2. Point Estimation

 $Data \ x_1, x_2, \dots, x_n \longrightarrow inference about parameter \theta$, assume to

be realisations of random variables X_1, X_2, \ldots, X_n from $f(\mathbf{x}, \theta)$

Denote the expectation with respect to $f(\mathbf{x}, \theta)$ by E_{θ} , and the variance by Var_{θ} .

Estimate θ by a function $t(x_1, \ldots, x_n)$ of the data (a *point esti-*

$$mate$$
); $T = t(X_1, ..., X_n) = t(\mathbf{X})$ is called an $estimator$ (random)

For example, a sufficient statistic is an estimator.

Properties of estimators

T is unbiased for θ if $E_{\theta}(T) = \theta$ for all θ ; otherwise T is biased.

The bias of T is

$$Bias(T) = Bias_{\theta}(T) = E_{\theta}(T) - \theta.$$

Example: Sample mean, sample variance.

 X_1, \ldots, X_n i.i.d. with unknown mean μ ; unknown variance σ^2

Estimate μ by

$$T = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then

$$E_{\mu,\sigma^2}(T) = \frac{1}{n} \sum_{i=1}^n \mu = \mu$$

so unbiased.

Recall that

$$Var_{\mu,\sigma^2}(T) = Var_{\mu,\sigma^2}(\overline{X}) = E_{\mu,\sigma^2}\{(\overline{X} - \mu)^2)\} = \frac{\sigma^2}{n}.$$

Estimate σ^2 by

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

Then

$$\begin{split} E_{\mu,\sigma^2}(S^2) \\ &= \frac{1}{n-1} \sum_{i=1}^n E_{\mu,\sigma^2} \{ (X_i - \mu + \mu - \overline{X})^2 \} \\ &= \frac{1}{n-1} \sum_{i=1}^n \{ E_{\mu,\sigma^2} \{ (X_i - \mu)^2 \} + 2 E_{\mu,\sigma^2} (X_i - \mu) (\mu - \overline{X}) \\ &+ E_{\mu,\sigma^2} \{ (\overline{X} - \mu)^2 \} \} \\ &= \frac{1}{n-1} \sum_{i=1}^n \sigma^2 - 2 \frac{n}{n-1} E_{\mu,\sigma^2} \{ (\overline{X} - \mu)^2 \} + \frac{n}{n-1} E_{\mu,\sigma^2} \{ (\overline{X} - \mu)^2 \} \\ &= \sigma^2 \left(\frac{n}{n-1} - \frac{2}{n-1} + \frac{1}{n-1} \right) = \sigma^2, \end{split}$$

so unbiased. Note: $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ is **not** unbiased.

Another criterion: small mean square error (MSE)

$$MSE(T) = MSE_{\theta}(T) = E_{\theta}\{(T - \theta)^2\} = Var_{\theta}(T) + (Bias_{\theta}(T))^2$$

Note: MSE(T) is a function of θ and in general therefore cannot be zero everywhere.

Example:

 $\hat{\sigma}^2$ has smaller MSE than S^2 (see Casella and Berger, p.304) but is biased.

If one has two estimators at hand, one being slightly biased but having a smaller MSE than the second one, which is, say, unbiased, then one may well prefer the slightly biased estimator. Exception:

If the estimate is to be combined linearly with other estimates from independent data.

The efficiency of an estimator is defined as

$$Efficiency_{\theta}(T) = \frac{\operatorname{Var}_{\theta}(T_0)}{\operatorname{Var}_{\theta}(T)},$$

where T_0 has minimum possible variance.

Cramér-Rao Inequality

Under regularity conditions on $f(\mathbf{x}, \theta)$, it holds that for any unbiased

T,

$$\operatorname{Var}_{\theta}(T) \ge (I(\theta))^{-1}$$

(Cramér-Rao Inequality, Cramér-Rao lower bound) where

$$I(\theta) := I_n(\theta) = E_{\theta} \left[\left(\frac{\partial \ell(\theta, \mathbf{X})}{\partial \theta} \right)^2 \right]$$

is the *expected Fisher information* of the sample.

