turn
and redoing the analysis (including all the resampling). However, we can avoid this by looking
only at bootstrap resamples in which observation j does not occur and applying the jackknife
method of the next section.

The Jackknife

The jackknife'? is an older resampling idea, most often used to attempt bias reduction.

Consider an i.i.d. sample Xi,..., X, ~ F, and consider a statistic §,, = 6(F,) for the
empirical CDF F,,.. Then the ‘true value’ is #(F"). Any statistic which is independent of the
ordering of the sample can be written in this form.

The jackknife estimates the bias from the n sub-samples of size n — 1. Let /9\(1-) denote the
estimate from the sample omitting X;. Then the estimate of bias is

— 1 ~ B
BIAS = (n—1)(= Y0~ 0)
It can be shown that if
bias(6) = E(0) — O(F) = a1 /n + as/n’> + - - -

then & — BIAS has a bias of O(n™%). For example, applied to the variance functional it
replaces the divisor n by n — 1. The assumption will be true for smooth functionals 6, but not,
for example, for the median.

Another way to look at the jackknife is via the pseudo-values given by
6, =0+ (n—1)(0—8)

Then these can be regarded as a new ‘sample’, and the mean and variance estimated from
them. Then BIAS is # minus the mean of the pseudo-values.

The jackknife estimate of the variance of a statistic is the variance of the pseudo-values divided
by n. The pseudo-values could be used to give a confidence interval, but that has proved to be
no better than the normal-based confidence intervals based on the mean and variance of the
pseudo-values.

Jackknife ideas have been frutiful for bias and (especially) variance estimation, for example
in sample surveys—see Rao and Wu (1988) and Shao and Tu (1995, Chapter 6). (Note that
this is another area where naive applications of the bootstrap may be invalid.)

13a Tukey-ism for an idea of Quenouille

19

Bootstrapping as simulation

Bootstrapping is ‘just’ simulation-based inference, sampling from a particularly simple model.
As such it is subject to all the ways known in the simulation literature'* to reduce variability.
Davison and Hinkley (1997, Chapter 9) discuss many of them, but there are few examples
in the many application studies using bootstrapping. If you use bootstrapping in your work,
please take heed!

Software

Basic bootstrap resampling is easy, as you saw in the preliminary notes—e.g. just use the R
function sample.

As for most uses of simulation-based inference the task for software falls into two halves
e Generate the simulations, in this case the resamples.
e Analyse the simulated data.

Once we move away from looking at univariate IID sampling, both become more complicated
and less general.

R ships with a package boot which is support software for Davison and Hinkley (1997) writ-
ten'® largely by Angelo Canty. This has a few functions to do bootstrapping such as boot,
censboot and tsboot. The workhorse here is boot, which allows several types of resam-
pling/simulation.

sim="ordinary" which has stype as one of "i" (give indices into the data set), "f" (give
frequencies for each item) and "w" (normalized to one)

sim="parametric" see below.

sim="balanced" stratification.

sim="permutation" resampling without replacement.

sim="antithetic" induce negative correlations in pairs of bootstrap resamples.
It is also possible to specify strata, and importance sampling weights.

sim="parametric" is intended for parametric bootstrapping, but is a completely general
mechanism. Here is how it is used for the smoothed bootstrap in the solutions to the pre-
liminary exercises:

s <- 0.1 # the standard deviation of a normal kernel
ran.gen <- function(data, mle) {
n <- length(data)
rnorm(n, data[sample(n, n, replace=TRUE)], mle)
}
out3 <- boot(nerve, median, R=1000, sim = "parametric",
ran.gen = ran.gen, mle = s)

14and sketched in the preliminary material.
Bfor S-PLUS, and ported to R by me.

20

Here mle is an object representing the parameters to be passed to the simulation routine.

The main analysis function is boot. ci.

21

4 Markov Chain Monte Carlo

The idea of Markov Chain Monte Carlo is to simulate from a probability distribution as the
stationary distribution of a Markov process. This is normally'® employed for quite highly
structured problems, typically involving large numbers of dependent random variables. Such
problems first arose in statistical physics, and the ideas were re-discovered in spatial statistics
in the 1970s and 1980s. Then those wanting to implement Bayesian models jumped on the
bandwagon around 1990, rarely giving credit to those whose work in spatial statistics they had
taken the ideas from.

The key questions about MCMC from a practical viewpoint are

1. How do we find a suitable Markov process with our target distribution 7 as its stationary
distribution?

2. Assuming we cannot start from the stationary distribution (since if we could we would
know another way to simulate from the process), how rapidly does the process reach
equilibrium? And how can we know that it is already close to equilibrium?

3. How correlated are successive samples from the process, or (to put it another way),
how far apart do we need to take samples for them to contain substantially different
information?

These points are all interrelated—a good MCMC sampling scheme will be one for which each
step is computationally quick, and which mixes well, that is traverses the sample space quickly.

The previous paragraph assumes that these goals are achievable, but people do attempt to use
MCMC in problems with millions of random variables. Almost inevitably there are some
aspects of the process that mix slowly and some that mix fast, and so the choice of MCMC
sampling scheme does often need to be linked to the questions of interest.

MCMC can be approached from several angles. The preliminary material took on one ap-
proach based on my personal experience, and for variety these notes take another.

Some of the statements made here about convergence need technical conditions which are
omitted. It is generally accepted that the cases that are being excluded are pathological, and
since MCMC allows a lot of freedom to design a suitable scheme the conditions are easily
satisfied in practice. The clearest and most accessible account of the relevant theory I have
seen is Roberts and Rosenthal (1998).

Data augmentation

Suppose we have a parametric model p(Y |6) for some observable random variables Y. It
is rather common for this to be the manifestation of a richer model p(Y, Z | 6) for both the
manifest variables Y and some latent (unobserved, ‘missing’) variables Z. This can arise in
many ways, including

e Missing data, so Z represents e.g. responses from a survey that were unobserved.

16apart from in textbook examples and exercises.

22

e Partial observation, e.g. in social networks we only observe the links at some times: in
family studies we have genetic data on only some members.

e Censored data, e.g. lifetimes in which all we know for some subjects is that they were
still alive on a particular date. So for each subject we have two pieces of information,
whether they were alive at the end of the study, and the actual date of death. For all
subjects the first is part of Y whereas for some the second is part of Y and for some part
of Z.

e Latent variable/class problems in which Z is some unobserved ‘true’ characteristic such
as intelligence or the component of a mixture distribution. In genetics Y might be the
phenotype and Z the genotype.

For simplicity of exposition we will take a Bayesian viewpoint with a prior probability distri-
bution on #, and the main object of interest is then the posterior distribution g(6) = p(9|Y).
Note that

9(0) = p(8]Y) = / p(601Y, Z)p(Z|Y) dZ
and

P(Z|Y) = / o(Z16.Y)p(8]Y) db

and hence ¢ satisfies
90) = [K@.0)g0)do. where K(6.0)= [p0]Y.2)p(Z]6.Y)dZ ©)

Under mild conditions we can solve (3) by successive substitution,!” but we do have to inte-
grate out the unobserved variables Z. Tanner and Wong (1987) (see also Tanner, 1996) call a
Monte Carlo version data augmentation. This alternates the steps

a. Generate a sample (z;) of size m from the current approximation to p(Z |Y"). This will
probably be done by first sampling 67 from the current approximation g(f) and then sam-
pling z; from p(z |6}, Y).

b. Use this sample to update the approximation to g(6) = p(0 | Y) as the average of p(6 | z;, V).

So what this is doing is approximating p(f | V') by a finite mixture from (p(6|z,Y)). As iter-
ation progresses we might want to take larger and larger samples to get better approximations.

This is closely related to the notion of multiple imputation in the analysis of sample surveys,
where missing data are replaced by a sample of their uncertain values. So data augmentation
alternates between multiple imputation of the unobserved variables in the model and inference
based on the augmented data. From a theoretical viewpoint, the multiple imputations are being
used to approximate the integral in the definition of K at (3) by an average over samples.

However, we can take another point of view, as K is the transition kernel of a Markov chain,
and successive substitution will converge to the stationary distribution of that Markov chain.
Suppose that we just simulate from the Markov chain? This alternates

Ystart with some candidate g for p(f | Y'), and repeatedly use (3) to obtain a new and better candidate. Under
mild conditions this does work — there is a unique solution, the new candidate is closer in L; norm to that solution
and convergence is geometric.

23

a. Generate a single sample z from p(Z | 0,Y") with the current 6.
b. Use z to sample 6 from p(0] z,Y).

In this version we give up both multiple imputation and any attempt to keep probability distri-
butions in partially analytical form—rather we represent distributions by a single sample, and
run the Markov chain as a stochastic process on parameter values 6 (rather than iterating an
integral operator). This variant is called chained data augmentation by Tanner (1996). Clearly
we would eventually want more than one sample, but we can get that by simulating the whole
Markov chain multiple times, rather than simulating each step multiple times.

In a particle filter'® evolving distributions are represented by a finite set of values, not just
one, that is by a finite mixture, usually but not always unweighted.

The observable data Y have played a passive role throughout this subsection: what we have
been considering is a way to simulate from the joint distribution of (6, Z) conditional on Y.
So we do not need an explicit Y, and ‘chained data augmentation’ gives us a way to simulate
from any joint distribution of two (groups of) random variables by alternately simulating from
each of the two conditional distributions of one conditioned on the other.

Detailed balance

Data augmentation and the spatial birth-and-death processes of the preliminary notes provide
‘mechanistic’ approaches to developing an MCMC algorithm, but in general MCMC algo-
rithms can be unrelated to any hypothesized stochastic generative mechanism. Especially in
such cases, we need to be able to show formally'® that we do indeed have a Markov pro-
cess with the desired stationary distribution, and that the stationary distribution is the limiting
distribution.

A key concept is detailed balance, which is connected to reversibility of the Markov pro-
cess. Reversibility just means that the joint distribution of the process at a series of times is
unchanged if the direction of time is reversed—clearly this only makes sense for a station-
ary process as for any other Markov process the convergence towards equilibrium reveals the
direction of time.

For a discrete-time discrete-state-space Markov process reversibility entails
P(Xi=1i,Xip1=J) = P(Xip1 =10, Xy =j) = P(X; = j, Xyy1 = 14)
so if (m;) is the stationary distribution,
miPij = ;i Pj; “4)

for transition matrix Pj;. This equation is known as detailed balance.

