
Markov Chain Monte Carlo
and Applied Bayesian Statistics

Trinity Term 2005

Prof. Gesine Reinert

Markov chain Monte Carlo is a stochastic sim-
ulation technique that is very useful for computing
inferential quantities. It is often used in a Bayesian
context, but not restricted to a Bayesian setting.

Outline

1. Review of Bayesian inference

2. Monte Carlo integration and Markov chains

3. MCMC in Bayesian inference: ideas

4. MCMC in Bayesian inference: algorithms

5. Output analysis and diagnostics

6. Concluding remarks

There will be a practical session, using the soft-
ware package WINBUGS, Tuesday week 3, 2-4 pm.
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1 Review of Bayesian inference

Data y = y1, y2, . . . , yn, realisations of random vari-
ables Y1, Y2, . . . , Yn, with distribution (model)

f(y1, y2, . . . , yn|θ)

L(θ|y) = f(y|θ) is the likelihood of y if θ is the true
parameter (vector)
Parameter (vector) θ = (θ1, . . . , θp) has a prior dis-
tribution π(θ)
Inference is based on the posterior distribution

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

=
L(θ|y)π(θ)∫
L(θ|y)π(θ)dθ

∝ L(θ|y)π(θ)

i.e.
Posterior ∝ Likelihood× Prior
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Three quantities of interest are

1. Prior predictive distribution

p(y) =
∫

f(y|θ)π(θ)dθ

represents the probability of observing the data
that was observed before it was observed

2. Marginal effects of a subset of parameters in a
multivariate model: Suppose that we are inter-
ested in π(θi|y), for some subset θi ∈ θ (here
and in the following we abuse notation by us-
ing θ = {θ1, . . . , θp} to denote a set as well as
a vector). Then

π(θi|y) =
∫

π(θi, θ−i|y)dθ−i

=
∫

π(θi|θ−i,y)π(θ−i|y)dθ−i,

where θ−i = θ \ θi denotes the vector θ with
θi removed. This distribution is also called the
marginal likelihood.
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3. Posterior predictive distribution: Let ỹ denote
some future unobserved response, then the pos-
terior predictive distribution is

p(ỹ|y) =
∫

f(ỹ|θ,y)π(θ|y)dθ

=
∫

f(ỹ|θ)π(θ|y)dθ.

For the last step we used that ỹ,y are con-
ditionally independent given θ, though clearly
unconditionally they are dependent.
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Example

X1, . . . , Xn random sample N (θ, σ2), where σ2

known
π(θ) ∼ N (µ, τ2), where µ, τ2 known

f(x1, . . . , xn|θ) = (2πσ2)−
n
2 exp

{
−1

2

n∑
i=1

(xi − θ)2

σ2

}
so

π(θ|x) ∝ exp

{
−1

2

(
n∑

i=1

(xi − θ)2

σ2
+

(θ − µ)2

τ2

)}
=: e

1
2 M
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Calculate (Exercise)

M = a

(
θ − b

a

)2

+
b2

a
+ c

a =
n

σ2
+

1
τ2

b =
1
σ2

∑
xi +

µ

τ2

c =
1
σ2

∑
x2

i +
µ2

τ2

So

π(θ|x) ∼ N
(

b

a
,
1
a

)
Exercise: the predictive distribution for x isN (µ, σ2+

τ2)
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Example: Normal Linear Regression
Consider a normal linear regression,

y = xβ + ε

where ε N(0, σ2I). Alternatively, y ∼ N (xβ, σ2I);
to make the y-dependence clearer, we write

y ∼ N(y|xβ, σ2I)

For now assume that σ is known
Classically, we would wish to estimate the regres-

sion coefficients, β, given a data set, {yi, xi}ni=1, say
using MLE

β̂ = (x′x)−1x′y

Bayesian modelling proceeds by constructing a
joint model for the data and unknown parameters,

π(y, β|x, σ2) = f(y|x, β, σ2)π(β|x, σ2)

= N(y|xβ, σ2I)π(β)

where we assume, for now, that the prior π(β) is
independent of {x, σ2}
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Suppose we take

π(β) = N(β|0, vI)

Then,

π(β|y) ∝ f(y|β)π(β)

∝ σ−n/2 exp[− 1
2σ2

(y − xβ)′(y − xβ)]×

|v|−1/2 exp[−(2v)−1β′β]

∝ exp
[
− 1

2σ2
β′x′xβ − (2v)−1β′β

+
1

2σ2
(y′xβ + β′x′xβ)

]
.

We recall that the multivariate normal density fN(µ,Σ)

for some vector z can be written as

fN(µ,Σ)(z) ∝ exp
[
−1

2
(z− µ)′Σ−1(z− µ)

]
∝ exp

[
−1

2
z′Σ−1z

+
1
2
(z′Σ−1µ + µ′Σ−1z)

]
.
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Matching up the densities we find

Σ−1 = (v−1 + σ−2x′x)I

and
µ = (x′x + σ2v−1)−1x′y.