Calculation:

$$I_n(\theta) = E_{\theta} \left[\left(\frac{\partial \ell(\theta, \mathbf{X})}{\partial \theta} \right)^2 \right]$$

$$= \int f(\mathbf{x}, \theta) \left[\left(\frac{\partial \log f(\mathbf{x}, \theta)}{\partial \theta} \right)^2 \right] d\mathbf{x}$$

$$= \int f(\mathbf{x}, \theta) \left[\frac{1}{f(\mathbf{x}, \theta)} \left(\frac{\partial f(\mathbf{x}, \theta)}{\partial \theta} \right)^2 \right] d\mathbf{x}$$

$$= \int \frac{1}{f(\mathbf{x}, \theta)} \left[\left(\frac{\partial f(\mathbf{x}, \theta)}{\partial \theta} \right)^2 \right] d\mathbf{x}.$$

Consequences:

For any unbiased estimator T,

$$Efficiency_{\theta}(T) = \frac{1}{I(\theta) \text{Var}_{\theta}(T)}.$$

Assume that T is unbiased. T is called efficient (or a minimum variance unbiased estimator) if it has the minimum possible variance. An unbiased estimator T is efficient if $Var_{\theta}(T) = (I(\theta))^{-1}$.

Often: $T = T(X_1, ..., X_n)$ efficient at $n \to \infty$: asymptotically efficient

Regularity: conditions on the partial derivatives of $f(\mathbf{x}, \theta)$ with respect to θ ; domain may not depend on θ ; for example $\mathcal{U}[0, \theta]$ violates the regularity conditions

Under more regularity: the first three partial derivatives of $f(\mathbf{x}, \theta)$ with respect to θ are integrable with respect to x; domain may not depend on θ ; then

$$I_n(\theta) = E_{\theta} \left[-\frac{\partial^2 \ell(\theta, \mathbf{X})}{\partial \theta^2} \right]$$

Notation: We shall often omit the subscript in $I_n(\theta)$, when it is clear whether we refer to a sample of size 1, or to a sample of size n. For a random sample,

$$I_n(\theta) = nI_1(\theta).$$

Example: Normal distribution, known variance

 $\mathcal{N}(\mu, \sigma^2)$, where σ^2 known, $\theta = \mu$

$$\ell(\theta) = -\frac{n}{2}\log(2\pi) - n\log\sigma - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$

$$\frac{\partial \ell}{\partial \theta} = \frac{1}{\sigma^2}\sum_{i=1}^{n}(x_i - \mu) = \frac{n}{\sigma^2}(\overline{x} - \mu)$$

and

$$I(\theta) = E_{\theta} \left[\left(\frac{\partial \ell(\theta, \mathbf{X})}{\partial \theta} \right)^{2} \right]$$
$$= \frac{n^{2}}{\sigma^{4}} E_{\theta} (\overline{X} - \mu)^{2} = \frac{n}{\sigma^{2}}$$

Note $\operatorname{Var}_{\theta}(\overline{X}) = \frac{\sigma^2}{n}$, so \overline{X} is an efficient estimator for μ .

NB:

$$\frac{\partial^2 \ell}{\partial \theta^2} = -\frac{n}{\sigma^2}.$$

In future we shall often omit the subscript θ in the expectation and in the variance.

Maximum Likelihood Estimation

 θ may be a vector

A maximum likelihood estimate, denoted $\hat{\theta}(\mathbf{x})$, is a value of θ at which the likelihood $L(\theta, \mathbf{x})$ is maximal. The estimator $\hat{\theta}(\mathbf{X})$ is called MLE (also, $\hat{\theta}(\mathbf{x})$ is sometimes called mle).

An mle is a parameter value at which the observed sample is most likely.

Often: easier to maximise log likelihood: **if** derivatives exist, then set first (partial) derivative(s) with respect to θ to zero, check that second (partial) derivative(s) with respect to θ less than zero.

An mle is a function of a sufficient statistic:

$$L(\theta, \mathbf{x}) = f(\mathbf{x}, \theta) = g(t(\mathbf{x}), \theta)h(\mathbf{x})$$

by the factorisation theorem, and maximizing in θ depends on \mathbf{x} only through $t(\mathbf{x})$.