If we know there is a unique stationary distribution, and we can show detailed balance for our
distribution 7, we have shown that it is the unique stationary distribution. If we also know?’

Bhttp://en.wikipedia.org/wiki/Particle_filter, Robert and Casella (2004, Chapter 14).
for some value of ‘formal’!
2¢.g. by showing it is aperiodic and irreducible, and for continuous state-spaces Harris recurrent.

24

http://en.wikipedia.org/wiki/Particle_filter

that the Markov process converges to its stationary distribution, we have a valid MCMC sam-
pling scheme.

Similar considerations apply to continuous-state-space Markov processes, e.g. detailed bal-
ance can apply to the density of the stationary distribution.

Gibbs sampler

so named by Geman and Geman (1984) but published some years earlier by Ripley (1979)
and as examples in earlier papers.

It applies to a multivariate distribution, so we can think of Y as m-dimensional. The simplest
Gibbs sampler consists of selecting a random component ¢ of Y, and replacing Y; by a sample
from p(Y; | Y_;), where Y_; denotes all the variables except Y;.

This can easily be shown to satisfy detailed balance.

Chained data augmentation is a simple example of the Gibbs sampler. It alternately samples
from the conditional distributions of Z and 6 given the remaining variables.

In practice the Gibbs sampler is often used with a systematic selection of ¢ rather than a random
one (as in chained data augmentation). The theory is then not so simple as the process is no
longer necessarily reversible—this is discussed in Geman and Geman (1984) and some?! of the
references. One simple modification that makes the process reversible is to use a systematic
order of the m components, and then run through them in reverse order (chained DA is an
example).

When we have an m-dimensional distribution, it is not necessary to think of each component in
the Gibbs sampler as a single random variable. Sometimes the variables naturally form blocks,
and it is the blocks to which the Gibbs sampler should be applied. Once again, chained DA
provides the simplest example.

Note that the Gibbs sampler does not necessarily converge to the stationary distribution: there
are conditions which need to be checked and are related to when a joint distribution is deter-
mined by all of its univariate conditionals. Consider the simple example of a two-dimensional
joint distribution of (X, Y") in which X has a standard normal distribution and Y = X.

Metropolis-Hasting schemes

A general way to construct a Markov chain with a given stationary distribution 7w was given
by Metropolis et al. (1953) which was given added flexibility by Hastings (1970).

These MCMC schemes start with a transition kernel ¢(x, y) of a Markov process on the state
space. Given a current state Y; this is used to generate a candidate next state Y *. Then either
the transition is accepted and Y;,; = Y™ or itis not when Y;,; = Y;. The probability that the
move is accepted is (Y}, Y*) where

a(z,y) = min {1,

2le.g. Gamerman and Lopes (2006, §5.3.2).

25

It is a simple exercise to show that this satisfies detailed balance. For the stationary distribution
to be also the limiting distribution we need the chain to be aperiodic: note that it will be
aperiodic if there is a positive probability of rejecting a move.

The original Metropolis ef al. scheme had a symmetric transition kernel, so the move is
accepted with probability min{1, 7(x)/7(y)}. That s, all moves to a more or equally plausible
state are accepted, but those to a less plausible state are accepted only with a probability less
than one, the ratio of the probabilities.

That only the ratio of the probabilities enters is often exploited. If x is a high-dimensional
state vector, choosing transitions such that y differs from « only in one or a few components
can simplify greatly the computation of 7(Y™*)/m(Y;), and also avoid rejecting most proposed
moves (which will happen if 7(Y) is almost always very much smaller than 7(Y})). Indeed,
the Gibbs sampler is a special case of the Metropolis-Hastings sampler in which only single-
component moves are considered, and ¢(z,y) = p(z; | z_;) where 7 is the chosen component
(and hence o(z,y) = 1).

A couple of other special cases are worth mentioning. One suggested by Hastings (1970) and
others is a random-walk sampler in which ¢ specifies a random walk (and so makes most sense
when the state space is a vector space, but could apply to a lattice). Another is an independence
sampler in which ¢(x, y) = q(y), so the proposed move is independent of the current state.

For a gentle introduction to the many choices in implementing a Metropolis-Hastings MCMC
scheme see Chib and Greenberg (1995).

Other schemes

The only limit on the plethora of possible MCMC schemes is the ingenuity of developers. We
saw another scheme, spatial birth-and-death processes, in the preliminary notes. A similar
idea, the reversible jump MCMC of Green (1995), has been applied to model choice in a
Bayesian setting.

We do not even need to confine attention to Markov processes which jump: Grenander and
Miller (1994) and others have used Langevin methods, that is diffusions. See Robert and
Casella (2004, §7.8.5) for a brief account.

Using a MCMC sampler

So far we have described using a Markov chain to obtain a single sample from a stochastic
process by running it for an infinite number of steps. In practice we run it for long enough to
get close to equilibrium (called a ‘burn-in’ period) and then start sampling every m > 1 steps
(calling thinning). We can estimate any distributional quantity via the law of large numbers

% Z M X i) — Eh(X)

for any m, so if h() is cheap to compute we may as well average over all steps. In practice
we often take m large enough so that samples are fairly dissimilar—thinning is also used to
reduce storage requirements.

26

2.0 2.0+
1 (a] (b)
1.54 1.5+
1.0+ 1.04
0.5 0.5
[o e e o S S e S e e N B e | 0.04+———Tr T+ T T T T T T T T
100 200 300 400 500 100 200 300 400 500

Fig. 2. Pseudolikelihood (a) and (asymptotic) maximum likelihood (b) estimates for 500 sweeps of Metropolis’ method.

2.0 ;
(a) { (b)
1.5 1.5
1.0 1.0
0.5 0.5+
ﬂ
]
0.0 ——————————— T 0.0 T
5000 10000 15000 20000 25000 5000 10000 15000 20000 25000

Fig. 3. As Fig. 2, but another sample with 25,000 sweeps!

Figure 5: Diagnostic plots from two realizations of an MCMC simulation. Note the different scales.
These are for two estimators of a quantity known to be 5 = 1.5. From Ripley and Kirkland (1990).

There are many practical issues — where do we start? How do we know when we are ‘close
to equilibrium’? And so on. Note that the issue of whether we are yet close to equilibrium
is critical if we are simulating to get an idea of how the stochastic process behaves — Geman
and Geman (1984) based all their intuition on processes which were far from equilibrium, but
incorrect intuition led to interesting statistical methods.

A run of an MCMC algorithm provides a time series of correlated observations. There is a lot
of earlier work on analysing such time series from other simulation experiments, for example
of queueing problems: see Ripley (1987, Chapter 6). Most of these need a Central Limit
Theorem, which hold if the Markov chain is geometric ergodic, for example. (Roberts and
Rosenthal (1998, p.10) give an example of an MCMC scheme where the CLT fails to hold.)

Convergence diagnostics

Or ‘How do we know when we are close to equilibrium?’

This led to much heated discussion in the early 1990s, and several survey papers. The scale

27

(b)

Fig. 4. The realization after 10,000 (a) and 25.000 (b) sweeps of Metropolis’ method.

(a) .

Figure 6: Two snapshots of the second MCMC simulation. From Ripley and Kirkland (1990).

of the problem is often dramatically underestimated — twenty years ago we found an example
(Ripley and Kirkland, 1990) in which the Gibbs sampler appeared to have converged after a
few minutes, but jumped to a very different state after about a week. In statistical physics such
behaviour is sometimes call metastability.

The proponents have split into two camps, those advocating running a single realization of the
chain, and after a ‘burn-in’ period sampling it every m steps, and those advocating running
several parallel realizations, and taking fewer samples from each. Note that the computing
environment can make a difference, as the simplest and computationally most efficient way to
make use of multiple CPUs is to use parallel runs.

Writing about this, Robert and Casella (2004) (which is a second edition) say (p. X)

We also spend less time on convergence control, because some of the methods
presented [in the 1999 first edition] did not stand the test of time. The methods we
preserved in Chapter 12 have been sufficiently tested to be considered reliable.

and (p. 512)

Chapter 12 details the difficult task of assessing the convergence of an MCMC
sampler, that is, the validity of the approximation 0T) ~ 7 (z), and, correspond-
ingly, the determination of a “long enough” simulation time. Nonetheless, the
tools presented in that chapter are mostly hints of (or lack of) convergence, and
they very rarely give a crystal-clear signal that 07) ~ m(x) is valid for all simu-
lation purposes.

Readers of other accounts (including their first edition) may come away with a very different
impression.

If we knew something about the rate of convergence of the Markov chain to equilibrium we
could use such knowledge to assess how long the ‘burn-in’ period needed to be. But this is
very rarely helpful, for

(1) we rarely have such knowledge,

28

(i1)) when we do it is in the form of upper bounds on convergence rates and those upper
bounds are normally too crude, and

(i11) the theory is about convergence from any initial distribution of all aspects of the dis-
tribution. Many of the MCMC schemes converge fast for some aspects of the target
distribution and slowly for others—hopefully the scheme was chosen so that the former
are the aspects we are interested in.

Nevertheless, that are some exceptions: e.g. simple ones in Roberts and Rosenthal (1998,
§5) and an application to randomized graph-colouring algorithms in Jerrum (1995) (see also
Asmussen and Glynn, 2007, §XIV.3).

After all those notes of caution, here are some of the main ideas. Let (X;) be the output from
a single MCMC run, possibly sub-sampled every m steps and of one (usually) or more aspects
of interest.

o Tests of stationarity. If the output is stationary, we can divide into two or more parts
which will have the same distribution, and apply a test for equality of distribution such
as the Kolomogorov—Smirnov test. Such tests are usually most sensitive to changes in
location (which is normally of most interest here), and for IID samples (and so need
adjustment). Tests of drift such as CUSUM charts (Yu and Mykland, 1998) come into
this category.

e Regeneration. Some of the most powerful ideas in the analysis of discrete-event simula-
tions (Ripley, 1987, Chapter 6) are based on the idea that the process will from time-to-
time come back to an identifiable state and excursions from that state are independent
(by the strong Markov property). (Think for example of a queueing system emptying
completely.) Regeneration may be too rare to be useful, but this is one of the few fully
satisfactory approaches.

e Coverage. The idea is to assess how much of the total mass of 7 has been explored. For
a one-dimensional summary and sorted values X ;) the Riemann sum

T
D 1 Xy — Xl 7(X)
t=1

provides an approximation to [m(z)dx = 1, and so its convergence to one is a measure
of coverage of the MCMC to date. This is only applicable if there is a one-dimensional
summary of which we know the marginal distribution explicitly (so we can evaluate
7(X())), and it only tells us about coverage of that marginal.

e Multiple chains. If we have a small number of runs from suitable starting points we can
compare the variability within and between runs, and when the between-run variability
has reduced to that predicted from the within-run variability all the runs should be close
to equilibrium. The series (X) is autocorrelated, and we need to take that into account
in assessing the within-run variability: but that is a standard problem in the simulation
literature. This approach is principally associated with Gelman and Rubin (1992). The
problem is to choose suitable starting points so the runs considered do representatively
sample 7.

e Discretization. Some methods look at a discretization of (XX;) to a process with a small
number of states. The original proposal by Raftery & Lewis was reduce to a two-state

29

process. The discretized process will not normally be Markov, but a sub-sampled pro-
cess (every m steps) might be approximately so and if so we know enough about two-
state Markov chains to study their convergence, estimating the two parameters of the
transition matrix from the observed data. The issues are the Markov approximation and
whether convergence of the discretized version tells us enough useful about convergence
of the original (although non-convergence definitely does).

