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Convex Recovery: Lasso Estimator

I Problem: W 0 := argmin
w:‖w‖0≤k

1

2n
‖xw − Y ‖22 is not a convex program

I The set {w ∈ Rd : ‖w‖0 ≤ k} is not convex

I Idea: Use ‖w‖1 ≤ k instead, i.e.,

W 1 := argmin
w:‖w‖1≤k

1

2n
‖xw − Y ‖22 ?

I This works, but we look at penalized estimators instead

I Equivalent (in theory!) form of regularization: constrained vs. penalized

I For a given λ > 0 (to be tuned):

W p1 := argmin
w∈Rd

R(w) + λ‖w‖1

I Lasso estimator: R(w) = 1
2n‖xw − Y ‖

2
2
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Convex Recovery. Restricted Strong Convexity

Algorithm: W p1 := argmin
w∈Rd

R(w) + λ‖w‖1

Restricted strong convexity (Assumption 13.1)

I Function R convex and differentiable

I S = supp(w?) := {i ∈ [d] : w?i 6= 0}
I Cone set: C := {w ∈ Rd : ‖wSC‖1 ≤ 3‖wS‖1} (this is NOT convex!)

There exists α > 0 such that for any vector w ∈ C we have

R(w? + w) ≥ R(w?) + 〈∇R(w?), w〉+ α‖w‖22

Analogue of restricted eigenvalues assumption for `0 recovery:

I If R(w) = 1
2n‖xw − Y ‖

2
2 then ∇R(w) = 1

nx
>(xw − Y )

I As Y = xw? + σξ, then, for any w ∈ C,
1

2n
‖xw‖22 ≥ α‖w‖22
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Convex Recovery. Statistical Guarantees

Statistical Guarantees Convex Recovery (Theorem 13.4)

If the restricted strong convexity assumption holds and λ ≥ 2‖∇R(w?)‖∞, then

‖W p1 − w?‖2 ≤
3

2

λ
√
‖w?‖0
α

If R(w) = 1
2n‖xw − Y ‖

2
2 then ‖∇R(w?)‖∞ =

σ

n
‖x>ξ‖∞

I If λ = 2‖∇R(w?)‖∞, then ‖W p1 − w?‖2 ≤ 3
σ
√
‖w?‖0
α

‖x>ξ‖∞
n

I If k = ‖w?‖0, then ‖W 0 − w?‖2 ≤
√

2
σ
√
‖w?‖0
α

‖x>ξ‖∞
n

Same statistical rates (modulo constants). Advantages:

I Convex program! (once again a convex relaxation does not hurt...)

I No need to know sparsity level k (or upper bounds for k)
But we need to known noise level σ (or upper bounds for σ)

Same bounds in expectation and in probability
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Proof of Theorem 13.4 (Part I)

Let ∆ = W p1 − w?.

I Part 1: Prove that ∆ ∈ C. By convexity of R we have

0 ≤ R(W p1)−R(w?)− 〈∇R(w?),∆〉 (1)

= R(W p1) + λ‖W p1‖1 − λ‖W p1‖1 −R(w?)− 〈∇R(w?),∆〉
≤ λ‖w?‖1 − λ‖w? + ∆‖1 − 〈∇R(w?),∆〉,

where, by the definition of W p1, R(W p1) + λ‖W p1‖1 ≤ R(w?) + λ‖w?‖1.

I By Hölder’s inequality and the fact that the `1 norm decomposes so that
‖w? + ∆‖1 = ‖w?S + ∆S‖1 + ‖w?SC + ∆SC‖1, and w?SC = 0, we get

0 ≤ λ‖w?‖1 − λ‖w?S + ∆S‖1 − λ‖∆SC‖1 + ‖∇R(w?)‖∞‖∆‖1

I Using the assumption ‖∇R(w?)‖∞ ≤ λ
2 and the fact that the reverse

triangle inequality yields ‖w?S‖1 − ‖∆S‖1 ≤ ‖w?S + ∆S‖1, we get

0 ≤ λ‖∆S‖1 − λ‖∆SC‖1 +
λ

2
‖∆‖1 =

3λ

2
‖∆S‖1 −

λ

2
‖∆SC‖1. (2)

Rearranging this expression we obtain 3‖∆S‖1 ≥ ‖∆SC‖1, so ∆ ∈ C.
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Proof of Theorem 13.4 (Part I)

I Part 2: Prove the inequality. As ∆ ∈ C, we can apply the restricted
strong convexity assumption, Assumption 13.1, with w = ∆ and we get

α‖∆‖22 ≤ R(W p1)−R(w?)− 〈∇R(w?),∆〉,

which is analogous to (1) with 0 replaced by α‖∆‖22.

I Following the exact same steps as in Part 1, (2) now becomes

α‖∆‖22 ≤
3λ

2
‖∆S‖1 −

λ

2
‖∆SC‖1.