An mle is usually efficient as $n \to \infty$.

Invariance property: An mle of a function $\phi(\theta)$ is $\phi(\hat{\theta})$ (Casella + Berger p.294). That is, if we define the likelihood induced by ϕ as

$$L^*(\lambda, x) = \sup_{\theta: \phi(\theta) = \lambda} L(\theta, x),$$

then one can calculate that for $\hat{\lambda} = \phi(\hat{\theta})$,

$$L^*(\hat{\lambda}, x) = L(\hat{\theta}, x).$$

Examples: Uniforms, normal

1. $X_1, ..., X_n$ i.i.d. $\sim \mathcal{U}[0, \theta]$:

$$L(\theta) = \theta^{-n} \mathbf{1}_{[x_{(n)}, \infty)}(\theta),$$

where $x_{(n)} = \max_{1 \le i \le n} x_i$; so $\hat{\theta} = X_{(n)}$

- 2. X_1, \ldots, X_n i.i.d. $\sim \mathcal{U}[\theta \frac{1}{2}, \theta + \frac{1}{2}]$, then any $\theta \in [x_{(n)} \frac{1}{2}, x_{(1)} + \frac{1}{2}]$ maximises the likelihood (*Exercise*)
- 3. X_1, \ldots, X_n i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$, then (Exercise) $\hat{\mu} = \overline{X}, \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$

so $\hat{\sigma}^2$ is biased, but $Bias(\hat{\sigma}^2) \to 0$ as $n \to \infty$.

Iterative computation of MLEs

Sometimes the likelihood equations are difficult to solve. Suppose

 $\hat{\theta}^{(1)}$ is an initial approximation for $\hat{\theta}$. Use Taylor:

$$0 = \ell'(\hat{\theta}) \approx \ell'(\hat{\theta}^{(1)}) + (\hat{\theta} - \hat{\theta}^{(1)})\ell''(\hat{\theta}^{(1)})$$

SO

$$\hat{\theta} \approx \hat{\theta}^{(1)} - \frac{\ell'(\hat{\theta}^{(1)})}{\ell''(\hat{\theta}^{(1)})}$$

 $Iterate \; (Newton\text{-}Raphson \; method)$

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} - (\ell''(\hat{\theta}^{(k)}))^{-1}\ell'(\hat{\theta}^{(k)}), \quad k = 2, 3, \dots$$

until $|\hat{\theta}^{(k+1)} - \hat{\theta}^{(k)}| < \epsilon$ for some small ϵ

As $E\left\{-\ell''(\hat{\theta}^{(1)})\right\} = I(\hat{\theta}^{(1)})$ we could instead iterate

$$\hat{\theta}^{(k+1)} = \hat{\theta}^{(k)} + I^{-1}(\hat{\theta}^{(k)})\ell'(\hat{\theta}^{(k)}), \quad k = 2, 3, \dots$$

until $|\hat{\theta}^{(k+1)} - \hat{\theta}^{(k)}| < \epsilon$ for some small ϵ .

This is Fisher's modification of the Newton-Raphson method.

Repeat with different starting values to reduce the risk of finding just a local maximum.

Example: $Binomial(n, \theta)$. Observe x

$$\ell(\theta) = x \ln(\theta) + (n - x) \ln(1 - \theta) + \log \binom{n}{x}$$

$$\ell'(\theta) = \frac{x}{\theta} - \frac{n - x}{1 - \theta} = \frac{x - n\theta}{\theta(1 - \theta)}$$

$$\ell''(\theta) = -\frac{x}{\theta^2} - \frac{n - x}{(1 - \theta)^2}$$

$$I(\theta) = \frac{n}{\theta(1 - \theta)}$$

Assume $n = 5, x = 2, \epsilon = 0.01$ (in practice rather $\epsilon = 10^{-5}$);

guess
$$\hat{\theta}^{(0)} = 0.55$$

Newton-Raphson:

$$\ell'(\hat{\theta}^{(0)}) \approx -3.03$$

$$\hat{\theta}^{(1)} \approx \hat{\theta}^{(0)} - (\ell''(\hat{\theta}^{(0)}))^{-1}\ell'(\hat{\theta}^{(0)}) \approx 0.40857$$

$$\ell'(\hat{\theta}^{(1)}) \approx -0.1774$$

$$\hat{\theta}^{(2)} \approx \hat{\theta}^{(1)} - (\ell''(\hat{\theta}^{(1)}))^{-1}\ell(\hat{\theta}^{(1)}) \approx 0.39994$$