Another cautionary note: these diagnostic tests must not be used as stopping rules, as that
would introduce bias.

Quite a lot of software has been written for convergence diagnostics. Two of the main suites,
coda and boa, are available as R packages.

There are some methods for using MCMC to produce a sample exactly from 7. Propp and
Wilson (1996) called these exact sampling, but Wilfrid Kendall’s term perfect simulation has
stuck (see, e.g. Kendall, 2005). They cover only a limited set of circumstances and are most
definitely computer-intensive.?? So these are not techniques for mainstream use (and probably
never will be), but they could be used for example

e as a reference against which to compare cheaper simulation schemes, and
e to provide a small number (e.g. one) of samples from which to start an MCMC sampler.

See also Asmussen and Glynn (2007), Casella et al. (2001) and Robert and Casella (2004,
Chapter 13). One possibly more practical idea that arises from Propp & Wilson’s work is
the idea of monotonicity of MCMC samplers. Suppose there are some extreme states for the
distribution of interest, e.g. an image coloured entirely white or black. Then if we start an
MCMC scheme at those states, and the realizations become ‘similar’, there is some hope that
realizations starting from any initial state would have become similar by that time. ‘Mono-
tonicity’ provides a theoretical guarantee of this and it (or similar ideas) underlies most perfect
sampling schemes.

Further reading

MCMC can be approached from wide range of viewpoints — from theoretical to practical,
as a general technique or purely Bayesian, and at different levels (especially in probability
background). Texts which have interesting perspectives include Chen et al. (2000), Gamerman
and Lopes (2006), Gelman et al. (2004), Gilks et al. (1996), Liu (2001) and Robert and Casella
(2004). Roberts and Tweedie (2005) cover the Markov chain theory. As a topic in simulation,
it is covered in Ripley (1987) and Dagpunar (2007),> and as a method of integration in Evans
and Swartz (2000).

For those unfamiliar with applied Bayesian work, Albert (2007) and (especially) Gelman et al.
(2004) provide accessible introductions to the computational aspects with non-trivial worked
examples.

2] understood (from Persi Diaconis) that Propp & Wilson ran a simulation for six weeks without any knowl-
edge of how long it would actually take to reach an exact sample.
Zand at a higher mathematical level, Asmussen and Glynn (2007).

30

Software

Because MCMC is a meta-algorithm, there are very many specific applications and cor-
responding software. (I counted 29 such R packages on CRAN just by looking at their
DESCRIPTION files. See alsohttp://cran.r-project.org/web/views/Bayesian.html.)

Creating general software for MCMC is close to impossible, and all attempts known to me
restrict themselves in one or both of two ways. Some confine attention to a family of sampling
schemes—e.g. R package mcmc works with “normal random-walk” Metropolis and perhaps
the best-known software, BUGS, works with the Gibbs sampler. Others confine attention
to a particular class of statistical models and to a particular way to approach inference on
those models. One common restriction is to the Bayesian analysis of hierarchical or graphical
models.

BUGS was a program written from 1989 at MRC’s BSU in Cambridge in an arcane language
that has restricted the platforms it could run on. It uses an S-like language to specify graphical
models for which it then creates a Gibbs sampler, plus the ability to simulate from the created
sampler. It spawned WinBUGS?* and OpenBUGS? with GUI interfaces.

JAGS?® is an Open Source program written in C that re-implements the BUGS language.

There are R packages BRugs, R2WinBUGS and rjags to interface with OpenBUGS, Win-
BUGS/OpenBUGS and JAGS respectively. Gelman et al. (2004, Appendix C) discusses
driving WinBUGS from R via R2WinBUGS: it is available on-line at http://www.stat.
columbia.edu/~gelman/bugsR/software.pdf.

From the BUGS site
Health warning

‘The programs are reasonably easy to use and come with a wide range of exam-
ples. There is, however, a need for caution. A knowledge of Bayesian statistics is
assumed, including recognition of the potential importance of prior distributions,
and MCMC is inherently less robust than analytic statistical methods. There is no
in-built protection against misuse.’

About JAGS:

‘JAGS uses essentially the same model description language but it has been com-
pletely re-written. Independent corroboration of MCMC results is always valu-
able!’

Note that all the BUGS-like programs require a proper Bayesian model, so exclude improper
priors.

R package LearnBayes is a companion to Albert (2007) which includes examples of MCMC
both via LearnBayes and via WinBUGS. However, the code quality seems low.

24which as its name suggests is for Windows only, http://www.mrc-bsu.cam.ac.uk/bugs. People have
managed to run it on ix86 Linux via WINE.

Phttp://mathstat.helsinki.fi/openbugs/; this is Open Source but is written in a language “Compo-
nent Pascal” with a proprietary compiler and so is de facto also restricted to Windows—there is a 1386 Linux
version that few people have managed to get to work.

Pnttp://www-ice.iarc.fr/~martyn/software/jags/.

31

http://cran.r-project.org/web/views/Bayesian.html
http://www.stat.columbia.edu/~gelman/bugsR/software.pdf
http://www.stat.columbia.edu/~gelman/bugsR/software.pdf
http://www.mrc-bsu.cam.ac.uk/bugs
http://mathstat.helsinki.fi/openbugs/
http://www-ice.iarc.fr/~martyn/software/jags/

5 MCMC examples

This section sets the background for the examples of MCMC to be used in the practicals.
Many of you will have seen an example in the Statistical Modelling module practicals, and
more can be found in the on-line practicals for Davison (2003) (http://statwww.epfl.ch/
davison/SM/SM_Practicals.1.pdf and R package SMPracticals) and in Gelman et al.
(2004) and Albert (2007).

Binomial logistic regression

Venables and Ripley (2002, §7.2) explore the following example.

Consider first a small example. Collett (1991, p. 75) reports an experiment on the
toxicity to the tobacco budworm Heliothis virescens of doses of the pyrethroid
trans-cypermethrin to which the moths were beginning to show resistance. Batches
of 20 moths of each sex were exposed for three days to the pyrethroid and the
number in each batch that were dead or knocked down was recorded. The results
were
Dose
Sex 1 2 4 8 16 32

Male 1 4 9 13 18 20
Female 0 2 6 10 12 16

The doses were in ug. We fit a logistic regression model using log,(dose) since
the doses are powers of two.

The interest is in estimating the dose required for a particular probability p of death, especially
that for p = 0.5 called LD50. A frequentist analysis using glmis given in Venables and Ripley
(2002), but here we consider a Bayesian analysis.

We start by using R package MCMCpack: this works with Bernoulli and not binomial data, so
first we disaggregate the results. The default prior for 3 is an improper uniform prior, but
others can be supplied — see 7TMCMClogit.

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive = 20 - numdead)

resp <- rep(rep(c(1,0), 12), times = t(SF))

budworm <- data.frame(resp, ldose = rep(ldose, each = 20),
sex=rep(sex, each = 20))

glm(resp ~ sex*ldose, family = binomial, data = budworm)

library(MCMCpack) # loads package ’coda’

fit <- MCMClogit(resp ~ sexxldose, data = budworm)

summary (fit)

plot (fit)

acfplot(fit) # suggests thinning

fit <- MCMClogit(resp ~ sexxldose, data = budworm, thin = 20)

32

http://statwww.epfl.ch/davison/SM/SM_Practicals.1.pdf
http://statwww.epfl.ch/davison/SM/SM_Practicals.1.pdf

There is an issue with LD50, pointed out by Gelman et al. (2004, p. 93): we are really only
interested in positive slopes. In this example the chance of a negative fitted slope is negligible,
but otherwise LD50 would be a complex non-linear function of the parameters, something
simulation-based inference takes in its stride.

Our second approach uses BUGS.?” We need to specify the BUGS model, which we will do
in a file’® budworm. bug

model {
for(i in 1:6) {
numdead[i] ~ dbin(p[i], 20)
logit(p[i]) <- alphaM + betaM * ldosel[i]

for(i in 7:12) {
numdead[i] ~ dbin(p[i], 20)
logit(p[i]) <- alphaF + betaF * ldosel[i]
}
betaM ~ dnorm(0.0, 0.001)
alphaM ~ dnorm(0.0, 0.001)
betaF ~ dnorm(0.0, 0.001)
alphaF ~ dnorm(0.0, 0.001)
}

This is simple rather than general, and specifies rather vague independent priors for the pa-
rameters. The syntax is deceptively similar to S, but note that dnorm has arguments mean and
precision (reciprocal variance).

To run the MCMC we use

library (R2WinBUGS
budworm.sim <- openbugs(list("numdead", "ldose"),
list(alphaM = 0, betaM = 0, alphaF = 0, betaF = 0),
c("alphaM", "alphaF", "betaM", "betaF"),
model.file = "budworm.bug",
n.chain = 1, n.iter = 10000, DIC = FALSE)
budworm.sim
plot (budworm.sim)

with printout

Inference for Bugs model at "budworm.bug", fit using OpenBUGS,
1 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 1000 iterations saved
mean sd 2.5% 25% 50% 75% 97.5%

alphaM -2.9 0.6 -4.2 -3.3 -2.9 -2.5 -1.9
alphaF -3.1 0.6 -4.2 -3.4 -3.0 -2.7 -2.0
betaM 1.30.2 0.9 1.2 1.3 1.4 1.8
betaF 0.90.2 0.6 0.8 0.9 1.0 1.3

We should explore other starting points, and will do so in the practical.