Therefore we can write

π(β|y) = N(β|β̂, v̂I)

β̂ = (x′x + σ2v−1)−1x′y

v̂ = σ2(x′x + σ2v−1)−1

Note that again follows a normal distribution:
Prior (normal) → Posterior (normal)
conjugate prior: when prior and posterior are in the
same family
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For new data, {y0, x0}, predictive densities fol-
low,

p(y0|x0,y) =
∫

f(y0|x0, β,y)π(β|y)dβ

=
∫

N(y0|x0β, σ2)N(β|β̂, v̂)dβ

= N(y0|x0β̂, σ2(1 + x0v̂x′0)).

Bayesian analysis might then continue by com-
puting the posterior mean, the posterior variance,
credible intervals, or using Bayesian hypothesis test-
ing.
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Computationally even evaluating the posterior
distribution, the prior predictive distribution, the
marginal likelihoods, and the posterior predictive
distribution is not an easy task, in particular if we
do not have conjugate priors.

Historically, the need to evaluate integrals was a
major stumbling block for the take up of Bayesian
methods.

Around 15 years ago or so, a numerical method
known as Markov chain Monte Carlo (MCMC) was
popularized by a paper of Gelfand and Smith (1990);
other statisticians such as Ripley, Besag, Tanner,
Geman were using MCMC before.
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2 Monte Carlo integration

In general, when X is a random variable with distri-
bution π, and h is a function, then evaluating

Eπ[h(X)] =
∫

h(x)π(x)dx

can be difficult, in particular when X is high-dimensional.
However, if we can draw samples

x(1), x(2), . . . , x(n) ∼ π

then we can estimate

Eπ[h(X)] ≈ 1
n

n∑
i=1

h(x(i)).

This is Monte Carlo integration
For independent samples, by the law of large

numbers we have that, in probability

1
n

n∑
i=1

h(x(i))→ Eπ[h(X)] as n→∞ (1)
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Application to Bayesian inference

Recall: all the information (needed for, say, pre-
dictions, marginals, etc) is contained in the posterior
π(θ|y)

However, π(θ|y) may not be quantifiable as a
standard distribution.

Suppose we are able to draw samples, θ(1), . . . , θ(M),
from π(θ|y), so that,

θ(i) ∼ π(θ|y)

Then most inferential quantities of interest are solv-
able using the bag of samples, {θ(i)}Mi=1, as a proxy
for π(θ|y).
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Examples:

(1) Suppose we are interested in Pr(θ < a|y).
Then,

Pr(θ < a|y) ≈ 1
M

M∑
i=1

I(θ(i) < a)

where I(·) is the logical indicator function. More
generaly, for a set A ∈ Θ

Pr(θ ∈ A|y) ≈ 1
M

M∑
i=1

I(θ(i) ∈ A)

(2) Prediction: Suppose we are interested in p(ỹ|y),
for some future ỹ. Then,

p(ỹ|y) ≈ 1
M

M∑
i=1

f(ỹ|θ(i),y)

≈ 1
M

M∑
i=1

f(ỹ|θ(i))
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(3) Inference of marginal effects: Suppose, θ is
multivariate and we are interested in the sub-
vector θj ∈ θ (for example a particular pa-
rameter in a normal linear regression model).
Then,

Fθj (a) ≈ 1
M

M∑
i=1

I(θ(i)
j ≤ a)

where F (·) denotes the distribution function;
More generally for any set Aj ∈ Θj , the lower
dimensional parameter space,

Pr(θj ∈ Aj |y) ≈ 1
M

M∑
i=1

I(θ(i)
j ∈ Aj)

This last point is particularly useful.
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Note that all these quantities can be computed
from the same bag of samples. That is, we can first
collect θ(1), . . . , θ(M) as a proxy for π(θ|y) and then
use the same set of samples over and again for what-
ever we are subsequently interested in.

Warning: Monte Carlo integration is a last re-
sort; if we can calculate expectations and probabili-
ties analytically, then that would be much preferred.
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Independent sampling from π(x) may be difficult.
Fortunately (1) still applies if we generate samples
using a Markov chain, provided some conditions ap-
ply - in that case (1) is called the Ergodic Theorem.
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Review of Markov chains

A homogeneous Markov chain (Xt)t=0,1,... is gen-
erated by sampling from a transition kernel P (y, x);
if Xt = xt, then Xt+1 ∼ P (xt, x), for t = 0, 1, 2, . . .;
so Xt+1 depends on the past X0, X1, . . . , Xt only
through Xt; more generally, for any set A,

P (xt, A) := P (Xt+1 ∈ A|Xt = xt)

If the transition probabilities depended on t, the
chain would be called inhomogeneous.

Example. Consider the AR(1) process

Xt = αXt−1 + εt,

where the εt’s are independent, identically distributed.
Then (Xt)t=0,1,... is a homogeneous Markov chain.

