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1 Introduction

hen aligning whole genomes, often a seed-and-extend technique is used. Start-
ing from exact or near-exact matches, reliable ones among these matches are
selected as anchors, and then the remaining stretches are filled in using local
and global alignment. See Lippert et al. (2004) for a discussion of genome
alignment methods using anchors. To select a match that is both sensitive
and specific, Lippert et al. (2004) introduce a score based on the length, Rn,
of the longest exact match of a random sequence across another sequence,
where shifts are not allowed. For Rn and the associated scores, Lippert et al.
(2004) find that their approach based on a mixed Poisson approximation, al-
though valid, is computationally not feasible if the distribution of the random
letters making up the random sequences is not uniform, as the mixing takes
place over too many terms; the authors resort to a Monte Carlo method.
Here we provide a Poisson approximation for the number of matches of fixed
length, along with bounds provided by the Chen-Stein method, and we ob-
tain an approximate expression for the cumulative distribution function of
Rn that is easy to compute. The bound on the error in the approximation
turns out to be small, thus making our suggestion a useful approach.

In Lippert et al. (2004) an i.i.d. model is used as a null model; Reinert
and Waterman (2007) derive a Poisson approximation for the length of the
longest exact position match in an i.i.d. sequence. Here we extend the results
of Reinert and Waterman (2007) to a Markov sequence; most of the main
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ideas can also be found in Reinert and Waterman (2007) . The set-up for
our problem is as follows. Let A = A1A2 . . . An and B = B1B2 . . . Bn be two
independent sequences with letters from a finite alphabet A with d elements.
As in Touyar et al. (2008), for example, we assume that A is part of an in-
finite sequence . . . , A−1, A0, A1, A2, . . ., generated by a stationary first-order
Markov chain with transition matrix Π = (π(a, b))a,b,∈A. We assume that
π(a, b) > 0 for all a and b, and that

ρ = max
a,b,∈A

π(a, b) < 1. (1)

Denote by µ the unique stationary distribution for the chain, and by π(`)(a, b)
the `-step transition probability between a and b. Let µ∗ = maxa∈A π(a) be
the maximum of the stationary probabilities. We put

Rn = max
m
{Ak = Bj+k, k = 1, . . . ,m, for some 0 ≤ j ≤ n−m};

thus Rn denotes the length of the longest exact match of a random sequence
across another sequence, where shifts are not allowed.

Note that if the match in sequence A was not required to start at position
1, the problem would reduce to the distribution of the well understood

Hn = max
m
{Ai+k = Bj+k, k = 1, . . . ,m, for some 0 ≤ i, j ≤ n−m},

see for example Waterman [6]. Our problem differs from the study of Hn by
requiring an exact match beginning at a fixed position in the first sequence.

To reveal the Poisson-type structure in the problem, we use a standard
duality argument as follows. If Rn < m then there are no matches of length
m (or longer) in the sequence. Ignoring end effects, this means that there
are no occurrences of A1 . . . Am in B. Let Wm denote the number of (clumps
of) matches of length m (or longer) in the sequence, so that P (Rn < m) ≈
P (Wm = 0).

In this paper we shall first give a mixed Poisson approximation for P (Wm =
0), then derives the Poisson approximation for P (Wm = 0), and finally apply
it to obtain an approximation, with bound, for P (Rn < m).

2 A mixed Poisson approximation

For Poisson and mixed Poisson approximation it is useful to think in terms
of clumps of occurrences, see Robin et al. (2005) or Reinert et al. (2005),
because de-clumping disentangles the dependence arising from self-overlap of
words. We say that a clump of a word ω = ω1ω2 . . . ωm starts at position i in
B if there is an occurrence of ω at position i, and there is no (overlapping)
occurrence of ω at positions i−m + 1, . . . , i− 1.
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Thus when ignoring end effects the study of Rn is equivalent to the study
of

Wm =
n̄∑

i=1

1(a clump of A1 . . . Am starts at position i in B),

where we abbreviate n̄ = n−m+1. End effects only arise from the possibility
that, when embedded in an infinite sequence, the sequence B = B1B2 . . . Bn

starts within a clump in the infinite sequence.
Assume that B∞ = · · ·B−1B0B1 · · ·BnBn+1 · · · is an infinite sequence

for now, so that we can ignore end effects. Then we have

Rn < m ⇐⇒ Wm = 0.