Looking at the posterior simulations shows a potential problem with naive use of the Gibbs
sampler—the intercept and slope are quite correlated. Only extreme correlations will give

?"In these examples we call OpenBUGS (via package BRugs) rather than the default WinBUGS solely to avoid
having to install (and license) another program.
28model files should have extension bug or txt.

33

problems in a classical analysis of a GLM, but here quite modest correlations can slow down
convergence of the automatically constructed Gibbs sampler.

Poisson change-point models

Consider the much-used data set of annual counts of British coal mining ‘disasters’ from 1851
to 1962.% Looking at the data suggests that the rate of accidents decreased sometime around
1900, so a suitable model is that the counts are independent Poisson with mean \; before time
7 and mean)\, from time 7 onwards, where we expect Ay < A;. This is the simplest possible
case, and we could consider more than one changepoint.

For a Bayesian analysis we need a prior distribution on the three parameters. If we take them
as independent and of conjugate form, the posterior can be found analytically (Gamerman and
Lopes, 2006, pp. 143ff), but a realistic prior will have a dependent distribution of (A1, As).
That is easy to do in the MCMC framework—for a more complex application to radiocarbon
dating see Gilks et al. (1996, Chapter 25).

We will consider computing posterior distributions via MCMC in two ways. R package
MCMCpack has a function MCMCpoissonChangepoint with an MCMC scheme coded in C++,
implementing the method of Chib (1998). This has independent gamma priors for the rates
and beta priors for the transition point(s). The R code is simple:

D is an integer vector of 113 counts.
library (MCMCpack)

fit <- MCMCpoissonChangepoint(D, m = 1, c0 = 1, 40 = 1,
burnin = 10000, mcmc = 10000)

plot (fit)

summary (fit)

plotState(fit)

plotChangepoint (fit)

The arguments say that we are looking for m = 1 changepoints, and specify a gamma(1, 1)
prior for the mean counts);. In that approach, someone else has done all the work in design-
ing and coding a suitable MCMC scheme—this is fast but not general. MCMCpack produces
samples ready for analysis by R package coda.

Our second approach follows Albert (2007, §11.4) and uses vague priors. Rather than use
specific code, we use BUGS and hence a Gibbs sampler somewhat tailored by the program to
the problem. The first step is to tell BUGS what the model is using model file

model {
for(year in 1:N) {
D[year] ~ dpois(mulyear])
log(mulyear]) <- b[1] + step(year - changeyear) * b[2]
}
for (j in 1:2) {b[j] ~ dnorm(0.0, 1.0E-6)}
changeyear ~ dunif(1,N)
}

This version uses a slightly different parametrization, with the first element of b as log \; and
the second as log As — log A\;. The data are the counts in D and the number of years, N.

PThese were derived from Jarrett (1979) and refer to explosions.

34

Bugs model at "coalmining.bug", fit using OpenBUGS, 3 chains, each with 1000 iterations (first 500 discarded

80% interval for each chain R-hat medians and 80% intervals
-20 0 20 40 60 1 15 2+
changeyear - .
bH - °
2 = °
-20 0 20 40 60 1 15 2+ 42 4
40 A
changeyear
38 |
36 -
2 -
1 4¢
b 0 A

Figure 7: A plot for bugs output for the coal mining disasters problem.

We can then use function openbugs to ask OpenBUGS (via package BRugs) to simulate from
the posterior distribution of this model, by e.g.

library (R2WinBUGS)
inits <- list(list(b=c(0,0), changeyear=50),
list (b=rnorm(2), changeyear=30),
list (b=rnorm(2), changeyear=70))
coalmining.sim <-
openbugs(list("N", "D"), inits, c("changeyear","b"),
"coalmining.bug",
n.chains = 3, n.iter = 1000, DIC = FALSE)

As MCMC is an iterative scheme we have to supply initial values of the parameters: it is
possible to supply (as a list of lists as here) separate starting values for each run, or a function
that will give a random list result.

The result object can be printed and plotted. The printout looks like

> coalmining.sim
Inference for Bugs model at "coalmining.bug", fit using OpenBUGS,
3 chains, each with 1000 iterations (first 500 discarded)
n.sims = 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
changeyear 39.7 2.1 36.1 38.0 39.9 40.8 44.8 1 500
b[1] 1.1 0.1 1.0 1.1 1.1 1.2 1.3 1 1500
b[2] -1.30.2 -1.5 -1.4 -1.3 -1.2 -1.0 1 1100

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

35

Hierarchical models

MCMC is widely used in hierarchical Bayesian models. Here is a very simple example con-
sidered by Gelman et al. (2004, §§5.6, 6.8, 17.4).

The US Educational Testing Service investigated the effect of coaching for SAT-V tests in 8
schools. The tests are supposed to be insensitive to coaching, but these 8 schools claimed to
have an effective coaching program. The SAT-V scores have a range of 200—800. This is a
meta-analysis: for each school we have estimates of the mean effect of coaching and of the
standard deviation of the effect estimate via a within-school analysis of covariance.

Gelman et al. (2004, Appendix C) provide R code for several analyses based on Gibbs sam-
pling. The mode can be defined by the BUGS model file schools.bug:

model {
for (j in 1:J) {
y[j] ~ dnorm(thetaljl, tau.y[jl)
thetal[j] ~ dnorm(mu.theta, tau.theta)
tau.y[j] <- pow(sigma.y[jl, -2)
}
mu.theta ~ dnorm(0, 1.0E-6)
tau.theta <- pow(sigma.theta, -2)
sigma.theta ~ dunif (0, 1000)
}

So there are J = 8 schools, and each has a mean 6¢; and precision 7;, with the per-schools
means being modelled as draws from a normal population. This the parameters are the 8 6;
and the two hyperparameters for the population distribution of means. An alternative model
we can consider is a t,, distribution for the population of means, with a known or unknown v.

Simulation-based inference makes it easy to draw inferences about non-linear functions of the
parameters, for example of the largest effect max; 6;.

We can fit this model in OpenBUGS using different random starting values for each run by

library(R2WinBUGS)
data <- list ("J", "y", "sigma.y")
inits <- function()
list (theta = rnorm(J,0,100), mu.theta = rnorm(1,0,100),
sigma.theta = runif(1,0,100))
parameters <- c("theta", "mu.theta", "sigma.theta")
schools.sim <- openbugs(data, inits, parameters, "schools.bug",
n.chains = 3, n.iter = 10000, DIC = FALSE)

and in JAGS by

library(rjags)
foo <- jags.model("schools.bug", inits = inits, nchain = 3)
z <- coda.samples(foo, n.iter = 10000, thin = 10)

rjags produces samples ready for analysis by coda.

36

Survival

Parametric survival models are not easily fitted in a Bayesian setting, and we consider fitting a
Weibull accelerated life model to a subset of the Australian AIDS data of Venables and Ripley
(2002, §13.5). To reduce computation time we consider only the 1116 patients from NSW
and ACT (an enclave within NSW). To take account of the introduction of Zidovudine (AZT),
time was run at half speed from July 1987.

library(MASS); library(survival)

Aidsp <- make.aidsp() # MASS ch13 script

fit <- survreg(Surv(survtime + 0.9, status) ~ T.categ + age,
data = Aidsp, subset = (state=="NSW"))

summary (fit)

This model has 9 coefficients in the linear prediction, and one (o) for the shape of the Weibull,
which is very close to exponential.

W ANy [N A,

bf$par

Figure 8: Diagnostic traces from MCMC estimation of a Weibull survival model for the NSW/ACT
AIDS data.

We can make use of improved (and corrected) versions of the code in Albert (2007):

library(LearnBayes)
weibullregpost <- function(theta, data)

sigma <- exp(thetal[1]); beta <- thetal-1]

37

15
3.0
1.2

10
2.0

0.8

0.4

00 05 10 15 20 25

0.0

0.95 1.05 6.2 6.4 6.6 68 7.0 -0.2 0.2 -05 00 05 1.0
sigma (Intercept) T.categhsid T.categid
<
o wn o
= = g
[ee]
J <
(=} o 5
o I ©
@ — ™
© o
< N
=} g 2 S
N -
(=} <}
o (=] (=] (=]
S} —TT (S} T (S} T (S} T
-0.5 0.5 15 -08 -04 00 04 -0.3 0.0 0.2 -2 012 3
T.categhet T.categhaem T.categblood T.categmother
o
N]
—
wn
—
o
)
2 3
o
wn <
c o
N
o
S o
-0.2 0.2 0.6 -0.025 -0.015
T.categother age

Figure 9: Histograms with overlaid kernel density estimates of the univariate posteriors from MCMC
estimation of a Weibull survival model for the NSW/ACT AIDS data.

lp <- drop(datal, -(1:2), drop=FALSE] %x% beta)
zi <- (log(datal,1]) - 1lp)/sigma
fi <- 1/sigma * exp(zi - exp(zi))
Si <- exp(-exp(zi))
sum(log(ifelse(datal,2], fi, Si)))
}
start <- t(c(log(fit$scale), coef(fit)))
d <- cbind(model.frame(fit) [[1]], model.matrix(fit))
fit0 <- laplace(weibullregpost, start, d)

This computed the posterior density for the parameters (log o, (3) for a vague (improper) prior,
and then finds the posterior mode (which is essentially the MLE).

Simulation is then done by a random-walk Metropolis algorithm, with a multivariate normal
step with variance proportional to the fitO$var, that is to the estimated covariance of the
MLE:s. Tuning constant scale is the proportionality factor (on standard-deviation scale), and
needs to be chosen by trial-and-error. Starting with a smallish value we have

proposal <- list(var=fitO$var, scale=0.5)

bf <- rwmetrop(weibullregpost, proposal, fitO$mode, 1000, d)
bf$accept

matplot (bf$par, type="1", 1lty=1)

op <- par(mfrow=c(3,4), mar=c(5,4,1,1))

nm <- c("sigma", names(coef (fit)))

38

for(i in 1:10) {
x <- bf$par[, i]
if(i == 1) x <- exp(x)
truehist(x, xlab=nm[i], main="")
lines(density(x), xpd=NA)

}

par (op)

This results in about 45% acceptance in the Metropolis step and apparently reasonable con-
vergence well within 1000 steps.