For a Markov chain with finite state space I we
can calculate n-step transition probabilities by ma-
trix iteration:
If p

(n)
ij = Pr(Xn = j|X0 = i), for i, j ∈ I, then

(p(n)
ij )i,j∈I = Pn.
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Example. A two-state Markov chain (Xt)t=0,1,...

has transition matrix

P =

(
1− α α

β 1− β

)
.

Conditioning on the first step, we have, for example,

p
(n+1)
11 = βp

(n)
12 + (1− α)p(n)

11

and from

p
(n)
12 + p

(n)
11 = Pr(Xn = 1 or 2) = 1

we obtain for n ≥ 1,

p
(n+1)
11 = (1− α− β)p(n)

11 + β,

and p
(0)
11 = 1. Solving the system gives as unique

solution

p
(n)
11 =

{
β

α+β + α
α+β (1− α− β)n for α + β > 0

1 for α + β = 0
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A Markov chain has stationary or invariant dis-
tribution π if∫

π(y)P (y, x)dy = π(x), all x

that is, once we start in the stationary distribution
π, all Xt will have the distribution π

In matrix notation: πP = π

Fact: If the state space I is finite and p
(n)
ij → πj

as n → ∞ for all j ∈ I, then π = (πi, i ∈ I) is in-
variant

Example: For the two-state Markov chain above,
as n→∞,

Pn →

(
β

α+β
α

α+β
β

α+β
α

α+β

)

and so π = ( β
α+β , α

α+β ) is invariant distribution
You can also check that πP = π.
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One can try to break a Markov chain Xn into
smaller pieces. We say that i → j, i communicates
with j, if

P (Xn = j for some n ≥ 0|X0 = i) > 0.

A Markov chain is irreducible if any set of states
can be reached from any other state in a finite num-
ber of moves, i.e. if P (Xn = j for some n ≥ 0|X0 =
i) > 0 for all i, j ∈ I. Every state communicates
with every other state.

Fact: If the chain is irreducible and if it has a sta-
tionary distribution, then the stationary distribution
is unique
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A state i is aperiodic if p
(n)
ii > 0 for all sufficiently

large n.

Example. Consider the two-state Markov chain
with transition matrix

P =

(
0 1
1 0

)
.

Then P 2 = I, P 2n = I, P 2n+1 = P , so each state
returns to itself at every second step: the chain is
periodic.

Fact: If an irreducible Markov chain has an ape-
riodic state, then automatically all its states are ape-
riodic.
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Ergodic Theorem: Assume the homogeneous
Markov chain has stationary distribution π and is
aperiodic and irreducible. Then (1) holds; for any
function h such that

∫
h(x)π(x)dx exists,

1
n

n∑
t=1

h(Xt)→ Eπ[h(X)] =
∫

h(x)π(x)dx as n→∞.

Here, X ∼ π.

Also for such chains with

σ2
h = varπ[h(X)] <∞

the central limit theorem holds, and convergence
to the stationary distribution occurs (geometrically)
fast.

So we can apply Monte Carlo integration to ap-
proximate

∫
h(x)π(x)dx by simulating a Markov chain

that has π as stationary distribution.

Further reading on Markov chains: J.R. Norris,
Markov chains. Cambridge University Press, 1997.
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Note: Usually it is not possible to start the
chain in the stationary distribution - if it was easy
to sample from that distribution directly, we would
not need a Markov chain in the first place.

If we start the chain in some arbitrary value X0,
then for small n the distribution of the samples may
be quite far away from the stationary distribution,
and we better discard the initial set of, say, T sam-
ples as being unrepresentative.

Knowing when to start collecting samples is a
nontrivial task; we shall deal with this later (watch
out for burn-in).
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3 MCMC in Bayesian inference:

idea

As the name suggests, MCMC works by simulating a
discrete-time Markov chain; it produces a dependent
sequence (a chain) of random variables, {θ(i)}Mi=1,
with approximate distribution,

p(θ(i)) ≈ π(θ|y)

The chain is initialised with a user defined start-
ing value, θ(0)

The Markov property then specifies that the dis-
tribution of θ(i+1)|θ(i), θ(i−1), . . . , depends only on
the current state of the chain θ(i)
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It is fair to say that MCMC has revitalised (per-
haps even revolutionised) Bayesian statistics. Why?

MCMC methods construct a Markov chain on
the state space, θ ∈ Θ, whose steady state distribu-
tion is the posterior of interest π(θ|y)

MCMC procedures return a collection of M sam-
ples, {θ(1), . . . , θ(M)} where each sample can be as-
sumed to be drawn from π(θ|y), (with slight abuse
of notation)

Pr(θ(i) ∈ A) = π(θ ∈ A|y)

for any set A ∈ Θ, or,

θ(i) ∼ π(θ|y) for i = 1, . . . ,M
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We shall see that

• MCMC is a general method that simultane-
ously solves inference of {π(θ|y), π(θi|y), p(ỹ|y)}