I This yields, by the Cauchy-Schwarz’s inequality,

α‖∆‖22 ≤
3λ

2
‖∆S‖1 =

3λ

2
〈sign(∆S),∆S〉 ≤

3λ

2

√
‖w?‖0‖∆S‖2

≤ 3λ

2

√
‖w?‖0‖∆‖2,

where we used that the cardinality of S is equal to ‖w?‖0, and that the `2
norm of a vector can only increase if we add non-zero coordinates.
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Restricted Strong Convexity: Sufficient Conditions

In general, checking if restricted strong convexity holds is NP hard

Tractable Sufficient Conditions for RSC (Proposition 13.5)

I For a matrix M , let ‖M‖ := maxi,j |Mij |
I Let R(w) = 1

2n‖xw − Y ‖
2
2

I

∥∥∥x>x
n
− I
∥∥∥ ≤ 1

32‖w?‖0
(Incoherence parameter: ‖x

>x
n − I‖)

Then, restricted strong convexity holds with α = 1
4 : 1

2n‖xw‖
2
2 ≥

‖w‖22
4 ∀w ∈ C

Random Ensembles (Proposition 13.6)

Let X ∈ Rn×d with i.i.d. Rademacher r.v.’s. If n ≥ 2048τ‖w?‖20 log d, τ ≥ 2,

P
(∥∥∥X>X

n
− I
∥∥∥ < 1

32‖w?‖0

)
≥ 1− 2

dτ−2

Note that n is compared against log d, which is what we want for n� d
6/11



Proof of Proposition 13.5

I Let w ∈ C. We have

1

2n
‖xw‖22 =

1

2n
w>x>xw =

1

2
w>(c− I)w +

‖w‖22
2

.

I Recall that Hölder’s inequality gives |a>b| ≤ ‖a‖1‖b‖∞, or equivalently,
−‖a‖1‖b‖∞ ≤ a>b ≤ ‖a‖1‖b‖∞. Applying the lower bound we get,

1

2n
‖xw‖22 ≥

‖w‖22
2
− ‖w‖1

2
‖(c− I)w‖∞ ≥

‖w‖22
2
− ‖w‖

2
1

2
‖c− I‖.

I As w ∈ C, ‖wSC‖1 ≤ 3‖wS‖1 and S = supp(w?) := {i ∈ [d] : w?i 6= 0}, by
the Cauchy-Schwarz’s inequality we have

‖w‖1 = ‖wS‖1 + ‖wSC‖1 ≤ 4‖wS‖1 = 4〈sign(wS), wS〉

≤ 4
√
‖w?‖0‖wS‖2 ≤ 4

√
‖w?‖0‖w‖2

I Hence, using the assumption of the proposition, we get

1

2n
‖xw‖22 ≥

‖w‖22
2
− 8‖w?‖0‖w‖22‖c− I‖ ≥

‖w‖22
2
− ‖w‖

2
2

4
=
‖w‖22

4
.
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Phase Transitions

Fundamental limitation: n & ‖w?‖0 log d

From the book “Statistical Learning with Sparsity The Lasso and Generalizations” by Hastie, Tibshirani, Wainwright

Phase transition (plot of ‖w
?‖0
n versus n

d ; red = DIFFICULT, blue = EASY)
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Computing the Lasso? Proximal Gradient Methods

Lasso estimator: argmin
w∈Rd

1

2n
‖xw − Y ‖22 + λ‖w‖1

I General structure:
argmin
x∈Rd

h(x) := f(x) + g(x)

where f : Rd → R is convex and β-smooth, and g : Rd → R

I Smoothness yields natural algorithm:

h(y) ≤ g(y) + f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖22

argmin
y∈Rd

{
g(y)+f(x)+∇f(x)>(y−x)+

β

2
‖y−x‖22

}
= Proxg/β

(
x− 1

β
∇f(x)

)
I Proximal operator associated to κ : Rd → R:

Proxκ(x) := argmin
y∈Rd

{
κ(y) +

1

2
‖y − x‖22

}
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Proximal Gradient Methods

Proximal Gradient Method

xs+1 = Proxηsg(xs − ηs∇f(xs))

Proximal Gradient Methods (Theorem 13.8)

I Let f be convex and β-smooth

I Let g be convex

I Assume ‖x1 − x?‖2 ≤ b
Then, the proximal gradient to minimize h = f + g with ηs ≡ η = 1/β satisfies

h(xt)− h(x?) ≤ βb2

2(t− 1)

I O(1/t) better than O(1/
√
t) of subgradient descent for non-smooth func.

I Reason: Beyond first order oracle (need global info on g to have Proxηsg)

I Can be accelerated to O(1/t2)
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Proximal Gradient Methods for the Lasso: ISTA

Compute Prox? It reduces to d one-dim. problems if κ is decomposable:

Proxκ(x) := argmin
y∈Rd

{ d∑
i=1

κi(yi) +
1

2

d∑
i=1

(yi − xi)2
}

=

Proxκ1
(x1)

...
Proxκd

(xd)


For the Lasso:

ι(w; θ) := Proxθ| · |(w) = argmin
y∈R

{
θ|y|+1

2
(y−w)2

}
=


w − θ if w > θ

0 if − θ ≤ w ≤ θ
w + θ if w < −θ

Iterative Shrinkage-Thresholding Algorithm (ISTA)

Ws+1 = ι

(
Ws −

ηs
n
x>(xWs − Y );ληs

)
R is β-smooth, β = µmax(

1
nx
>x), but not strongly convex as µmin(

1
nx
>x) = 0

Proximal Gradient Methods (Theorem 13.8)

R(Wt) + λ‖Wt‖1 − (R(W p1) + λ‖W p1‖1) ≤ β ‖W1 −W p1‖22
2(t− 1)
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