Linear models

Straightforward linear models of the from
Y = X3 +e, e ~ N(0,0°1)

have p+ 1 parameters § = (3, 02). A Bayesian analysis needs a prior for 6, and for convenient
priors the posterior can be found explicitly. However, if we allow non-1ID errors so € ~
N(0,x3(1))) then simulation-based methods become much more convenient, and perhaps
essential.

One common way for such structured variance matrices to arise is what is called in the classical
literature mixed effects models. Suppose that

Y = X3+ 2y +e, e ~ N(0,0°1)

where 7 is regarded as random vector. In a Bayesian setting (3 is already regarded as a random
vector so this is no real change, but impact comes from thinking of this hierarchically. In the
simplest case, suppose we have two levels of units, say observations on classes in schools or
repeated measurements on individuals. Rather than the exchangeability that the IID assump-
tion entails, we now have a multi-level invariance amongst groups of observations. With two
levels of units, the Bayesian model has three groups of random variables

e data points Y;;, observed at the lowest level,
e random effects 7; on level-one units, unobserved, and
e parameters in the distribution.

Note though that it is just a linear model for the observed data with a parametrized variance
matrix of correlated errors.

This is fertile ground for use of a Gibbs sampling scheme to simulate from the posterior
distribution given the observed data, so many schemes have been proposed. Here are the basic
ideas.

(a) a grouped Gibbs sampler, in which all the variables in one of the three groups are updated
at once. Generally the conditional distributions of the groups given the rest are simple
to simulate from, although the variance parameters may need a Metropolis step. How
well this works depends strongly on how well the hierarchical model mimics the real
dependence structure.

39

(b) an ‘all-at-once’ Gibbs sampler. This flattens the hierarchical model to two levels, the
linear coefficients and the distributional parameters, and alternates between them. Effec-
tively it fits a weighted regression for known variance parameters, then simulates variance
parameters conditional on the residuals from the weighted regression. It is in general easy
to implement and quick to converge, but the flattened model can be much larger.

(c) a single-variable Gibbs sampler, updating one variable at a time. Again this is usually
simple to implement, and simulating the individual regression parameters is fast. The
problem is that the latter can be highly correlated and so the Gibbs sampler moves slowly:
this can often be overcome by a linear transformation of the regression parameters, one
which can be approximated by a pilot run.

(d) parameter expansion. All of these schemes can be slow to converge when estimated hi-
erarchical variance parameters are near zero, since this will ensure that the corresponding
random effects are estimated as rather similar and then at the next step the variance pa-
rameters is estimated as small. We can circumvent this by adding further parameters, e.g.
a multiplicative effect on all the random effects in a group. For the SAT-V data the model
becomes

Y, ~ N(u+ay; o))
Yoo~ N(07 0-3)
plp,o,00) o< 1

(or some other prior on the parameters). The analysis discussed above was for the model
with & = 1. Note that 03 is no longer the random effects variance, rather 04203. (Some
care is needed as aspects of the posterior here are improper—it would be better to use a
proper prior for «.)

For more details on simulation-based Bayesian approaches to regression-like problems see
Gelman and Hill (2007) and Gelman et al. (2004). Gamerman and Lopes (2006, §6.5) have
complementary material.

40

6 Large datasets

What is ‘large’ about large datasets?
e Many cases. This is perhaps the most common, for example

— Oxford’s library catalogue has five million items, Harvard’s nine million and the
British Library’s thirteen million.

— Insurance companies have records for all their customers, and all those they have
offered quotes to, and they tend to share information with other companies. So
there is a database with about 70 million records on US drivers.

— Medical registries (in countries which have them) will have pretty much complete
coverage of particular diseases (e.g. haemophilia) and typically these are of up to
tens of thousands of subjects.

— Inventories and sales records are often for many thousands of items.

— Banks have records for every customer (several million in large countries) which
they use to target their marketing (and especially their mailshots).

e Many pieces of information per case. This tends to be rarer, but with genome-wide
screening it is common to have thousands (and sometimes tens of thousands) of pieces
of information for each of a modest number (perhaps 100) subjects.

We have been working on group studies in fMRI.*’ These have at most tens of sub-

jects, and maybe thousands of brain images each of a hundred thousand voxels for each
subject.

Remote sensing provides another example—complex images on few occasions.

e Many cases and many pieces of information on each. This is currently unusual, and the
only one I have encountered is CRM.?! You probably all have a ‘loyalty’ card—that is
a means to bribe you to collect information about you. So the consortium owning the
card know the buying patterns of every customer but also associations between items.
You have probably used sites such as Amazon and been offered suggestions, maybe

People who purchased this book also purchased ...’

Perhaps national censuses come into this category: although full censuses usually have
a modest number of questions, it is common to ask more of a, say, 10% sample and
perhaps even follow those up yearly.

A typical dataset can be thought of as a rectangular table: the most common case is a ‘long’
table with the second and third bullet points corresponding to ‘wide” and ‘both long and wide’
tables.

The largest dataset I have been involved with is one being planned by my colleagues in genet-
ics who are envisaging 20TB>? of raw data.

3functional Magnetic Resonance Imaging.
31Customer Relationship Management’.
3220 terabytes, about 20,000 GB or 2 x 10'3 bytes or 80 typical discs.

41

And what is meant by ‘large’? Unwin et al. (2006, Chapter 1) traces some history and quotes
the following table (from Huber in 1992 and Wegman in 1995)

Size Description Bytes
Tiny Can be written on a blackboard 102
Small Fits on a few pages 10*
Medium Fills a floppy disk 106
Large Fills a tape 108
Huge Needs many tapes 10%°
Monster 10*2

To put this in a bit more recent perspective, a CD-ROM stores about 5 x 108 bytes, a double-
layer DVD-ROM about 10'° bytes. In 1995 I was offered some remote-sensed data on CD-
ROMs—around 2000 of them, and so ‘monster’.

Hardware considerations

Currently most computers are ‘32-bit’, but we are in the time of transition to ‘64-bit’. These
transitions happen every few years—Windows went from 16-bit to 32-bit with Windows 95.3?
64-bit versions of Windows have been available for some time but are rarely seen (and 64-bit
software remains rare). Other OSes have been transitioning to 64-bit for a long time: I had
a 64-bit Solaris system in 1997, and have used a 64-bit Linux desktop for the last 2.5 years.
Mac OS X is still struggling with 64-bit support which in theory was completed in ‘Leopard’
last autumn.

What is it that is ‘32-bit’? Several things. Almost all current computers work with bytes, units
of 8-bits. So ‘32-bits’ refers to the way that bytes are addressed—by using a 32-bit pointer we
can address 232 separate bytes, that is about 4 billion. What are these bytes? At least

e Virtual memory for a user process (the address space).
e Virtual memory for the operating system.
e Bytes in a file.

However, because programmers used signed integers which can hold numbers —23! ... 231 —1,
most effective limits for 32-bit systems were 2GB.

2GB seemed large until recently, but with current disc sizes of around 250GB, 2GB files are
no longer rare. Most 32-bit OSes have a means to support larger files, and R has made use of
those facilities for some years.

These days 2GB of RAM is just above entry-level,* so it is reasonable to expect to use 2GB
of memory in a single process. In fact 32-bit OSes limit per-process user address spaces to
that or a bit more (maybe up to 3.5GB), and it is that limit that is pushing the move to 64-bit
OSes. (Most CPUs currently on sale are 32/64-bit, even those in the most modest of laptops.)

3in 1995, with some 32-bit support in previous versions.
3thanks to the memory usage of Windows Vista.

42

DBMSs

Large amounts of data are not usually stored in simple files but in databases. Generally a
database is thought of as the actual numeric or character data plus metadata.

Although some people use Excel spreadsheets as databases, professional-level uses of databases
are via DataBase Management Systems (DBMS), which are designed to efficiently retrieve
(and in some cases update) parts of the data. DBMSs lie behind a great deal of what we do:
when a call centre says ‘I will just bring up your record’,* what they are actually doing is
using a DBMS to extract records from several tables in one or more databases. Also, when
you ask for a page on many websites, it is retrieved from various tables in a DBMS.

DBMSs vary greatly in scale, from personal (such as Microsoft Access, MySQL) through
department-level servers (Microsoft SQL Server, MySQL, PostgreSQL) to enterprise-wide
(Oracle, DB2 and upscaled department-level systems).

Most of these systems work with SQL (Structured Query Language)®® to access parts of the
data. There is a series of [SO standards for SQL, but unfortunately most of the DBMS vendors
have their own dialects.

It has been a long time coming, but it will become increasingly common for statisticians to be
working with data stored in a DBMS. So some knowledge of SQL will become increasingly
valuable.

Strategies for handling large datasets

The increase in volume of data available has been driven by automated collection, but com-
puter power is growing faster than human activity. So in many fields we have already reached
or are close to having all the data that will be relevant. For example, the motor insurance
databases are as large as they are ever going to be, the medical registries have all current cases
of rare diseases (and new cases are by definition rare), and so on.

So already some of the strategies needed in the past are no longer required.

A decade ago, Bill Venables and I heard a talk at a conference about some new capabilities in
a software package for ‘large data’ regressions, illustrated by a simulated regression problem
with 10,000 cases. Over dinner we discussed if we had even seen such a problem in real life
(no) and if we ever would (we thought not). The issue is that large regression problems are
almost never homogeneous—they lump together data from different groups (e.g. different
centres in a clinical trial). So the first strategy is

Divide the dataset into naturally occurring groups, analyse each group separately
and do a meta-analysis.

In a random regression problem each case adds the same amount of (Fisher) information,
so collecting more cases reduces the variance of the estimator of the parameters at a known
rate. As the regression model is false,?’ there will be a fixed amount of bias in its predictions

$ysually followed by ‘the system is rather slow today’.
¥nhttp://en.wikipedia.org/wiki/SQL.
3apart from in a perfectly constructed simulation

43

http://en.wikipedia.org/wiki/SQL

irrespective of the sample size and for large enough sample sizes the bias will dominate the
variance. So

With homogeneous datasets we can often achieve close to maximally accurate®®
results using a small sample of the dataset.

It is hard to give detailed guidance as large homogeneous datasets are so rare, but it seems
exceptional to need to do a regression on more than 1000 cases. Such problems may exist, but
all those we have been offered as counter-examples have crumbled on close examination.

Do be careful in sampling heterogeneous datasets. We once had a motor insurance database
of 700,000 cases to which we were fitting binomial and gamma generalized linear models.
Because the Fisher information per case is not uniform in such models, some observations are
much more important than others, and we found that using a 10% random sample was giving
much less good predictions than the whole dataset, and we needed to use a stratified sample.
But that was in 2001 and the computers used had about 256MB of RAM, so sampling would
no longer be needed. In fact a very important strategy is

Get a bigger computer, or even several of them.