Now
$$|\hat{\theta}^{(2)} - \hat{\theta}^{(1)}| < 0.01$$
 so stop

Fisher scoring:

$$I^{-1}(\theta)\ell'(\theta) = \frac{x - n\theta}{n} = \frac{x}{n} - \theta$$

and so

$$\theta + I^{-1}(\theta)\ell'(\theta) = \frac{x}{n}$$

for all θ .

Compare: analytically, $\hat{\theta} = \frac{x}{n} = 0.4$

Profile likelihood

Often $\theta = (\psi, \lambda)$ where ψ contains the parameters of interest and λ contains the other unknown parameters: nuisance parameters.

Let $\hat{\lambda}_{\psi}$ be the MLE for λ for a given value of ψ . Then the *profile* likelihood for ψ is

$$L_P(\psi) = L(\psi, \hat{\lambda}_{\psi}).$$

(in $L(\psi, \lambda)$ replace λ by $\hat{\lambda}_{\psi}$); the *profile log-likelihood* is $\ell_{P}(\psi) = \log[L_{P}(\psi)]$.

For point estimation, maximizing $L_P(\psi)$ with respect to ψ gives the same estimator $\hat{\psi}$ as maximizing $L(\psi, \lambda)$ with respect to both ψ and λ (but possibly different variances)

Example: Normal distribution.

 X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$ with μ and σ^2 unknown. Given μ , $\hat{\sigma}_{\mu}^2 = (1/n) \sum (x_i - \mu)^2$, and given σ^2 , $\hat{\mu}_{\sigma^2} = \overline{x}$. Hence the profile likelihood for μ is

$$L_P(\mu) = (2\pi\hat{\sigma}_{\mu}^2)^{-n/2} \exp\left\{-\frac{1}{2\hat{\sigma}_{\mu}^2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$
$$= \left[\frac{2\pi e}{n} \sum_{i=1}^n (x_i - \mu)^2\right]^{-n/2},$$

which gives $\hat{\mu} = \overline{x}$; and the profile likelihood for σ^2 is

$$L_P(\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_i (x_i - \overline{x})^2\right\},\,$$

gives (Exercise)

$$\hat{\sigma}_u^2 = ??$$

Method of Moments (M.O.M)

Idea: match population moments to sample moments in order to obtain estimators

Suppose X_1, \ldots, X_n i.i.d. $\sim f(x; \theta_1, \ldots, \theta_p)$ Denote by $\mu_k = E(X^k)$ the k^{th} moment and by $M_k = \frac{1}{n} \sum (X_i)^k$ the k^{th} sample moment. In general, $\mu_k = \mu_k(\theta_1, \ldots, \theta_p)$.

Equate μ_k to M_k for $k=1,2,\ldots$, until there are sufficient equations to solve for θ_1,\ldots,θ_p (usually p equations for the p unknowns)

The solutions $\tilde{\theta}_1,\ldots,\tilde{\theta}_p$ are the method of moments estimators

Often not as efficient as MLEs, but may be easier to calculate

Could be used as initial estimates in an iterative calculation of MLEs

Example: Normal distribution.

 X_1, \ldots, X_n i.i.d. $\mathcal{N}(\mu, \sigma^2)$; μ and σ^2 unknown

$$\mu_1 = \mu; \ M_1 = \overline{X} \text{ so } \tilde{\mu} = \overline{X}$$

and

$$\mu_2 = \sigma^2 + \mu^2$$
; $M_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$

SO

$$\tilde{\sigma}^2 = M_2 - M_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

(not unbiased)

Example: Gamma distribution. X_1, \ldots, X_n i.i.d. $\Gamma(\psi, \lambda)$;

$$f(x; \psi, \lambda) = \frac{1}{\Gamma(\psi)} \lambda^{\psi} x^{\psi - 1} e^{-\lambda x}$$
 for $x \ge 0$.

