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Introduction

Traditionally, STATISTICS is taught via asymptotic results, for n→∞:

I Law of Large Numbers
I Central Limit Theorem, yielding

Confidence bounds
Hypothesis testing

In this course we have developed non-asymptotic results, for n <∞:

I Uniform Law of Large Numbers
⇒ Notions of complexity to bound generaliz. error of ERM algorithm

I Confidence bounds
⇒ Analysis of algorithms (upper bounds with high-probability)
⇒ Design of algorithms (UCB)

I Hypothesis testing (Today’s lecture)
⇒ Lower bounds holding for any algorithm

STATISTICS lays the foundation of ALGORITHMS for machine learning
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Hypothesis Testing and Lower Bounds

I Data: random variable X ∈ X
I Hypotheses:

X ∼ P (null hypothesis H0)
X ∼ Q (alternative hypothesis H1)

I Test: any function f : X → {0, 1}
I Errors:

Type I: if f(X) = 1 when X ∼ P
Type II: if f(X) = 0 when X ∼ Q

Any test commits one type of error with strictly positive probability unless P
and Q have disjoin support under the reference measure ρ

Neyman Pearson (Lemma 16.1)

For any function f : X → {0, 1} we have

P(f(X) = 1) + Q(f(X) = 0) ≥
∫
ρ(dx) min{p(x), q(x)}

and the equality is achieved by the Likelihood Ratio Test f? := 1q≥p
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Proof of Lemma 16.1
I First of all, we prove the equality for the Likelihood Ratio Test:

P(f?(X) = 1) +Q(f?(X) = 0) =

∫
q≥p

ρ(dx)p(x) +

∫
q<p

ρ(dx)q(x)

=

∫
q≥p

ρ(dx)min{p(x), q(x)}+
∫
q<p

ρ(dx)min{p(x), q(x)}

=

∫
ρ(dx)min{p(x), q(x)}

I For a test f , let R = {f = 1} ≡ {x ∈ X : f(x) = 1}, R? = {f? = 1} = {q ≥ p}

P(f(X) = 1) +Q(f(X) = 0) = 1+P(R)−Q(R) = 1+

∫
R

ρ(dx)(p(x)−q(x))

= 1 +

∫
R∩R?

ρ(dx)(p(x)− q(x)) +
∫
R∩(R?)C

ρ(dx)(p(x)− q(x))

= 1−
∫
R∩R?

ρ(dx)|p(x)− q(x)|+
∫
R∩(R?)C

ρ(dx)|p(x)− q(x)|

= 1 +

∫
ρ(dx)|p(x)− q(x)|(1R∩(R?)C(x)− 1R∩R?(x))

I The inequality in the statement of the lemma follows as the right-hand side of the
previous identity is minimized by the choice R = R? (so that the function
1R∩(R?)C − 1R∩R? is negative −1R?), which corresponds to the choice f = f?
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Total Variation Distance

Neyman Pearson Lemma:
I No matter how we choose the decision rule f , we can not make a decision

with probability of error on either P or Q smaller than
∫
ρ(dx) min{p(x), q(x)}

I Structural limitation of what we can hope to achieve statistically based on
the “amount of information” in the problem

I The greater the overlap between P and Q, the more difficult the problem is
I There is a notion of distance behind the scenes...

Total variation distance (Definition 16.2)

‖P−Q‖tv = sup
E
|P(E)−Q(E)|

=
1

2

∫
ρ(dx)|p(x)− q(x)|

= 1−
∫
ρ(dx) min{p(x), q(x)}

To prove lower bounds on sum of errors, enough to upper bound ‖P−Q‖tv
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Kullback-Leibler Divergence

I In statistics, often data is X1, . . . , Xn i.i.d. (P=
⊗n

i=1 Pi and Q=
⊗n

i=1 Qi)
I The total variation distance does not factorize under product measures
I The Kullback-Leibler divergence (not a distance!) does factorize instead

Kullback-Leibler divergence (Definition 16.3)

KL(P,Q) =

{∫
ρ(dx)p(x) log p(x)

q(x) if P� Q

+∞ otherwise

Properties of Kullback-Leibler divergence (Proposition 16.4)

1. Gibbs’ inequality: KL(P,Q) ≥ 0 with equality if and only if P = Q

2. Chain rule for product measures: KL(P,Q) =

n∑
i=1

KL(Pi,Qi)

3. Pinsker’s inequality: ‖P−Q‖tv ≤
√

1

2
KL(P,Q)
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Lower Bound with Independent Samples

Corollary 16.6

I Data: Let X1, . . . , Xn ∈ X
I Hypotheses: P (null H0) or Q (alternative H1)

I Test: f : Xn → {0, 1}

P(f(X1, . . . , Xn) = 1) + Q(f(X1, . . . , Xn) = 0) ≥ 1−
√

1

2
KL(P,Q)

If X1, . . . , Xn are independent, then

P(f(X1, . . . , Xn) = 1) + Q(f(X1, . . . , Xn) = 0) ≥ 1−

√√√√1

2

n∑
i=1

KL(Pi,Qi)

I “Amount of information”: Function of n and KL(Pi,Qi), i ∈ [n]
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Back to the Multi-Armed Bandit Problem

At every time step t = 1, 2, . . . , n:

1. Choose an action At ∈ A
2. A data point Zt is sampled independently from an unknown distribution

Bandit: Zt is not revealed

3. Suffer a loss `(At, Zt) = −Zt,At

Vectors Zt’s are indep., but observed data (A1, Z1,A1), ..., (An, Zn,An) are not!