As a student it may be hard to appreciate that the time of analysts (and particularly trained
statisticians) is very valuable, and computers are cheap. If someone with a large dataset or
a computer-intensive method does not have use of a computer with several GB of RAM 24
hours/day, then their time is not being valued correctly.

If these strategies are not sufficient, we need to consider how to do the actual computations. In
some statistical problems, only some summaries of the data are required to do the computation.
It is tempting to think that this is the case in statistical models with low-dimensional sufficient
statistics, but that is not in general the case as ‘data’ is not necessarily regarded as random
in the model. Consider first a regression problem with response vector Y and an n X p data
matrix X. The sufficient statistics are XY, but that is not enough information to find the
parameter estimates. We can however find the parameter estimates from X7 X and XY,
involving dimensions of size p but not n. However, to compute residuals, we need to go back
to the data matrix X.

Now consider fitting a GLM. As you know, the commonest method is Iteratively (Re)Weighted
Least Squares, which involves solving problems equivalent to

(X"TWX)b = XTWY

where W is a diagonal matrix which varies for each iteration. We can use the summarization
approach here, provided we are prepared to make multiple passes over the data. Note to
the cognoscenti: we do not really solve these normal equations as stated, as that would be
needlessly inaccurate. Rather one can make use of a row-wise () R decomposition, most often
using Givens rotations.

This leads to another general strategy:

Consider algorithms needing multiple passes over the data.

Bhttp://en.wikipedia.org/wiki/Accuracy.

44

http://en.wikipedia.org/wiki/Accuracy

These are almost inevitably slower, but can need fewer resources at any one time and so may
be feasible. This is how programs from long ago like SAS*® work, and there is an R package
biglm which takes this approach for linear models and GLMs.

Another general strategy is to
Make use of multiple CPUs by parallelizing the computations.

Increasingly computers are coming with multiple CPU cores—even basic machines have two
CPUs on a single chip and up-market servers have quad-cores and two or more such chips.
This trend is bound to continue for quite a while, and computer clusters containing 256 or
more* CPUs are now fairly common. Programming parallel computations is not easy, and the
available hardware is beginning to run far ahead of available software. There are at least two
fundamental problems

e Location of data. Many statistical algorithms need repeated use of the same pieces of
data and of data created from earlier computations (as we have seen e.g. for GLMs).
Moving that data around between multiple computers is a bottleneck. Even where the
CPUs are in the same computer or even on the same chip, moving data around can be
an issue since modern CPUs get their speed by maintaining two or three levels of local
cache memory.

e Synchronization. Somehow calculations need to be arranged so that CPUs are not wait-
ing for other CPUs to finish.

The one relevant area where a lot of work has been done on parallelization is numerical linear
algebra—experience is that gains with just two CPUs are often small, but with 4 or 8 it is
possible to get a substantial speedup. However, it is also possible for the data-passing issues
to dominate so that using multiple CPUs is several times slower than using just one. It is not
easy to anticipate when this might happen, as the authors of the mixed-effect models packages
for R such as 1me4 have found.

The most trivial form of parallel computation, using several CPUs for separate simulations, is
particularly well suited to the methods of this module. This is sometimes known as ‘embar-
rassingly parallel’ programming.

Note that it may become increasingly important to use multiple CPUs, as the conventional
folk-wisdom of Moore’s Law (‘computer power doubles every 18 months’) is showing signs
of slowing down—Asanovic and ten others (2006, p. 6) suggest a doubling of single-CPU
power every five years.

Visualization

Visualization of large datasets is an important topic — see Unwin et al. (2006) for the view-
points of the Augsburg school. One dataset explored in Chapter 11 there is discussed at
http://www.public.iastate.edu/~hofmann/infovis/ (with videos).

Sampling can help here, unless the aim is to spot outliers and other exceptional cases.

$still using a design from the 1960s and 70s.
4Oup to 100,000s

45

http://www.public.iastate.edu/~hofmann/infovis/

References

Aarts, E. and Korst, J. (1989) Simulated Annealing and Boltzmann Machines. John Wiley and Sons.

Albert, J. (2007) Bayesian Computation with R. New York: Springer.

Asanovic, K. and ten others (2006) The landscape of parallel computing research: A view from Berke-
ley. Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley.

Asmussen, S. and Glynn, P. W. (2007) Stochastic Simulation. Algorithms and Analysis. New York:
Springer.

Bowman, A. and Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis: The Kernel
Approach with S-Plus Illustrations. Oxford: Oxford University Press.

Box, G. E. P, Hunter, W. G. and Hunter, J. S. (1978) Statistics for Experimenters. New York: John
Wiley and Sons.

Buckland, S. T. (1984) Monte Carlo confidence intervals. Biometrics 40, 811-817.

Casella, G., Lavine, M. and Robert, C. (2001) Explaining the perfect sampler. American Statstician S5,
299-305.

Chen, M.-H., Shao, Q.-M. and Ibrahim, J. G. (2000) Monte Carlo Methods in Bayesian Computation.
New York: Springer.

Chernick, M. R. (2008) Bootstrap Methods. A Practioner’s Guide. Second Edition. New York: Wiley.

Chib, S. (1998) Estimation and comparison of multiple change-point models. J, Econometrics 86,
221-241.

Chib, S. and Greenberg, E. (1995) Understanding the Metropolis—Hastings algorithms. American
Statistician 49, 327-335.

Collett, D. (1991) Modelling Binary Data. London: Chapman & Hall.

Cook, D. and Swayne, D. E. (2007) Interactive and Dynamic Graphics for Data Analysis. New York:
Springer.

Dagpunar, J. (2007) Simulation and Monte Carlo. With Applications in Finance and MCMC. Chich-
ester: Wiley.

Davison, A. C. (2003) Statistical Models. Cambridge: Cambridge University Press.

Davison, A. C. and Hinkley, D. V. (1997) Bootstrap Methods and Their Application. Cambridge:
Cambridge University Press.

Davison, A. C., Hinkley, D. V. and Young, G. A. (2003) Recent developments in bootstrap methodol-
ogy. Statistical Science 18, 141-157.

Efron, B. (1982) The Jackknife, the Bootstrap, and Other Resampling Plans. Philadelphia: Society for
Industrial and Applied Mathematics.

Efron, B. (1983) Estimating the error rate of a prediction rule. improvements on cross-validation. Jour-
nal of the American Statistical Association 78, 316-331.

Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. New York: Chapman & Hall.

Efron, B. and Tibshirani, R. (1997) Improvements on cross-validation: The .632 bootstrap method.
Journal of the American Statistical Association 92, 548-560.

Evans, M. and Swartz, T. (2000) Approximating Integrals via Monte Carlo and Deterministic Methods.
Oxford: Oxford University Press.

Gamerman, D. and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Second Edition. London: Chapman & Hall/CRC Press.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004) Bayesian Data Analysis. Second Edition.
Chapman & Hall/CRC Press.

46

Gelman, A. and Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press.

Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences (with
discussion). Statistical Science 7, 457-511.

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741.

Geyer, C. (1999) Likelihood inference for spatial point processes. In Stochastic Geometry. Likelihood
and Computation, eds O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, Chapter 3,
pp. 79-140. London: Chapman & Hall/CRC.

Geyer, C. J. and Thompson, E. A. (1992) Constrained Markov chain maximum likelihood for dependent
data (with discussion). JRSSB 54, 657-699.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996) Markov Chain Monte Carlo in Practice.
London: Chapman & Hall.

Green, P. J. (1995) Reversible junp Markov chain Monte Carlo computation and Bayesian model de-
termination. Biometrika 82,711-732.

Grenander, U. and Miller, M. (1994) Representations of knowledge in complex systems (with discus-
sion). Journal of the Royal Statistical Society series B 56, 549—603.

Hall, P. (1992) The Bootstrap and Edgeworth Expansion. Springer-Verlag.

Hall, P. (2003) A short pre-history of the bootstrap. Statistical Science 18, 158-167.

Harrell, Jr., F. E. (2001) Regression Modeling Strategies, with Applications to Linear Models, Logistic
Regression and Survival Analysis. New York: Springer-Verlag.

Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57, 97-109.

Jarrett, R. G. (1979) A note on the interval between coal-mining disasters. Biometrika 66, 191-3.

Jerrum, M. (1995) A very simple algorithm for estimating the number of k-colorings of a low-degree
graph. Random Structures and Algorithms 7, 157-165.

Jockel, K.-H. (1986) Finite sample properties and asymptotic efficiency of Monte Carlo tests. Annals
of Statistics 14, 336-347.

Kendall, W. S. (2005) Notes on perfect simulation. In Markov Chain Monte Carlo. Innovations and
Applications, eds W. S. Kendall, F. Liang and J.-S. Wang, pp. 93-146. Singapore: World Scientific.

Kirkpatrick, S., Gelatt, Jr, C. D. and Vecchi, M. P. (1983) Optimization by simulated annealing. Science
220, 671-680.

Kushner, H. J. and Lin, G. G. (2003) Stochastic Approximation and Recursive Algorithms and Appli-
cations. Second Edition. New York: Springer-Verlag.

Lauritzen, S. and Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical struc-
tures and their application to expert systems (with discussion). Journal of the Royal Statistical
Society series B 50, 157-224.

Liu, J. S. (2001) Monte Carlo Strategies in Scientific Computing. New York: Springer.

Meng, X. L. and Wong, W. H. (1996) Simulating ratios of normalizing constants vis a simple identity:
a theoretical exploration. Statistica Sinica 6, 831-860.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953) Equations of state
calculations by fast computing machines. Journal of Chemical Physics 21, 1087-1091.

Morgenthaler, S. and Tukey, J. W. eds (1991) Configural Polysampling. A Route to Practical Robust-
ness. John Wiley and Sons.

Pincus, M. (1970) A Monte-Carlo method for the approximate solution of certain types of constrained
optimization problems. Operations Research 18, 1225-1228.

Politis, D. N., Romano, J. P. and Wolf, M. (1999) Subsampling. New York: Springer-Verlag.

47

Propp, J. and Wilson, D. (1996) Exact sampling with coupled markov chains and applications to statis-
tical mechanics. Random Structures and Algorithms 9, 223-252.