Then $\mu_1 = EX = \psi/\lambda$ and

$$\mu_2 = EX^2 = \psi/\lambda^2 + (\psi/\lambda)^2$$

Solve

$$M_1 = \psi/\lambda, \qquad M_2 = \psi/\lambda^2 + (\psi/\lambda)^2$$

for ψ and λ ; gives

$$\tilde{\psi} = \overline{X}^2 / [n^{-1} \sum_{i=1}^n (X_i - \overline{X})^2],$$

$$\tilde{\lambda} = \overline{X}/[n^{-1}\sum_{i=1}^{n}(X_i-\overline{X})^2].$$

Bias and variance approximations: the delta method

Sometimes T is a function of one or more averages whose means and variances can be calculated exactly

 \rightarrow simple approximations for mean and variance of T:

Suppose T = g(S) where $ES = \beta$ and Var S = V. Taylor

$$T = g(S) \approx g(\beta) + (S - \beta)g'(\beta).$$

Taking the mean and variance of the r.h.s.:

$$ET \approx g(\beta), \quad \text{Var } T \approx [g'(\beta)]^2 V.$$

If S is an average so that the central limit theorem (CLT) applies to it, i.e., $S \approx N(\beta, V)$, then

$$T \approx N(g(\beta), [g'(\beta)]^2 V)$$

for large n

if $V=v(\beta)$, then it is possible to choose g so that T has approximately constant variance in θ : solve $[g'(\beta)]^2v(\beta)=\text{constant}$

Example: Exponential distribution.

 X_1, \ldots, X_n i.i.d. $\sim exp(\frac{1}{\mu})$, mean μ . Then $S = \overline{X}$ has mean μ and variance μ^2/n . If $T = \log \overline{X}$ then $g(\mu) = \log(\mu)$, $g'(\mu) = \mu^{-1}$, and so $\operatorname{Var} T \approx n^{-1}$, independent of μ : variance stabilization

If the Taylor expansion is carried to the second-derivative term, we obtain

$$ET \approx g(\beta) + \frac{1}{2}Vg''(\beta).$$

In practice we use numerical estimates for β and V if unknown.

When S, β vectors (V a matrix), with T still a scalar:

 $(g'(\beta))_i = \partial g/\partial \beta_i$ and $g''(\beta)$ matrix of second derivatives,

$$\operatorname{Var} T \approx [g'(\beta)]^T V g'(\beta)$$

and

$$ET \approx g(\beta) + \frac{1}{2}\operatorname{trace}[g''(\beta)V].$$

Example: Exponential family models

A one-parameter (i.e., scalar θ) exponential family density has the form

$$f(x;\theta) = \exp\{a(\theta)b(x) + c(\theta) + d(x)\}, \quad x \in A.$$

Examples: binomial, Poisson, normal (known mean, or known variance), gamma (known α , or known λ (including exponential) distributions

Example: Binomial (n, θ)

For
$$x = 0, 1, ..., n$$
,

$$f(x;\theta)$$

$$= \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

$$= \exp\left\{\log\left(\binom{n}{x}\right) + x\log\theta + (n-x)\log(1-\theta)\right\}$$

$$= \exp\left\{\log\left(\binom{n}{x}\right) + x\log\left(\frac{\theta}{1-\theta}\right) + n\log(1-\theta)\right\}.$$

Choose

$$a(\theta) = \log\left(\frac{\theta}{1-\theta}\right)$$

$$b(x) = x$$

$$c(\theta) \ = \ n \log(1-\theta)$$

$$d(x) = \log\left(\binom{n}{x}\right)$$

$$A = \{1, \dots, n\}.$$

Choosing θ and x to make $a(\theta) = \theta$ and b(x) = x: canonical form

$$f(x; \theta) = \exp\{\theta x + c(\theta) + d(x)\}.$$

For the canonical form

$$EX = \mu(\theta) = -c'(\theta), \quad Var X = \sigma^2(\theta) = -c''(\theta)$$

Exercise: Prove the mean and variance results by calculating the moment-generating function $E\exp(tX) = \exp\{c(\theta) - c(t+\theta)\}$. Recall that you obtain mean and variance by differentiating the moment-generating function (how exactly?)