• MCMC only requires evaluation of the joint
distribution

π(y, θ) ∝ p(y|θ)π(θ)

up to proportionality, pointwise for any θ ∈ Θ

• MCMC allows modeller to concentrate on mod-
elling. That is, to use models, π(y, θ), that you
believe represent the true dependence struc-
tures in the data, rather than those that are
simple to compute
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Example: Normal Linear Regression

We have seen that for the normal linear regres-
sion with known noise variance and prior, π(β) =
N(0, vI), then the posterior is

π(β|y) = N(β|β̂, v̂I)

β̂ = (x′x + σ2v−1)−1x′y

v̂ = σ2(x′x + σ2v−1)−1

MCMC would approximate this distribution with
M samples drawn from the posterior,

{β(1), . . . , β(M)} ∼ N(β̂, v̂I)
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Example: Logistic Regression - Titanic data

The data relates to 1, 316 passengers who sailed
on the Titanic’s maiden and final voyage

We have data records on whether each passenger
survived or not, yi ∈ {survived, died }, as well as
three attributes of the passenger

(1) Ticket class: { first, second, third }

(2) Age: {child, adult }

(3) Sex: {female, male }

We wish to perform a Bayesian analysis to see
if there is association between these attributes and
survival probability

As stated before, the Bayesian analysis begins
with the specification of a sampling distribution and
prior
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Sampling density for Titanic survivals

Let, yi ∈ {0, 1}, denote an indicator of whether
the ith passenger survived or not

We wish to relate the probability of survival,

P (yi = 1),

to the passengers covariate information, xi = {class,
age, sex } for the ith passenger

That is, we wish to build a probability model for

p(yi|xi)
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A popular approach is to use a Generalised
Linear Model (GLM) which defines this associ-
ation to be linear on an appropriate scale, for in-
stance,

P (yi = 1|xi) = g(ηi)

ηi = xiβ

where xiβ =
∑

j xijβj and g(·) is a monotone link
function, that maps the range of the linear pre-
dictor, ηi ∈ [−∞,∞], onto the appropriate range,
P (yi|xi) ∈ [0, 1]

There is a separate regression coefficient, βj ,
associated with each predictor, in our case, β =
(βclass, βage, βsex)′
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The most popular link function for binary regres-
sion (two-class classification) yi ∈ {0, 1} is the logit
link, as it quantifies the Log-odds

logit(ηi) =
1

1 + exp(−ηi)
= log

(
P (yi = 1|xi)
P (yi = 0|xi)

)
where we note, logit(ηi)→ 0 as ηi → −∞, logit(ηi)→
1 as ηi →∞

In this case, the value of the regression coeffi-
cients β quantifies the change in the log-odds for
unit change in associated x

This is attractive as clearly β is unknown, and
hence we shall adopt a prior, π(β)
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It is usual to write the model in hierarchical form,

p(yi|xi) = g(ηi)

ηi = xiβ

β ∼ π(β)

We are interested in quantifying the statistical
association between the survival probability and the
attributes, via the posterior density,

π(β|y,x) ∝ p(y|x, β)π(β)

∝

[
N∏

i=1

p(yi|xi, β)

]
π(β)

which is not of standard form

To infer this we shall use a package known as
WinBugs, a Windows version of BUGS (Bayesian
analysis Using the Gibbs Sampler)
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4 MCMC in Bayesian inference:

algorithms

In the previous chapter we presented an example of
using MCMC for simulation based inference.

Up to now we have not discussed the algorithms
that lie behind MCMC and generate the samples

First, recall that MCMC is an iterative proce-
dure, such that given the current state of the chain,
θ(i), the algorithm makes a probabilistic update to
θ(i+1)
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The general algorithm is

–MCMC Algorithm–
θ(0) ← x

For i=1 to M

θ(i) = f(θ(i−1))
End

where f(·) outputs a draw from a conditional
probability density

The update, f(·), is made in such a way that the
distribution p(θ(i)) → π(θ|y), the target distribu-
tion, as i→∞, for any starting value θ(0)

We shall consider two of the most general proce-
dures for MCMC simulation from a target distribu-
tion, namely, the Metropolis-Hastings algorithm
and, the Gibbs sampler
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4.1 The Metropolis-Hastings (M-H) al-

gorithm

Metropolis et al. (1953) give an algorithm of how to
construct a Markov chain whose stationary distribu-
tion is our target distribution π; this method was
generalized by Hastings (1970).

Let the current state of the chain be θ(i)

Consider a (any) conditional density q(θ̃|θ(i)), de-
fined on θ̃ ∈ Θ (with the same dominating measure
as the model)

We call q(·|θ(i)) the proposal density for rea-
sons that will become clear

We shall use q(·|θ(i)) to update the chain as fol-
lows
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–M-H Algorithm–
θ(0) ← x

For i=0 to M

Draw θ̃ ∼ q(θ̃|θ(i))

Set θ(i+1) ← θ̃ with probability α(θ(i), θ̃),
where

α(a, b) = min
{

1,
π(b|y)q(a|b)
π(a|y)q(b|a)

}

Else set θ(i+1) ← θ(i)

End

It can be shown that the Markov chain (θ(i)), i =
1, 2, . . . will indeed have π(θ|y) as stationary distri-
bution:
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Why does it work?