Rao, J. N. K. and Wu, C. F. J. (1988) Resampling inference with complex survey data. Journal of the
American Statistical Association 83, 231-241.

Ripley, B. D. (1979) Algorithm AS137. Simulating spatial patterns: dependent samples from a multi-
variate density. Applied Statistics 28, 109-112.

Ripley, B. D. (1987) Stochastic Simulation. New York: John Wiley and Sons.

Ripley, B. D. (1988) Statistical Inference for Spatial Processes. Cambridge: Cambridge University
Press.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University
Press.

Ripley, B. D. (2005) How computing has changed statistics. In Celebrating Statistics: Papers in Hon-
our of Sir David Cox on His 80th Birthday, eds A. C. Davison, Y. Dodge and N. Wermuth, pp.
197-211. Oxford University Press.

Ripley, B. D. and Kirkland, M. D. (1990) Iterative simulation methods. Journal of Computational and
Applied Mathematics 31, 165-172.

Robert, C. P. and Casella, G. (2004) Monte Carlo Statistical Methods. Second Edition. New York:
Springer.

Roberts, G. O. and Rosenthal, J. S. (1998) Markov-chain Monte Carlo: Some practical implications of
theoretical results. Canadian Journal of Statistics 26, 5-31.

Roberts, G. O. and Tweedie, R. L. (2005) Understanding MCMC. New York: Springer.

Roeder, K. (1990) Density estimation with confidence sets exemplified by superclusters and voids in
galaxies. Journal of the American Statistical Association 85, 617-624.

Shao, J. and Tu, D. (1995) The Jackknife and the Bootstrap. New York: Springer.
Simon, J. L. (1997) Resampling: The New Statistics. Second Edition. Resampling Stats.

Snijders, T. A. B. (2001) The statistical evaluation of social network dynamics. In Sociological Method-
ology — 2001, eds M. Sobel and M. Becker, pp. 361-395. Boston and London: Basil Blackwell.

Snijders, T. A. B. (2006) Statistical methods for network dynamics. In Proceedings of the XLIII Scien-
tifc Meeting, Italian Statistical Society, pp. 281-296. Padova: CLEUP.

Staudte, R. G. and Sheather, S. J. (1990) Robust Estimation and Testing. New York: John Wiley and
Sons.

Tanner, M. A. (1996) Tools for Statistical Inference. Third Edition. Springer-Verlag.

Tanner, M. A. and Wong, W. H. (1987) The calculation of posterior distributions by data augmentation.
Journal of the American Statistical Association 82, 528-540.

Unwin, A., Theus, M. and Hofmann, H. (2006) Graphics of Large Datasets. Visualizing a Million.
Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. New York:
Springer-Verlag.

Yu, B. and Mykland, P. (1998) Loooking at Markov samplers through cusum path plots: A simple
diagnostic idea. Statistics and Computing 8, 275-286.

48

Tuesday Practical

Ex1 We repeat the calculations for figure 1. We will use 999 random permutations (in fact
the figure used all 2!° = 1024 permutations).

library (MASS)
shoes
t.test(shoes$A, shoes$B, paired=TRUE)
d <- shoes$A - shoes$B
t.test(d)
t.test(abs(d)) # the most extreme difference
R <- 999
tperm <- numeric(R)
for(i in 1:R) {
a <- 2*rbinom(20, 1, 0.5) - 1
tperm[i] <- t.test(a*d)$statistic
}

op <- par(mfrow = c(1, 2))

truehist (tperm, xlab = "diff", xlim=c(-5,5))

x <- seq(-5, 5, 0.1)

lines(x, dt(x,9))

plot(ecdf (tperm), xlim=c(-5,5), do.points=FALSE)
lines(x, pt(x,9), lty=3)

par (op)

How can you use these data to perform a Monte Carlo test?

Ex 2 Dataset cd4 in package boot provides 20 ‘before’ and ‘after’ measurements of CD4
counts on HIV-positive patients.

(a) Read the help page for the background.
(b) Find a 90% confidence interval for the correlation (as in the preliminary material).

(c) Let us start by finding a 90% Monte-Carlo confidence interval based on bivariate normal-
ity. As ever, there is more than one way to do compute this! Here’s an approach making
use of the facilities of package boot:

library(MASS); library(boot)
cd4.rg <- function(data, mle) mvrnorm(nrow(data), mlem, mlev)

cd4.mle <- list(m=mean(cd4), v=var(cd4))
cd4.boot <- boot(cd4, corr, R=999,
sim = "parametric", ran.gen = cd4.rg, mle = cd4.mle)
cd4.boot
boot.ci(cd4.boot, type=c("norm", "basic", "perc"), conf=0.9)
boot.ci(cd4.boot, type=c("norm", "basic", "perc"), conf=0.9,
h=atanh, hinv=tanh)

(d) Now find a bootstrap confidence interval. corr is a function in package boot to compute
weighted correlations.
cd4.boot <- boot(cd4, corr, stype="w", R=999)
cd4.boot

boot.ci(cd4.boot, conf=0.9)
boot.ci(cd4.boot, conf=0.9, h=atanh, hinv=tanh)

49

(e) The last part gave a warning about being unable to compute Studentized intervals. We can
remedy that by

corr.fun <- function(d, w = rep(l, n))

{
n <- nrow(d)
w <- w/sum(w)
ml <- sum(d[,1]*w); m2 <- sum(d[,2]*w)
vl <- sum(d[,1]"2*w) - m1°2; v2 <- sum(d[,2] " 2*w) - m2~2
rho <- (sum(d[,11*d[,2]*w) - mi1*m2)/sqrt(vl * v2)
i <= rep(1:n, round(n*w))
us <- (d[i, 1] - ml)/sqrt(vl)
xs <- (d[i, 2] - m2)/sqrt(v2)
L <- us*xs - 0.5*rhox(us”2 + xs72)
c(rho, sum(L"2)/n"2)
+

cd4.boot <- boot(cd4, corr.fun, stype="w", R=999)
boot.ci(cd4.boot, type="stud", conf=0.9)
boot.ci(cd4.boot, type="stud", conf=0.9,

h=atanh, hdot=function(r) 1/(1-r~2), hinv=tanh)

but you will need to consult Davison & Hinkley (1997, practical 2.3) to understand the
calculations.

(f) We can use the double bootstrap to see how well we have done at getting 90% coverage.
This will take a couple of minutes: if you have more time increase M, if less decrease R.

page(nested.corr) # a function in the ’boot’ package
cd4.nest <- boot(cd4, nested.corr, R=999, stype="w", tO=corr(cd4), M=249)

op <- par(pty = "s", xaxs = "i", yaxs = "i")

qqplot ((1:999) /1000, cd4.nest$t[,2], pch=".", asp = 1,
xlab="nominal", ylab="estimated")

abline(a = 0, b = 1, col = "grey")

par (op)

Now work out what corrections are needed to get a more accurate 90% interval.

Ex 3 This replicates part of figure 2, the version with edge-correction.

(a) First we quickly get a rough idea of the MLE:

library(spatial)
towns <- ppinit("towns.dat")
fac <- (69%68)/(2*%40%40)
tget <- function(x, R=3.5) fac*pi*(Kfn(x, R, 1)8$y)"2
Tget <- function(x, R=3.5) sum(dist(cbind(xx, xy)) < R)
t0 <- tget(towns)
R <- 100
cv <- seq(0, 1, 0.2)
res <- numeric(length(cv)) # res[1] = 0
for(i in 2:6)
res[i] <- mean(replicate(R, tget(Strauss(69, c=cv[i], r=3.5))))
plot(cv, res, type="1")
abline (h=t0, col="grey")

50

(b) This suggests zooming in to (0.4,0.5). We do will do more runs: computers are fast
enough these days.

R <- 1000

cv <- seq(0.4, 0.5, len=6)

res <- numeric(length(cv))

sds <- numeric(length(cv))

for(i in seq_along(cv)) {
z <- replicate(R, tget(Strauss(69, c=cv[i], r=3.5)))
res[i] <- mean(z)
sds[i] <- sd(z)/sqrt(R)

}

plot(cv, res)

abline (h=t0, col="grey")

abline(lm(res ~ cv))

arrows(cv, res-1.96*sds, cv, res+1.96x*sds,

angle=90, code=3, length=0.1, xpd=TRUE)

(c) Now make use of these results to estimate the MLE of ¢, and give some indication of the
inaccuracy. Choose some more simulations to do to get a more accurate result for the
same amount of computation.

(d) How well can we do with polysampling? We do need to estimate the ratio of normalizing
constants, and we need the uncorrected counts.

cO <= 0.45
runs <- numeric(R); rs <- numeric(R)
for(i in 1:R) {
xx <- Strauss(69, c=c0, r=3.5)
runs[i] <- tget(xx)
rs[i] <- Tget(xx)
}
cv <- seq(0.4, 0.5, len=6)
res <- numeric(length(cv))
for(i in seq_along(cv))
res[i] <- mean(runs * (cv[i]/c0) rs)/mean((cv[i]/c0) rs)
points(cO, mean(runs), col="blue"); lines(cv, res, col="blue")

(e) Now let us try stochastic approximation. The sequence (a,,) was chosen by trial-and-error.

R <- 1000
doit <- function(ave=FALSE) {
res <- numeric(R)
cv <- runif(1, 0.4, 0.5) # initial guess.
for(i in 1:R) {
a <- 0.5%(i+5)"-0.7
err <- tget(Strauss(69, c=cv, r=3.5))/t0 - 1
cv <- cv - akerr
res[i] <- cv
}
if (ave) cumsum(res)/(1:R) else res
}
res <- doit()
plot(res, type="1", ylim=c(0.4, 0.5))
for(i in 2:5) lines(doit(), col=i)

That was a nédive form of Robbins—Munro. Clearly we can get a more accurate estimate by
local averaging, and in what is known as Polyak—Ruppert averaging we can get optimum

51

convergence rates, e.g.

res <- doit(TRUE)
plot(res, type="1", ylim=c(0.4, 0.5))
for(i in 2:5) lines(doit(TRUE), col=i)

Experiment with other choices of a, = An~7: what is a good choice will depend on
whether averaging is done.