Proposition 16.8

I Two bandit models (µ and ν): rewards for arm a either Pµ,a or Pν,a
I Fix an algorithm A1, . . . , An
I Pµ and Pν probab. each model assigns to (A1, Z1,A1

), ..., (An, Zn,An
)

KL(Pµ,Pν) =

k∑
a=1

KL(Pµ,a,Pν,a)EµNn,a
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Distribution-Independent Lower Bound

Theorem 16.7

Let n ≥ k − 1. For any algorithm there exists a k-armed bandit problem with

ERn ≥ c
√

(k − 1)n

where c is a universal constant

I UCB achieves quasi-optimal distribution-independent pseudo-regret.

I Using similar ideas (but more involved), one can prove that UCB achieves
optimal distribution-dependent pseudo-regret.

I Ideas can be generalized to multiple hypothesis testing...

Fano’s Inequality (Theorem 16.10)

Let P1, . . . ,Pm be probability measures such that Pµ � Pν for any µ, ν ∈ [m]

inf
f

max
µ∈[m]

Pµ(f(X) 6= µ) ≥ 1−
1
m2

∑m
µ,ν=1 KL(Pµ,Pν) + log 2

log(m− 1)
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Proof of Theorem 16.7 (Part I)

I Fix any algorithm/policy A1, . . . , An.

I We will construct two bandit problems with Bernoulli mean reward vectors
given by µ and ν, respectively, and corresponding pseudo-regrets defined as

(Rµ)n = nµ? −
n∑
t=1

µAt
(Rν)n = nν? −

n∑
t=1

νAt

where µ? := argmaxi∈[k] µi and ν? := argmaxi∈[k] νi.

I We will prove that in at least one of these two problems the policy attains
an expected pseudo-regret that is lower-bounded as in the theorem:

max{Eµ(Rµ)n,Eν(Rν)n} ≥
1

2
(Eµ(Rµ)n + Eν(Rν)n) ≥ c

√
(k − 1)n,

where the first inequality follows from x+ y ≤ 2 max{x, y} and the second
inequality follows from Corollary 16.6, as we will see.
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Proof of Theorem 16.7 (Part II)

I First bandit problem (for a fix ∆ ∈ (0, 1/4)):

µ =

(
1

2
+ ∆,

1

2
, . . . ,

1

2

)

I To define the second bandit problem, find the sub-optimal arm that is
played the least (in expectation) by our algorithm in the first problem:

b = argmin
a∈{2,...,k}

EµNn,a

I Second bandit problem:

ν =

(
1

2
+ ∆,

1

2
, . . . ,

1

2
,

1

2
+ 2∆,

1

2
, . . . ,

1

2

)
In this model, arm b is optimal with mean reward 1

2 + 2∆
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Proof of Theorem 16.7 (Part III)

I By the law of total expectations we have

Eµ(Rµ)n = Eµ

[
(Rµ)n

∣∣∣∣Nn,1 ≤ n

2

]
Pµ

(
Nn,1 ≤

n

2

)
+ Eµ

[
(Rµ)n

∣∣∣∣Nn,1 > n

2

]
Pµ

(
Nn,1 >

n

2

)
≥ Eµ

[
(Rµ)n

∣∣∣∣Nn,1 ≤ n

2

]
Pµ

(
Nn,1 ≤

n

2

)
≥ ∆n

2
Pµ

(
Nn,1 ≤

n

2

)
where the last inequality follows by the fact that the event Nn,1 ≤ n/2 is
equivalent to the event that an arm different than 1 (sub-optimal for the
bandit model µ) is played at least n/2 times, and each times this happens
we are adding a ∆ term to the pseudo-regret for model µ.

I Analogously, we find

Eν(Rν)n >
∆n

2
Pν

(
Nn,1 >

n

2

)
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Proof of Theorem 16.7 (Part IV)

I By the Neyman Pearson Lemma and Pinsker’s inequality, we find

Eµ(Rµ)n + Eν(Rν)n >
∆n

2

(
Pµ

(
Nn,1 ≤

n

2

)
+ Pν

(
Nn,1 >

n

2

))
≥ ∆n

2

(
1−

√
1

2
KL(Pµ,Pν)

)
I Proposition 16.8 yields

KL(Pµ,Pν) =

k∑
a=1

KL(Bern(µa),Bern(νa))EµNn,a

= KL(Bern(1/2),Bern(1/2 + 2∆))EµNn,b

I As
∑
a∈[k] EµNn,a = n and by definition of b we have EµNn,b ≤ n

k−1

I Using that − log(1− x) ≤ 2x for any 0 ≤ x ≤ 1/2, we have

KL(Bern(1/2),Bern(1/2 + 2∆)) =
1

2
log

1/2

1/2− 2∆
+

1

2
log

1/2

1/2 + 2∆

=
1

2
log

1/4

1/4− 4∆2
= −1

2
log(1− 16∆2) ≤ 16∆2
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Proof of Theorem 16.7 (Part V)

I Hence, KL(Pµ,Pν) ≤ 16∆2n
k−1 and

Eµ(Rµ)n + Eν(Rν)n ≥
∆n

2

(
1−

√
8∆2n

k − 1

)

I The proof follows by taking the maximum of the right-hand side of this

inequality with respect to ∆, which yields ∆? = 1
4

√
k−1
2n and

∆?n

2

(
1−

√
8(∆?)2n

k − 1

)
= c
√

(k − 1)n

with c = 1
16
√

2
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“New science is based on maximum
likelihood rather than certainty”

Arthur C. Clarke and Gentry Lee, Rama Series Book 2, 1989
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