The key idea is reversibility or detailed balance:

In general the target distribution π is invariant
for P if for all x, y in the state space, the detailed
balance equation holds:

π(x)P (x, y) = π(y)P (y, x).

We check that the M-H sampler satisfies detailed
balance:
Let P be the transition matrix for the M-H chain.
Then, for a 6= b,

π(a|y)P (a, b) = π(a|y)q(b|a)α(a, b)

= min(π(a|y)q(b|a), π(b|y)q(a, b))

and this expression is symmetric in a, b, hence

π(a|y)P (a, b) = π(b|y)P (b, a),

and detailed balance is satisfied.
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Note:

• There is a positive probability of remaining in
the same state, 1 − α(θ(i), θ̃); and this counts
as an extra iteration.

• The process looks like a stochastic hill climbing
algorithm. You always accept the proposal if
p(b|y)q(a|b)
p(a|y)q(b|a) > 1 else you accept with that prob-
ability (defined by the ratio)

• The acceptance term corrects for the fact that
the proposal density is not the target distribu-
tion
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To accept with probability π(b|y)q(a|b)
π(a|y)q(b|a) ,

First, draw a uniform random variable, say U ,
uniform on [0, 1].

IF U < α(θ(i), θ̃);

THEN accept θ̃;

ELSE reject and chain stays at θ(i)

The ratio of densities means that the normalis-
ing constant p(y) =

∫
f(y|θ)π(θ)dθ cancels, top and

bottom. Hence, we can use MCMC when the nor-
malizing constant is unknown (as is often the case)
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In the special case of a symmetric proposal den-
sity (Hastings algorithm), q(a|b) = q(b|a), for ex-
ample q(a|b) = N(a|b, 1), then the ratio reduces to
that of the probabilities

α(a, b) = min
{

1,
π(b|y)
π(a|y)

}
The proposal density, q(a|b), is user defined. It

is more of an art than a science.

Pretty much any q(a|b) will do, so long as it gets
you around the state space Θ. However different
q(a|b) lead to different levels of performance in terms
of convergence rates to the target distribution and
exploration of the model space
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Choices for q(a|b)

Clearly q(a|b) = π(θ|y) leads to an acceptance
probability of 1 for all moves and the samples are
iid from the posterior. But the reason we are using
MCMC is that we do not know how to draw from
π(θ|y)

There is a trade off: we would like “large” jumps
(updates), so that the chain explores the state space,
but large jumps usually have low acceptance proba-
bility as the posterior density can be highly peaked

As a rule of thumb, we set the spread of q() to
be as large as possible without leading to very small
acceptance rates, say < 0.1

Finally, q(a|b) should be easy to simulate and
evaluate
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It is usual to “centre” the proposal density around
the current state and make “local” moves. A popu-
lar choice when θ is real valued is to take q(a|b) =
b + N(a|0, V ) where V is user specified. That is, a
normal density centred at the current state b.

Warning. The Metropolis-Hastings algorithm is
a general approach to sampling from a target den-
sity, in our case π(θ|y). However, it requires a user
specified proposal density q(a|b) and the acceptance
rates must be continuously monitored for low and
high values. This is not good for automated models
(software)
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4.2 The Gibbs Sampler

An important alternative approach is available in the
following circumstances:

Suppose that the multidimensional θ can be par-
titioned into p subvectors, θ = {θ1, . . . , θp}, such
that the conditional distribution,

π(θj |θ−j , y)

is easy to sample from; where θ−j = θ\θj

Iterating over the p subvectors and updating each
subvector in turn using π(θj |θ−j , y) leads to a valid
MCMC scheme known as the Gibbs Sampler, pro-
vided that the chain remains irreducible and aperi-
odic.
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–Gibbs Sampler –
θ(0) ← x

For i=0 to M

Set θ̃ ← θ(i)

For j=1 to p

Draw X ∼ π(θj |θ̃−j , y)

Set θ̃j ← X

End

Set θ(i+1) ← θ̃

End
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Note:

The Gibbs Sampler is a special case of the Metropolis-
Hastings algorithm using the ordered sub-updates,
q(·) = π(θj |θ−j , y)

All proposed updates are accepted (there is no
accept-reject step)

θj may be multidimensional or univariate

Often, π(θj |θ−j , y) will have standard form even
if π(θ|y) does not
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Example: normal linear regression

Consider again the normal linear regression model
discussed in Chapter 1

y = xβ + ε

where ε ∼ N(0, σ2I). Alternately,

y ∼ N(y|xβ, σ2I)

we now assume that σ is unknown

As before we construct a joint model for the data
and unknown parameters,

p(y, β, σ2|x) = f(y|x, β, σ2)π(β, σ2|x)

= N(y|xβ, σ2I)π(β)π(σ2)

where we have assumed that the joint prior for β, σ2

is independent
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Suppose we take,

π(β) = N(β|0, vI)

