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Outline

Particle filters and likelihood estimation.

Pseudo-marginal MCMC.

A theoretical framework around particle methods.
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Sequential Monte Carlo: algorithm

At time t = 1
Sample Xi

1 ∼ q1(·).
Compute the weights

wi
1 = µ(Xi

1)g(y1 | Xi
1)

q1
(
Xi

1
) .

At time t ≥ 2
Resample

(
wi

t−1, X
i
1:t−1

)
→
(
N−1, X

i
1:t−1

)
.

Sample Xi
t ∼ qt|t−1( ·| X̄i

t−1), Xi
1:t :=

(
X̄i

1:t−1, X
i
t

)
.

Compute the weights

wi
t = ωi

t =
f
(
Xi

t

∣∣Xi
t−1
)
g
(
yt|Xi

t

)
qt|t−1(Xi

t | Xi
t−1)

.
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Likelihood estimation

At time 1,

pN (y1) = 1
N

N∑
i=1

wi
1

a.s.−−−−→
N→∞

∫
µ(x1)g(y1 | x1)

q1 (x1) q1 (x1) dx1 = p(y1).

At time t,

pN (yt | y1:t−1) = 1
N

N∑
i=1

wi
t

a.s.−−−−→
N→∞

∫
w(xt−1, xt)qt|t−1(xt | xt−1)p(xt−1 | y1:t−1)dxt−1:t

= p(yt | y1:t−1).

where
w(xt−1, xt) = (f(xt | xt−1)g(yt | xt))/(qt|t−1(xt | xt−1)).
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Likelihood estimation

This leads to the estimator

pN (y1:t) = pN (y1)
t∏

s=2
pN (ys | y1:s−1)

=
t∏

s=1

1
N

N∑
i=1

wi
s

a.s.−−−−→
N→∞

p(y1:t).

Surprisingly (?), this estimator is unbiased:

E
[
pN (y1:t)

]
= p(y1:t),

whereas for any t ≥ 2,

E
[
pN (yt | y1:t−1)

]
6= p(yt | y1:t−1).

Typical particle estimates have a bias of order O(1/N); the
likelihood estimator pN (y1:t) is an exception.

Patrick Rebeschini Lecture 15 5/ 22



Sequential Monte Carlo: example

Model equations:

∀t ≥ 1 Xt = φXt−1 + σV Vt,

∀t ≥ 1 Yt = Xt + σV Wt,

with X0 ∼ N
(
0, σ2

V

)
, Vt,Wt

i.i.d.∼ N (0, 1), σV = 1, σW = 1.

Synthetic data is generated using φ? = 0.95, and we
estimate the likelihood for a range of values of φ.
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Sequential Monte Carlo: example
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Figure: Log-likelihood estimates log pN (y1:t | φ) as a function of φ. 12
independent replicates for each value of φ.
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Likelihood estimation: theory

Consider the estimator of the marginal likelihood

pN (y1:t) =
t∏

s=1

1
N

N∑
i=1

wi
s.

Unbiasedness

E
[
pN (y1:t)

]
= p(y1:t).

Non-asymptotic relative variance

E

(pN (y1:t)
p(y1:t)

− 1
)2
 ≤ B3t

N
.

Choose N = O(t) to control the relative variance.
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Metropolis–Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal distribution: for any x, x′ ∈ X, we have
q (x′|x) ≥ 0 and

∫
X q (x′|x) dx′ = 1.

Starting with X(1), for t = 2, 3, ...

1 Sample X? ∼ q
(
·|X(t−1)

)
.

2 Compute

α
(
X?|X(t−1)

)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)) q (X?|X(t−1))

 .
3 Sample U ∼ U[0,1]. If U ≤ α

(
X?|X(t−1)

)
, set X(t) = X?,

otherwise set X(t) = X(t−1).

Patrick Rebeschini Lecture 15 9/ 22



Pseudo-marginal Metropolis–Hastings

We need to be able to compute point-wise evaluations of
π̃(x) ∝ π(x).

What if we cannot evaluate these?

In the setting of hidden Markov models, particle filters
provide point-wise unbiased estimates of π̃(x).

What if we use these estimates instead of π̃(x)?
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Pseudo-marginal Metropolis–Hastings algorithm

Starting with X(1), and Z(1) such that E(Z(1)) = π̃(X(1)),
for t = 2, 3, ...

1 Sample X? ∼ q
(
·|X(t−1)

)
.