Example: Binomial (n, p)

Above we derived the exponential family form with

$$a(p) = \log\left(\frac{p}{1-p}\right)$$

$$b(x) = x$$

$$c(p) = n\log(1-p)$$

$$d(x) = \log\left(\binom{n}{x}\right)$$

$$A = \{1, \dots, n\}.$$

To write the density in canonical form we put

$$\theta = \log\left(\frac{p}{1-p}\right)$$

(this transformation is called the *logit* transformation); then

$$p = \frac{e^{\theta}}{1 + e^{\theta}}$$

and

$$a(\theta) = \theta$$

$$b(x) = x$$

$$c(\theta) = -n \log(1 + e^{\theta})$$

$$d(x) = \log\left(\binom{n}{x}\right)$$

$$A = \{1, \dots, n\}$$

gives the canonical form. We calculate the mean

$$-c'(\theta) = n\frac{e^{\theta}}{1 + e^{\theta}} = \mu(\theta) = np$$

and the variance

$$-c''(\theta) = n \left\{ \frac{e^{\theta}}{1 + e^{\theta}} - \frac{e^{2\theta}}{(1 + e^{\theta})^2} \right\}$$
$$= \sigma^2(\theta) = np(1 - p).$$

Suppose X_1, \ldots, X_n are i.i.d., canonical density. Then

$$\ell(\theta) = \theta \sum x_i + nc(\theta) + \sum d(x_i),$$

$$\ell'(\theta) = \sum x_i + nc'(\theta) = n(\overline{x} + c'(\theta)).$$

Since $\mu(\theta) = -c'(\theta)$,

$$\ell'(\theta) = 0 \iff \overline{x} = \mu(\hat{\theta})$$

and
$$\ell''(\theta) = nc''(\theta)$$
, so $I_n(\theta) = E(-\ell''(\theta)) = -nc''(\theta)$. If μ is

invertible, then

$$\hat{\theta} = \mu^{-1}(\overline{x}).$$

Example: Binomial(m, p). With $\theta = \log \left(\frac{p}{1-p}\right)$ we have

 $\mu(\theta) = m \frac{e^{\theta}}{1+e^{\theta}}$, and we calculate

$$\mu^{-1}(t) = \log\left(\frac{\frac{t}{m}}{1 - \frac{t}{m}}\right).$$

Note that here n = 1, we have a sample, x, of size 1. This gives

$$\hat{\theta} = \log\left(\frac{\frac{x}{m}}{1 - \frac{x}{m}}\right),\,$$

as expected from the invariance of mle's.

The CLT applies to \overline{X} so, for large n,

$$\overline{X} \approx \mathcal{N}(\mu(\theta), -c''(\theta)/n)$$

With the delta-method, $S \approx \mathcal{N}(a, b)$ implies that

$$g(S) \approx \mathcal{N}\left(g(a), b[g'(a)]^2\right)$$

for continuous g, and small b. For $S=\overline{X}$, with $g(\cdot)=\mu^{-1}(\cdot)$ we have $g'(\cdot)=(\mu'(\mu^{-1}(\cdot))^{-1},$ thus

$$\hat{\theta} \approx \mathcal{N} \left(\theta, I_n^{-1}(\theta) \right)$$

giving the Asymptotic Normality of the M.L.E..

Note: approximate variance equals the Cramér-Rao lower bound: quite generally the MLE is asymptotically efficient.

Example: Logistic regression. Linear model for log odds of

binary response Y on predictor x; we are interested in

$$P(Y_i = 1|x) = \pi(x|\beta).$$

The outcome for each experiment is in [0, 1]; in order to apply some normal regression model we use the logit transform,

$$logit(p) = \log\left(\frac{p}{1-p}\right)$$

which is now spread over the whole real line. The ratio $\frac{p}{1-p}$ is also called the odds.