π(σ2) = IG(σ2|a, b)

where IG(·|a, b) denotes the Inverse-Gamma density,

IG(x|a, b) ∝ x−(a−2)/2 exp(−b/(2x))

Then the joint posterior density is,

p(β, σ2|y) ∝ f(y|β)π(β)π(σ2)

∝ σ−n/2 exp[− 1
2σ2

(y − xβ)′(y − xβ)]×

|v|−1/2 exp[−(2v)−1β′β]×

(σ2)−(a−2)/2 exp(−b/(2σ2))

This is not a standard distribution!
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However, the full conditionals are known, and

π(β|y, σ2) = N(β|β̂, v̂I)

β̂ = (x′x + σ2v−1)−1x′y

v̂ = σ2(x′x + σ2v−1)−1

and

π(σ2|β,y) = IG(σ2|a + n, b + SS)

SS = (y − xβ)′(y − xβ)

Hence the Gibbs sampler can be adopted:

–Gibbs Sampler, normal linear regression–
(β, σ2)(0) ← x

For i=0 to M

Set (β̃, σ̃2)← (β, σ2)(i)

Draw β̃|σ2 ∼ N(β|β̂, v̂I)

Draw σ̃2|β̃ ∼ IG(σ2|a + n, b + SS)

Set (β, σ2)(i) ← (β̃, σ̃2)

End
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Example: hierarchical normal linear regres-
sion

Consider again the normal linear regression model

y = xβ + ε

where ε ∼ N(0, σ2I).

we now assume that both σ and prior variance
v of π(β) are unknown

In hierarchical form we write,

y ∼ N(y|xβ, σ2I)

β ∼ N(β|0, vI)

σ2 ∼ IG(σ2|a, b)

v ∼ IG(v|c, d)

where IG(·|a, b) denotes the Inverse-Gamma density,

IG(x|a, b) ∝ x−(a−2)/2 exp(−b/(2x))

note the “hierarchy” of dependencies
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Then the joint posterior density is

π(β, σ2|y) ∝ f(y|β)π(β)π(σ2)

∝ σ−n/2 exp
[
− 1

2σ2
(y − xβ)′(y − xβ)

]
×

|v|−1/2 exp[−(2v)−1β′β]×

(σ2)−(a−2)/2 exp(−b/(2σ2))×

v−(c−2)/2 exp(−d/(2v))

Again, this is not a standard distribution!
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However, the full conditionals are known, and

π(β|y, σ2, v) = N(β|β̂, v̂I)

β̂ = (σ−2x′x + v−1)−1σ−2x′y

v̂ = (σ−2x′x + v−1)−1

and

π(σ2|β,y) = IG(σ2|a + n, b + SS)

SS = (y − xβ)′(y − xβ)

and

π(v|β) = IG(v|a + p, b + SB)

SB = β′β

where p is the number of predictors (length of β vec-
tor)

Hence the Gibbs sampler can be adopted:
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–Gibbs Sampler, hierarchical normal linear
regression–
{β, σ2, v}(0) ← x

For i=0 to M

Set (β̃, σ̃2, ṽ)← {β, σ2, v}(i)

Draw β̃|σ2, v ∼ N(β|β̂, V̂ )

Draw σ̃2|β̃ ∼ IG(σ2|a + n, b + SS)

Draw ṽ|β̃ ∼ IG(v|c + p, d + SB)

Set {β, σ2, v}(i) ← (β̃, σ̃2, ṽ)

End

When the conditionals do not have standard form
we can usually perform univariate updates (as there
are a variety of methods for univariate sampling from
a target density).
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Some Issues:

The Gibbs sampler is automatic (no user set pa-
rameters) which is good for software, such as Win-
Bugs

But, M-H is more general and if dependence in
the full conditionals, π(θj |θ−j , y) is strong the Gibbs
sampler can be very slow to move around the space,
and a joint M-H proposal may be more efficient. The
choice of the subvectors can affect this

We can combine the two in a Hybrid sampler,
updating some components using Gibbs and others
using M-H
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5 Output analysis and diagnos-

tics

In an ideal world, our simulation algorithm would
return i.i.d. samples from the target (posterior) dis-
tribution

However, MCMC simulation has two short-comings

1. The distribution of the samples, p(θ(i)) only
converges with i to the target distribution

2. The samples are dependent

In this chapter we shall consider how we deal with
these issues.

We first consider the problem of convergence.
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5.1 Convergence and burn-in

Recall that MCMC is an iterative procedure, such
that

Given the current state of the chain, θ(i), the al-
gorithm makes a probabilistic update to θ(i+1)

The update, f(·), is made in such a way that the
distribution p(θ(i)) → π(θ|y), the target distribu-
tion, as i→∞, for any starting value θ(0)

Hence, the early samples are strongly influenced
by the distribution of θ(0), which presumably is not
drawn from π(θ|y)
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The accepted practice is to discard an initial set
of samples as being unrepresentative of the station-
ary distribution of the Markov chain (the target dis-
tribution). That is, the first B samples,

{θ(0), θ(1), . . . , θ(B)},

are discarded

This user defined initial portion of the chain to
discard is known as a burn-in phase for the chain

The value of B, the length of burn-in, is de-
termined by You using various convergence diag-
nostics which provide evidence that p(θ(B+1)) and
π(θ|y) are in some sense “close”
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It is worth emphasising from the beginning that
in practice no general exact tests for convergence ex-
ist.