2 Estimate π̃(X?) by Z?, such that E(Z?) = π̃(X?).
3 Compute

α
(
X?|X(t−1)

)
= min

1,
Z? q

(
X(t−1)

∣∣∣X?
)

Z(t−1) q
(
X?|X(t−1))

 .
4 Sample U ∼ U[0,1]. If U ≤ α

(
X?|X(t−1)

)
, set

(X(t), Z(t)) = (X?, Z?), otherwise set
(X(t), Z(t)) = (X(t−1), Z(t−1)).
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Pseudo-marginal Metropolis–Hastings algorithm

For any x, denote by Zx an unbiased estimator of π̃(x),
with distribution g(· | x) ≡ gx.

If Vg(·|x)(Zx/π̃(x)) << 1, then the algorithm ≈ original
Metropolis–Hastings.

Thus the generated chain (X(t))t≥1 goes to ≈ π.

In fact, the limiting law of (X(t))t≥0 is exactly π. . . !
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Pseudo-marginal Metropolis–Hastings algorithm

Introduce an extended target distribution with pdf

π̄(x, z) ∝ z × gx(z).

Introduce a proposal kernel q̄ ((x, z), d(x?, z?)) with density

q̄ ((x, z), (x?, z?)) = q(x, x?)gx?(z?).

Then the Metropolis–Hastings acceptance ratio would be

min
(

1, π̄(x?, z?)
π̄(x, z)

q̄ ((x?, z?), (x, z))
q̄ ((x, z), (x?, z?))

)
= min

(
1, z

?

z

q(x?, x)
q(x, x?)

)
.

This is the algorithm described before.

Patrick Rebeschini Lecture 15 13/ 22



Pseudo-marginal Metropolis–Hastings algorithm

The described is a standard Metropolis–Hastings targeting
π̄. What is the distribution of X if (X,Z) follows π̄?

By integrating Z out,

π̄X(x) ∝
∫
zgx(z)dz

= Egx [Zx]
= π̃(x)

thus the marginal of π̄ is π.

Thus if the Markov chain (X(t), Z(t))t≥0 converges to π̄,
then the first component (X(t)) converges to the first
marginal of π̄, which is π.

Therefore pseudo-marginal Metropolis–Hastings is exact.
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Particle Metropolis–Hastings algorithm

To infer the parameters of a hidden Markov models, one
can perform a Metropolis–Hastings algorithm on the
parameter space.

For each proposed parameter θ?, run a particle filter to
obtain an unbiased estimator pN (y1:t | θ?) of the likelihood
p(y1:t | θ?).

Plug these estimators inside the Metropolis–Hastings ratio.

Produce a chain (θ(t)) targeting the correct posterior
distribution.
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Numerical experiment
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Figure: Trace plot of PMMH chains, for various values of the number
of particles N in the particle filter.
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Numerical experiment
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Figure: Histogram of the chain produced with N = 256 particles and
T = 5000 iterations.
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Numerical experiment
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Figure: Autocorrelogram for various values of the number of particles
N .
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Theoretical framework for particle methods

A Markov chain (Xn) with initial distribution η0 and
transition kernel Mn at time n.

A sequence of “potential functions” Gn : X→ R+.

Filtering: Mn(x, dy) = f(xn | xn−1), Gn(xn) = g(yn | xn).

Other application: Markov chain in a tube.
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Theoretical framework for particle methods

Sequence of unnormalized measures:

γn(f) = E

f(Xn)
∏

0≤k<n

Gk(Xk)

 .
Introduce non-negative kernels:

Qn(x, dy) = Gn−1(x)Mn(x, dy)

and semi group defined by

Qp,n = Qp+1 ◦ . . . ◦Qn

such that
γn(f) = η0Q0,n(f).

Filtering: γn(1) = p(y0:n−1).
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Theoretical framework for particle methods

Normalize γn to obtain

ηn(f) = γn(f)/γn(1).

Equivalently

ηn+1 = Φn(ηn) = ΨGn(ηn)Mn+1,

where

∀µ ∈ P(E) ΨG(µ)(dx) = G(x)µ(dx)∫
G(x)µ(dx) = G(x)µ(dx)

µ(G) .

Filtering: ηn corresponds to p(xn | y0:n−1).
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Theoretical framework for particle methods

Filtering distributions evolve through:

ηn−1 −−−−−−−→
reweighting

ΨGn−1(ηn−1) −−−−−−→
transition

ΨGn−1(ηn−1)Mn.

Particles evolve through the same mechanism:

ηN
n−1 −−−−−−−→

reweighting
ΨGn−1(ηN

n−1) −−−−−−→
transition

ΨGn−1(ηN
n−1)Mn

plus a [re]sampling mechanism

ΨGn−1(ηN
n−1)Mn −−−−−−→

sampling
ηN

n .

Thus the study of the mechanism itself, i.e.

ηn+1 = Φn(ηn) = ΨGn(ηn)Mn+1,

informs about the behaviour of the particles as n→∞.
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