(Generalized linear) model

$$logit(\pi(x|\beta)) = log\left(\frac{\pi(x|\beta)}{1 - \pi(x|\beta)}\right) = x^T\beta.$$

The coefficients β describe how the odds for π change with change in the explanatory variables. The model can now be treated like an ordinary linear regression, X is the design matrix, β is the vector of coefficients. Transforming back,

$$P(Y_i = 1|x) = \exp(x^T \beta) / (1 + \exp(x^T \beta)).$$

Invariance property \to MLE of $\pi(x|\beta)$, for any x, is $\pi(x|\hat{\beta})$, where $\hat{\beta}$ is the MLE obtained in the ordinary linear regression from a sample of responses y_1, \ldots, y_n with associated covariate vectors x_1, \ldots, x_n .

(i) If β scalar: Calculate that

$$\frac{\partial}{\partial \beta} \pi(x_i | \beta)$$

$$= \frac{\partial}{\partial \beta} \exp(x_i \beta) / (1 + \exp(x_i \beta))$$

$$= x_i e^{x_i \beta} (1 + \exp(x_i \beta))^{-1}$$

$$- (1 + \exp(x_i \beta))^{-2} x_i e^{x_i \beta} e^{x_i \beta}$$

$$= x_i \pi(x_i | \beta) - x_i (\pi(x_i | \beta))^2$$

$$= x_i \pi(x_i | \beta) (1 - \pi(x_i | \beta))$$

and the likelihood is

$$L(\beta) = \prod_{i=1}^{n} \pi(x_i|\beta)$$
$$= \prod_{i=1}^{n} \exp(x_i\beta) / (1 + \exp(x_i\beta))$$

Hence the log likelihood has derivative

$$\ell'(\beta) = \sum_{i=1}^{n} \frac{1}{\pi(x_i|\beta)} x_i \pi(x_i|\beta) (1 - \pi(x_i|\beta))$$
$$= \sum_{i=1}^{n} x_i (1 - \pi(x_i|\beta))$$

so that

$$\ell''(\beta) = -\sum_{i=1}^{n} x_i^2 \pi(x_i|\beta) (1 - \pi(x_i|\beta)).$$

Thus $\hat{\beta} \approx \mathcal{N}(\beta, I^{-1}(\beta))$ where $I(\beta) = \sum x_i^2 \pi_i (1 - \pi_i)$ with $\pi_i = \pi(x_i|\beta)$

The delta method with $g(\beta) = e^{\beta x}/(1 + e^{\beta x})$, gives

$$g'(\beta) = xg(\beta)(1 - g(\beta))$$

and $\pi = \pi(x|\hat{\beta}) \approx \mathcal{N}(\pi, \pi^2(1-\pi)^2 x^2 I^{-1}(\beta)).$

(ii) If β vector: Similarly it is possible to calculate that $\hat{\beta} \approx \mathcal{N}(\beta, I^{-1}(\beta))$ where $[I(\beta)]_{kl} = E\left(-\partial^2 \ell/\partial \beta_k \partial \beta_l\right)$

Vector version of the delta method:

$$\pi(x|\hat{\beta}) \approx \mathcal{N}\left(\pi, \pi^2(1-\pi)^2 x^T I^{-1}(\beta)x\right)$$

with $\pi=\pi(x|\beta)$ and $I(\beta)=X^TRX,$ where X is the design matrix, and

$$R = Diag(\pi_i(1 - \pi_i), i = 1, ..., n)$$

where $\pi_i = \pi(x_i|\beta)$. Note that this normal approximation is likely to be poor for π near zero or one.

Excursion: Minimum Variance Unbiased Estimation MVUE.

There is a pretty theory about how to construct minimum variance unbiased estimators based on sufficient statistics. The key underlying result is the Rao-Blackwell Theorem (Casella+Berger p.316). We do not have time to go into detail during lectures, but you may like

to read up on it.

Excursion: a more general method of moments

Consider statistics of the form $\frac{1}{n} \sum_{i=1}^{n} h(X_i)$

Find the expected value as a function of θ

$$\frac{1}{n}\sum_{i=1}^{n}Eh(X_{i})=r(\theta)$$

Solve $r(\theta) = \frac{1}{n} \sum_{i=1}^{n} h(X_i)$ for θ .