If m is large enough, then a fixed word ω of length m will rarely occur
at a given position i in the random sequence B. When using clumps in order
to account for the strong dependence between neighbouring occurrences in
the case that ω has a large amount of self-overlap, it is plausible and indeed
established that the number of clumps of ω in B is approximately Poisson
distributed, Proposition 1 below. For any fixed ω, we let

Wm(ω) =
n̄∑

i=1

1(a clump of ω starts at position i in B).

In what follows we shall always assume that ω = w1 · · ·wm ∈ Am, so that

µ(ω) = µ(w1)
m−1∏
i=1

π(wi, wi+1)

is the probability of a random word of length m equals ω. If there is a p such
that wi = wi+p, i = 1, . . . ,m − p, then p is called a period of ω. A period
is a principal period if it is not a strict multiple of the minimal period. An
occurrence of ω starting at postion i is a clump if and only if for none of the
periods p of ω, the truncated word ω(p) = w1 · · ·wp starts at position i−p. It
is easy to see that it suffices to consider all principal periods. The probability
that a clump of ω starts at a given position in the sequence is then given by

µ̃(w) = µ(w)−
∑

p∈P′(ω)

µ(w(p)w), (2)

where ω(p)ω = w1 · · ·wpw1 · · ·wm is the concatendequationted word, and
P ′(ω) is the set of principal periods of ω. In particular,

EW = λ̃(ω) := n̄µ̃(ω).

To describe the distance between the distributions of non-negative integer
valued random variables X and Y we use the total variation distance, defined
by

dTV (X, Y ) = sup
B⊂{0,1,...}

|P (X ∈ B)− P (Y ∈ B)|.
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We shall need some more notation, see Reinert et al. (2005). For a 1-order
Markov chain we diagonalize the transition matrix as follows. Let (αt)t=1,...,d

be the eigenvalues of Π such that |α1| ≥ |α2| ≥ · · · ≥ |αd|.

α := α2 < 1.

Let D = Diag(1, α, α3, · · · , αd). We decompose Π = PDP−1 such that the
first column of P is (1, 1, . . . , 1)T ; then the first row of P−1 is the vector of
stationary distribution (µ(a), a ∈ A). For all t ∈ {1, . . . , d}, It denotes the
d×d matrix such that all its entries are equal to 0 except It(t, t) = 1, and we
define Qt := PItP

−1. Then we may decompose the `-step transition matrix
Π` as

Π` =
d∑

t=1

αh
t Qt.

Furthermore we put

γ(m) = max
a,b∈A

∑
x,y∈A

µ(x)

∣∣∣∣∣∣ 1
µ(b)

∑
(t,t′) 6=(1,1)

α`
tα

m
t′

αm
Qt(x, b)Qt′(a, y)−

d∑
t=2

α4m−2
t

αm
Qt(x, y)

∣∣∣∣∣∣ .

Corollary 6.4.6. in Reinert et al. (2005) immediately gives the following
proposition.

Proposition 1. Let Z̃(ω) ∼ Po(λ̃(ω)) be Poisson distributed with mean
λ̃(ω). Then

dTV

(
L(Wm(ω)), Po(λ̃(ω)))

)
≤ (n−m + 1)µ̃(ω)

{
(6m− 5)µ̃(ω) + γ(m)|α|m

+
2

µ(w1)
µ(ω)

2m−2∑
s=1

Πs(wm, w1)

}
+(m− 1)(µ(ω)− µ̃(ω)).

While Proposition 1 only counts the number of occurrences of a fixed
word, in our problem, the first m letters A1 . . . Am of the sequence A consti-
tute a random word. Thus we need to condition on the words ω that A1 . . . Am

take on, and using the rule of total probability, we obtain a mixed Poisson
approximation.