52

Wednesday Practical

Ex4 We continue the LD50 example from the lectures. Using MCMCpack we had

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive = 20 - numdead)

resp <- rep(rep(c(1,0), 12), times = t(SF))

budworm <- data.frame(resp, ldose = rep(ldose, each = 20),
sex=rep(sex, each = 20))

summary (glm(resp ~ sexx*ldose, family = binomial, data = budworm))

library (MCMCpack) ## loads package ’coda’

fit <- MCMClogit(resp ~ sexxldose, data = budworm)

summary (fit)

plot(fit)

acfplot(fit) # suggests thining

fit <- MCMClogit(resp ~ sexxldose, data = budworm, mcmc=1e5, thin = 20)
summary (fit)

HPDinterval(fit)

Now we can explore the posterior distribution of LD50: this uses translucent points so that a

build-up of colour indicates density.

plot beta vs alpha for females

library (MASS)
contour (kde2d (fit[,1], fit[,3], n=50), xlab="alphaF", ylab="betaF")
points(fit[, <(1,3)], pch=".", col=rgb(0,0,1,0.2))

1d50F <- as.mcmc(2°-fit[,1]/fit[,3])

1d50M <- as.memc(2°-(fit[,1]1+fit[,2])/(fit[,3] + fit[,41))
range (1d50M) ; range (1d50F)

1450 <- mcmc(cbind (M=1d50M, F=1d450F))

plot (1d50)

acfplot(1d50)

HPDinterval (1d50)

There is no hint of negative slopes. You can use codamenu () to explore the analysis facilities.

Ex5 Now we try out BUGS. The first thing we need is a model file budworm. bug, which
needs to be copied from the notes to the current directory. (Note that openbugs writes files in

the current directory, so it must be writable.)

library (R2WinBUGS)
options (BRugsVerbose = FALSE) # reduce chatter
budworm.sim <- openbugs(list("numdead", "ldose"),

list(alphaM = 0, betaM = 0, alphaF = O, betaF = 0),

c("alphaM", "alphaF", "betaM", "betaF"),
model.file = "budworm.bug", DIC = FALSE,
n.chains = 1, n.iter = 10000)

budworm. sim

plot (budworm.sim)

res <- mcmc(budworm.sim$sims.matrix)

The last line gives results in coda format which can be plotted etc as before.

Now experiment with multiple starting points. To do so we set up a function for inits.

53

inits <- function()
list(alphaM = rnorm(1,0,10), betaM = rnorm(1),
alphaF = rnorm(1,0,10), betaF = rnorm(1))
budworm.sim <- openbugs(list("numdead", "ldose"), inits,
c("alphaM", "alphaF", "betaM", "betaF"),
model.file = "budworm.bug", DIC = FALSE,
n.chains = 5, n.iter = 1000)

budworm.sim
plot (budworm.sim, TRUE)

args <- lapply(1l:budworm.sim$n.chains,

function(i) mcmc(budworm.sim$sims.arrayl, i, 1))
res <- do.call(mcmc.list, args)
densityplot(res) # and so on

Again, we convert the results to coda format.

Ex 6 There is code in the lecture notes for two appoaches to the change-point problem for
coal-mining disasters. Try them out. The data are*'

D <- c(4,5,4,1,0,4,3,4,0,6,3,3,4,0,2,6,3,3,5,4,5,
3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,1,1,1,1,
1,8,0,0,1,0,1,1,0,0,3,1,0,3,2,2,0,1,1,1,0,1,0,
1,0,0,0,2,1,0,0,0,1,1,0,2,3,3,1,1,2,1,1,1,1,2,
4,2,0,0,0,1,4,0,0,0,1,0,0,0,0,0,1,0,0,1,0,1)

Things you might want to do with the results include

attach.bugs(coalmining.sim)

op <- par(mfrow=c(2,2))
plot(density(changeyear))

frame ()

plot(density(b[,1]), xlab="betal")
plot(density(b[,2]), xlab="beta2")
detach.bugs ()

par (op)

4 This version from Gamerman & Lopes (2006, p. 145) has the correct total, unlike that in Albert (2007).

54

Thursday Practical

The R code for these exercises has deliberately not been hidden inside a package—the in-
tention is that you work through the R and BUGS code and understand what it is doing (not
necessarily in the practical class but as part of the review work on this module).

Ex 7 Consider the SAT-V coaching example, for which the lecture notes give BUGS code.
This exercise is based on Gelman et al. (2004, Appendix C), which is available on-line.

(a) Run the code in the lecture notes.
(b) Replace the normal prior on the school-improvement means by a ¢, distribution and repeat.

(c) Now consider doing the simulations in R itself, using a Gibbs sampler.

J<8
y <- c(28, 8, -3, 7, -1, 1, 18, 12)
sigma.y <- c(15, 10, 16, 11, 9, 11, 10, 18)

theta.update <- function() {
V.theta <- 1/(1/tau"2 + 1/sigma.y"2)
theta.hat <-(mu/tau”2 + y/sigma.y"2)*V.theta
rnorm(J, theta.hat, sqrt(V.theta))
}
mu.update <- function() rnorm(1l, mean(theta), tau/sqrt(J))
tau.update <- function() sqrt(sum((theta-mu)"2)/rchisq(l, J-1))

n.chains <- 5
n.iter <- 1000
thetai <- paste ("thetal[", 1:J, "]", sep="")
sims <- array(, c(n.iter, n.chains, J+2),
dimnames = 1list(NULL, NULL, c(thetai, "mu", "tau")))

for(m in 1:n.chains) {

mu <- rnorm(1l, mean(y), sd(y))

tau <- runif(1l, 0, sd(y))

for(t in 1:n.iter) {

theta <- theta.update(); mu <- mu.update(); tau <- tau.update()
sims[t, m,] <- c(theta, mu, tau)

}
}
library (R2WinBUGS)
print (monitor(sims), digits=3)
library(coda)
args <- lapply(1:5, function(i) mcmc(sims[,i,]))
z <- do.call(mcmc.list, args)
summary (z)
densityplot(z)
plot(z, ask=T)

Explore the output further, and especially the size of the largest 6;.

55

(d) We now replace the normal prior for the school means by a ¢4 prior, which we do by
writing 7 = N/v/V for vV ~ x2.

nu <- 4

mu.update <- function() rnorm(1l, sum(theta/V)/sum(1/V), sqrt(1/sum((1/V))))
tau.update <- function() sqrt(rgamma(l, J*nu/2+1, (nu/2)*sum(1/V)))
V.update <- function() (nu*tau"2 + (theta-mu)"2)/rchisq(J,nu+1)

for(m in 1:n.chains) {

mu <- rnorm(1l, mean(y), sd(y))

tau <- runif(1, 0, sd(y))

V <= runif(J, 0, sd(y))~2

for(t in 1l:n.iter) {
theta <- theta.update(); V <- V.update()
mu <- mu.update(); tau <- tau.update()
sims[t,m,] <- c(theta, mu, tau)

}
Now analyse as before.

(e) Finally, consider ¢, where v is also an unknown parameter. This is again a Gibbs sampler,
using with a Metropolis step to update 1/v (Gelman et al., 2004, pp. 292, 454).

log.post <- function(theta, V, mu, tau, nu, y, sigma.y)

sum(dnorm(y, theta, sigma.y, log=TRUE)) +
sum(dnorm(theta, mu, sqrt(V),log=TRUE)) +
sum(0.5*nu*log(nu/2) + nuxlog(tau) -
lgamma(nu/2) - (nu/2+1)*log(V) - 0.5*nu*xtau~2/V)

+
nu.update <- function(sigma.jump.nu = 1)
{
nu.inv.star <- rnorm(1l, 1/nu, sigma.jump.nu)
if(nu.inv.star <= 0 | nu.inv.star > 1) {
do nothing
} else {
nu.star <- 1/nu.inv.star
log.post.old <- log.post(theta, V, mu, tau, nu, y, sigma.y)
log.post.star <- log.post(theta, V, mu, tau, nu.star, y, sigma.y)
r <- exp(log.post.star - log.post.old)
nu <- ifelse(runif(1) < r, nu.star, nu)
}
nu
+

sims <- array(, c(n.iter, n.chains, J+3),
dimnames = list(NULL, NULL, c(thetai, "mu", "tau", "nu")))
for(m in 1:n.chains) {
mu <- rnorm(1l, mean(y), sd(y))
tau <- runif(1, 0, sd(y))
V <= runif(J, 0, sd(y))~2
nu <- 1/runif(1, 0, 1)
for(t in 1:n.iter) {
theta <- theta.update(); V <- V.update()
mu <- mu.update(); tau <- tau.update(); nu <- nu.update()
sims[t,m,] <- c(theta, mu, tau, nu)

56

}

Once again, analyse the results.

Ex 8 Suppose that the eighth school had shown a mean improvement of 120 and not 12
and re-analyse the data.

Ex 9 Consider the Australian AIDS survival example sketched in the lecture notes.

Try the code there, and experiment with tuning scale. To set the problem up you will need

library (MASS)

make.aidsp <- function() {
cutoff <- 10043 # 1987-07-01 with origin 1960-01-01
btime <- pmin(cutoff, Aids2$death) - pmin(cutoff, Aids2$diag)
atime <- pmax(cutoff, Aids2$death) - pmax(cutoff, Aids2$diag)
survtime <- btime + 0.5*atime
status <- as.numeric(Aids2$status)
data.frame(survtime, status = status - 1, state = Aids2$state,

T.categ = Aids23T.categ, age = Aids2$age, sex = Aids2$sex)

}
Aidsp <- make.aidsp()
library(survival)

Use the mcmc function from package coda to convert the simulations to coda objects, and
explore the diagnostics of the latter package.

Would there be any point in centring the explanatory variables in this problem?

57

	What is `Computationally-Intensive Statistics'?
	Simulation-based Inference
	Monte-Carlo tests
	Power considerations

	Monte-Carlo confidence intervals
	Monte Carlo Likelihood
	Stochastic Approximation
	Simulated annealing
	Finding marginals
	SIR

	Bootstrapping
	Performance assessment
	Confidence intervals
	Theory for bootstrap confidence intervals
	Double bootstrapping
	Bootstrapping linear models
	How many bootstrap resamples?
	Diagnostics
	The Jackknife
	Bootstrapping as simulation
	Software

	Markov Chain Monte Carlo
	Data augmentation
	Detailed balance
	Gibbs sampler
	Metropolis-Hasting schemes
	Other schemes
	Using a MCMC sampler
	Convergence diagnostics
	Further reading
	Software

	MCMC examples
	Binomial logistic regression
	Poisson change-point models
	Hierarchical models
	Survival
	Linear models

	Large datasets
	Hardware considerations
	DBMSs
	Strategies for handling large datasets
	Visualization

	References