Tests for convergence should more formally be
called tests for lack of convergence. That is, as in
hypothesis testing, we can usually only detect when
it looks like convergence has NOT yet been met.

Remember, all possible sample paths are indeed
possible.

Available convergence diagnostics

WinBugs bundles a collection of convergence di-
agnostics and sample output analysis programs in a
menu driven set of S-Plus functions, called CODA

CODA implemenents a set of routines for

• graphical analysis of samples;

• summary statistics, and;

• formal tests for convergence
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We shall consider the graphical analysis and con-
vergence tests, for more details see the CODA docu-
mentation at

http://www.mrc-bsu.cam.ac.uk/bugs/

documentation/Download/cdaman03.pdf

Graphical Analysis

The first step in any output analysis is to eyeball
sample traces from various variables, {θ(1)

j , . . . , θ
(M)
j },

for a set of key variables j: trace plot or history
plot

There should be
- no continuous drift
- no strong autocorrelation
in the sequence of values following burn-in (as the
samples are supposed to follow the same distribu-
tion)
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Usually, θ(0) is far away from the major support
of the posterior density. Initially then, the chain will
often be seen to “migrate” away from θ(0) towards a
region of high posterior probability centred around
a mode of π(θ|y)

If the model has converged, the trace plot will
move like a snake around the mode of the distribu-
tion.

The time taken to settle down to a region of a
mode is certainly the very minimum lower limit for
B

The trace is not easy to interpret if there are very
many points

The trace can be easier to interpret if it is sum-
marized by
- the cumulative posterior median, and upper and
lower credible intervals (say, 95% level)
- moving averages.
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If the model has converged, additional samples
from the posterior distribution should not influence
the calculation of the mean. Running means will re-
veal if the posterior mean has settled to a particular
value.

Kernel density plots

Sometimes non-convergence is reflected in a mul-
timodal distribution. A ”lumpy” posterior may in-
dicate non-convergence.

However, do not assume that the chain has con-
verged just because the posteriors ”look smooth”.

Another useful visual check is to partition the
sample chain up into k blocks,

{{θ(0), . . . , θ(M/k)}, . . . , {·, . . . , θ(M)}},

and use kernel density estimates for the within block
distributions to look for continuity/stability in the
estimates

0-61



Autocorrelation plots

Autocorrelation plots show the serial correlation
in the chain. Some correlation between adjacent val-
ues will arise due to the Markov nature of the algo-
rithm. Increasing run length should reduce the au-
tocorrelation.

The presence of correlation indicates that the
samples are not effective in moving around through
the entire posterior distribution.

The autocorrelation will be high if
- the jump function does not jump far enough
- the jump function jumps too far, into a region of
low density.

If the level of autocorrelation is high for a pa-
rameter of interest, then a trace plot will be a poor
diagnostic for convergence.
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Formal convergence diagnostics

CODA offers four formal tests for convergence,
perhaps the two most popular one being those re-
ported by Geweke and those of Gelman and Rubin,
improved by Brooks and Gelman.
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Geweke’s test

Geweke (1992) proposed a convergence test based
on a time-series analysis approach. It is a formal way
to interpret the trace.

Informally, if the chain has reached convergence
then statistics from different portions of the chain
should be close.

For a (function of the) variable of interest, the
chain is sub-divided up into 2 “windows” containing
the initial x% (CODA default is 10%) and the final y%
(CODA default is 50%).

If the chain is stationary, the expectations (means)
of the values should be similar.

Geweke describes a test statistic based on a stan-
dardised difference in sample means. The test statis-
tic has a standard normal sampling distribution if
the chain has converged.
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Gelman & Rubin’s test

Gelman and Rubin (GR) (1992) proposed a con-
vergence test based on output from two or more
multiple runs of the MCMC simulation. This
approach was improved by Brooks and Gelman (1998).

BGR is perhaps the most popular diagnostic used
today.

The approach uses several chains from different
starting values. The method compares the within
and between chain variances for each variable. When
the chains have “mixed” (converged) the variance
within each sequence and the variance between se-
quences for each variable will be roughly equal.

G&R derive a statistic which measures the po-
tential improvement, in terms of the estimate of the
variance in the variable, which could be achieved by
running the chains to infinity.
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When little improvement could be gained, the
chains are taken as having converged.

However, it is possible that the within-variance
and the between-variance are roughly equal but the
pooled and the within confidence interval widths do
not converge to stability. The improved BGR pro-
cedure is as follows.