Theorem 1. Assume that 0 < µ∗ = mina∈A µ(a) ≤ µ∗ < 1. With the above
notation,

|P (Wm = 0)−
∑
ω

µ(ω)P (Po(λ̃(ω)) = 0)|

≤ n̄µ∗ρm−1

{(
(6m− 5) +

2ρ

µ∗(1− ρ)

)
µ∗ρm−1 + γ(m)|α|m

}
+ (m− 1)Rem0

=: Rem1.
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Here, Rem0 is given in Lemma 1 below.

For the proof of Theorem 1, we shall employ the following lemma.

Lemma 1. With ρ given in (1), we have that∑
ω

µ(ω)(µ(ω)− µ̃(ω)) ≤ Rem0,

where for ρ 6= 1
d ,

Rem0 ≤ µ∗ρm−1 (dρ)m − 1
dρ− 1

,

and for ρ = 1
d ,

Rem0 ≤ (m− 1)µ∗ρm−1.

In general, ρd ≥ 1. However, if the letter distribution is close to uniform, and
if m is relatively large, then ρ2d < 1, and the above bound will be small.

We note that ρ = 1
d implies that the maximal transition probability is

1
d . As there for each starting point there are d possible transitions, their
probabilities summing to 1, it follows that ρ = 1

d corresponds to the uniformly
distributed case.

3 Poisson approximation to the mixed Poisson
approximation

Although Theorem 1 is valid, the probability
∑

ω µ(ω)P (Po(λ̃(ω)) = 0) is
difficult to evaluate, the sum growing exponentially with alphabet size. As
much of the computational difficulty lies in accounting for the different pe-
riods in all words ω ∈ Am, our idea is to approximate P (Po(λ̃(ω)) = 0) by
the simpler expression P (Po(λ(ω)) = 0), where

λ(ω) := n̄µ(ω).

Thus we ignore the period correction in the Poisson parameter. While this
may much distort the limiting distribution for words ω with a large amount
of self-overlap, there are not too many such words in Am; indeed we provide
a bound on the error in this approximation in the next theorem.

Theorem 2. For ω ∈ Am, let Z̃(ω) have Poisson distribution with mean
λ̃(ω), and let Z(ω) have Poisson distribution with mean λ(ω). Then∣∣∣∣∣∑

ω

µ(ω)P (Z̃(ω) = 0)−
∑
ω

µ(ω)P (Z(ω) = 0)

∣∣∣∣∣ ≤ (1− e−n̄µ∗ρm−1
)Rem0,

with Rem0 given in Lemma 1.



6 Reinert and Waterman

Now we apply our results to the original problem, the cumulative distri-
bution function of Rn, the length of the longest exact position match.

Corollary 1. For ω ∈ Am, as in Theorem 2 let Z(ω) have Poisson distri-
bution with mean λ(ω). Then

|P (Rn < m)−
∑

ω∈Am

P (Z(ω) = 0)| ≤ Rem3,

where

Rem3 = Rem1 +
{

(m− 1)µ∗ρm−1 +
(
1− e−n̄µ∗ρm−1

)}
Rem0,

with Rem1 given in Theorem 1 and Rem0 given in Lemma 1.

We note that in the i.i.d. case, Reinert and Waterman (2007) obtain a
stronger theorem, making use of the combinatorics from requiring matches
in independent sequences.

Remark 1. Lippert et al. (2004) introduce as Z-score

Zi,n = max
m
{Ai+k = Aj+k, k = 0, . . . ,m− 1; 1 ≤ i 6= j ≤ n̄}.

This is similar to Rn but allows self-overlap. Lippert et al. show that the
probability P{

∏L
i=1 1(Zi,n ≥ k)} that the scores Zi,n exceed k consecutively

across L positions can be expressed by probabilities involving only Rn, so
Corollary 1 can be applied to approximate the distribution of the scores.
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