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m Often we have various possible models for the same dataset.

m Reversible jump enables joint parameter and model
estimation, in one run.

m How to choose between models without resorting to
reversible jump?

Various Monte Carlo ways to estimate the evidence
associated to each model.
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Bayesian model choice

m Assume we have a collection of models My, for k € K.

m With data we can learn parameters given each model My,
but we can also learn about the models.

m Put a prior on models M. Within each model, prior
p(0k | My) on the parameters.

m Joint posterior distribution of interest:

T(Mp, 0 | y) = 1My | y)m (0, | y, My)

which is defined on

Urex{ My} X O.
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Bayesian polynomial regression

1

PMg) =pr =7
( k) Pr MmaXJFl

with O = RF x RT
pi (B.0%) = N (8:0,0%I11) G (0%1,1) .
m In this case, we have analytic expression for

pilva) = [ e (8.0 TI (i f (@128)..0?) dida®.
k i=1

m Bayesian model selection automatically prevents overfitting.
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Bayesian polynomial regression

Model Evidence

Figure: f (x; ) for random draws from pas (S| y1.,) and evidence
Pm (yl:n)-
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Transdimensional samplers

m Reversible Jump aims at parameter estimation and model
choice in one run.

m In general, hard to design auxiliary variables for dimension
matching and deterministic mappings.

m Transdimensional samplers constitute an on-going research
area.
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Estimation of the evidence

m The model evidence, or normalizing constant, is m(y | My):

_ (O | Mi)7(y | Ok, M)

m Using some integral representation, for instance

m(y | My) = /7?(9k | Mi)m(y | Or, My )dO,

we can estimate the evidence using Monte Carlo methods.
m As a starter, we can consider

1 i
mly | M)~ 5 3wy | 6. M)
i=1
where Hl(f) for i € {1,..., N} are drawn i.i.d. from the prior
(0 | My).
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Estimation of the evidence

m How is this going to perform when the likelihood is peaky
compared to the prior?

m We can design a proposal distribution ¢ (e.g. using an
approximate posterior sample), and consider

1 Q70" | M)y |60, My)
Ty | Mp)~ = Eaa
Nz:l Q(el(g))

where 9,(:) for i € {1,..., N} are drawn i.i.d. from q.

m This is an importance sampling strategy; the optimal
distribution is proportional to the integrand, hence it is the
posterior distribution itself.
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Estimation of the evidence

m An approximate posterior sample, produced e.g. by
MCMC, could thus be useful to estimate the evidence?

13 77

m Typically we cannot evaluate the corresponding “q
m Can we write the normalizing constant as an integral with
respect to the posterior?

/@0 m(0 | y)do = n(y)

for some choice ¢? (dropping the index k for simplicity)
m Some people have proposed to use the following reasoning:

[ e@m(e 15)d0 = x(5)™" [ Oy | O)m(e)as

thus if p(0) = 1/7(y | #) we have
/so (0| y)do = m(y)~".
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Estimation of the evidence

m This leads to the monster
N .
()~ > omly | 09)

where 60 for i € {1,..., N} are approximating the
posterior.

m By the law of large numbers, this is consistent when
N — oo. Thus

1 X , -
m(y) ~ (N > wly | 9(’))‘1)

i=1

is a consistent estimator too.

m What’s wrong with it?
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Toy example

m Consider a prior
m(6) = N(6;0,0%),
and a likelihood

n(y | 0) = N (6:0,1).

m For 02 =1 and 02 = 10%, we estimate Z using importance
sampling from the prior and the harmonic mean estimator.

m We plot the obtained estimators as a function of the
number of samples, to monitor convergence.
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Numerical experiment
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Figure: Normal model, prior variance = 1, likelihood variance = 1.
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Numerical experime
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Figure: Normal model, prior variance = 102, likelihood variance = 1.
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Estimation of the evidence

m We can also use rejection sampling to estimate the
evidence.

m If we sample from ¢ to target w, accept if
i < 7E(Xi)
Mq(X;)
where U; is uniform and X; ~ q.
m Then the probability of accepting a sample satisfies
1 Z

M z.M

P (X accepted) =

m On the toy example, sample from the prior and use M=1.
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Numerical experiment
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Figure: Normal model, prior variance = 1, likelihood variance = 1.
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Numerical experiment
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Figure: Normal model, prior variance = 102, likelihood variance = 1.
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Estimation of the evidence

m Beyond those basic schemes, estimating the normalizing
constant is an active area of research.

m Skilling. “Nested sampling.” Bayesian inference and
maximum entropy methods in science and engineering 735

(2004): 395-405.

m Gelman and Meng. “Simulating normalizing constants:
From importance sampling to bridge sampling to path
sampling.” Statistical science (1998): 163-185.

m Del Moral, Doucet and Jasra. ”Sequential monte carlo
samplers.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 68.3 (2006): 411-436.
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Slice Sampling!

Aside from classroom presentation, this is left as an opportunity
for students to read well written paper:

Radford M. Neal “Slice sampling.” The Annals of Statistics,
Vol. 31, No. 3, 705-767 (2003).

1522 citations, and counting...
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