1. Generate m ≥ 2 MCMC chains, each with dif-
ferent initial values.

2. Exclude the burn-in period, and iterate for an
n-iteration monitored period.

3. From each individual chain the empirical (1−
α) CI-interval width is calculated; that is the
difference between α

2 and (1 − α/2) empirical
quantiles of the first n simulations. We obtain
m within-sequence interval widths estimates.

4. From the entire set of mn observations (pooled),
the empirical (1 − α) CI-interval width is cal-
culated.
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5. R̂ is defined as

R̂ =
width of pooled interval

mean width of within-sequence intervals
.

Usually for small n, R̂ > 1 if the initial values are
chosen dispersed enough. The statistic R̂ approaches
to 1 as the chains converge.

The option bgr diag in WinBUGS calculates the
R̂ -based diagnostics with α = 0.2. is calculated
after each 50 simulations. The width of the central
80% interval of the pooled runs is green, the average
width of the 80% intervals within the individual runs
is blue, and their ratio R̂ is red - for plotting purposes
the pooled and within interval widths are normalised
to have an overall maximum of one. Convergence is
achieved when is close to 1, and both the pooled and
within interval widths are stable. The values can be
listed to a window by double-clicking on the figure
followed by ctrl-left-mouse-click on the window.
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Other tests

Heidelberger-Welsh: tests for stationarity of the
chain

Raftery-Lewis: based on how many iterations are
necessary to estimate the posterior for a given quan-
tity

Formal tests for convergence should not be taken
without question as evidence for convergence. Graph-
ical plots and examining posterior distributions for
stability should always be employed for key (func-
tions of) variables of interest.

Warning: Convergence does not mean that you
have a good model!
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Tricks to speed up convergence

Standardize all your variables by subtracting them
from their sample means and dividing by their sam-
ple standard deviations. This decreases the posterior
correlation between parameters.

Use WinBUGS Over-relax Algorithm. This gen-
erates multiple samples at each iteration and then
selects one that is negatively correlated with the cur-
rent value. The time per iteration increases, but
the within-chain correlations should be reduced, and
hence fewer iterations may be necessary. However,
this method is not always effective.

Pick good initial values. If your initial values
are close to their posterior modes, then convergence
should occur relatively quickly.

Just wait. Sometimes models just take a long
time to converge.
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5.2 Tests for dependence in the chain

MCMC produces a set of dependent samples (condi-
tionally Markov)

The Theory

From the central limit result for Markov chains
we have that

{ ¯f(θ(·))− E[f(θ)]} → N(0, σ2
f/M)

where ¯f(θ(·)) denotes the empirical estimate for
the statistic of interest using the M MCMC samples,

f(θ(·)) =
1
M

M∑
i=1

f(θ(i))

and E[f(θ)] denotes the true unknown expectation.
We assume that the chain is aperiodic and irreducible,
and that σ2

f <∞
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The variance in the estimator, σ2
f , is given by

σ2
f =

∞∑
s=−∞

cov[f(θ(i)), f(θ(i+s))]

Hence, the greater the covariance between sam-
plers, the greater the variance in the MCMC estima-
tor (for given sample size M)

In Practice

The variance parameter σ2
f can be approximated

using the sample autocovariances

Plots of autocorrelations within chains are ex-
tremely useful

High autocorrelations indicate slow mixing (move-
ment around the parameter space), with increased
variance in the MCMC estimators (and usually slower
convergence)
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A useful statistic is the Effective Sample Size

ESS = M/(1 + 2
k∑

j=1

ρ(j))

where M is the number of post burn-in MCMC sam-
ples and

∑k
j=1 ρ(j) is the sum of the first k monotone

sample autocorrelations

The ESS can be estimated from the sample au-
tocorrelation function; ESS estimates the reduction
in the true number of samples, compared to i.i.d.
samples, due to the autocorrelation in the chain

The ESS is a good way to compare competing
MCMC strategies if you standardise for CPU run
time
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We call

Eff =
1

(1 + 2
∑k

j=1 ρ(j))
,

that is the ratio of the Effective Sample Size (ESS)
to the number of replicates generated (K), the effi-
ciency of the MCMC.

The maximum efficiency of the MCMC is 1 and
the minimum is 0.

ESS is generally smaller than the size of the MCMC
sample.

Estimating ESS and efficiency can be done only
on the sample from the stationary distribution!

If run time is not an issue, but storage is, it is
useful to thin the chain by only saving one in every
T samples - clearly this will reduce the autocorrela-
tions in the saved samples
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6 Concluding remarks

Bayesian data analysis treats all unknowns as ran-
dom variables

Probability is the central tool used to quantify
all measures of uncertainty

Bayesian data analysis is about propagating un-
certainty, from prior to posterior (using Bayes the-
orem)
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Often the posterior will not be of standard form
(for example when the prior is non-conjugate)

In these circumstances, sample based simulation
offers a powerful tool for inference

MCMC is (currently) the most general technique
for obtaining samples from any posterior density -
though it should not be used blindly!

WinBugs is a user friendly (free) package to con-
struct Bayesian data models and perform MCMC.
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