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Convex Recovery: Lasso Estimator

o1 .
» Problem: WO .= argmin — ||xw — Y||3| is not a convex program
wilwlo<k 21

» The set {w € R?: |[w|o < k} is not convex
> ldea: Use ||w||; < k instead, i.e.,

?

!
W= argmin —||xw — Y3 .
wil|wl]|1 <k 2T
» This works, but we look at penalized estimators instead
» Equivalent (in theory!) form of regularization: constrained vs. penalized
» For a given A > 0 (to be tuned):

WP = argmin R(w) + A|lw||;

weRd

> Lasso estimator: R(w) = 5-|xw — Y3



Convex Recovery. Restricted Strong Convexity

Algorithm:

\

WPl = argmin R(w) 4+ \||w||1
weR?

Restricted strong convexity (Assumption 13.1)

» Function R convex and differentiable
> S = supp(w*) :={i € [d] : w} # 0}
» Cone set: C := {w € R?: ||wgc||; < 3||ws|j1} (this is NOT convex!)

There exists « > 0 such that for any vector w € C we have

R(w* +w) > R(w*) + (VR(w*),w) + allw|3

Analogue of restricted eigenvalues assumption for £y recovery:

> If R(w) = 5-||xw — Y||3 then VR(w) = 1xT (xw - Y)

1
> AsY = xw* + o€, then, for any w € C, | — ||xw]|3 > al|w]|3

2n




Convex Recovery. Statistical Guarantees

Statistical Guarantees Convex Recovery (Theorem 13.4)

If the restricted strong convexity assumption holds and A > 2||VR(w* )|/, then

3 A/ ||w*
||WP1 _ w*”Q < 5 ||C1:) ”0

* g
If R(w) = 5 [lxw — Y3 then | | VR(w")[|o = EIIXTflloo

> If A = 2||[VR(w")||oo, then WPt — ¥l < 3T o e Clee
> If k = ||w*]o, then [WO — w*|lg < V220 lZU*HD HXTfHOO

Same statistical rates (modulo constants). Advantages:
» Convex program! (once again a convex relaxation does not hurt...)
» No need to know sparsity level &k (or upper bounds for k)
But we need to known noise level o (or upper bounds for o)

Same bounds in expectation and in probability



Proof of Theorem 13.4 (Part I)
Let A = WPl — w*.
» Part 1: Prove that A € C. By convexity of R we have
0 < RWPY) — R(w*) — (VR(w"), A) (1)

= ROWP) + A[WPH|y = X[WP 1 = R(w*) = (VR(w*), A)
S Awfly = Alw™ + Ally = (VE(w?), A),

where, by the definition of WP!, R(WPL) + X\||[WPL||; < R(w*) + Aljw*||;.
» By Holder’s inequality and the fact that the ¢; norm decomposes so that
[w* + Ally = [[wg + Aslli + [[wic + Agell1, and wic = 0, we get
0 < Alw™fly = Mlwg + Aslly = Al Asclls + [VR(w) || [[Ally

» Using the assumption ||V R(w*)||o < 2 and the fact that the reverse

2
triangle inequality yields ||w}|j1 — [|As|1 < [|wk + Ag|l1, we get

A 3\ A
0 < AlAslly = MAgells + SlAlIL = FAs ] = Sl Asc]s. (2)

Rearranging this expression we obtain 3||Agll; > ||Agcll1, so A € C.



Proof of Theorem 13.4 (Part I)

» Part 2: Prove the inequality. As A € C, we can apply the restricted
strong convexity assumption, Assumption 13.1, with w = A and we get

all Al < ROW™) = R(w*) — (VR(w"), &),
which is analogous to (1) with 0 replaced by a||Al[3.

> Following the exact same steps as in Part 1, (2) now becomes

A

allAll <

3\ A
7IIA5H1 - §||ASCH1-

» This yields, by the Cauchy-Schwarz's inequality,

A

3\ ) 3\
allAl < 5 1Aslly = <-(sign(As), As) < = Vllw*fof Asll2
3\
5 ViwtlollAlz,

where we used that the cardinality of S is equal to ||w*||o, and that the /5
norm of a vector can only increase if we add non-zero coordinates.

IN




Restricted Strong Convexity: Sufficient Conditions

In general, checking if restricted strong convexity holds is NP hard

> For a matrix M, let || M| := max; ; |M;;]|
> Let R(w) = 5 |lxw — V|3
T
1
> HX x_ IH < (Incoherence parameter: ||"TTx — 1)

n — 32||w*lo

2
Then, restricted strong convexity holds with o = 1: L ||xwl|3 > “u;HQ Yw e C

Let X € R"*4 with i.i.d. Rademacher r.v.’s. If n > 20487||w*||3logd, T > 2,

XTX
P51l
n

- 1 ) > 1 2
32)|lwlo/ = 472

Note that n is compared against log d, which is what we want for n < d



Proof of Proposition 13.5

> Let w € C. We have

1 1 1 Jwll3
%waﬂg = %wawa = §wT(c —Dw+ Tz

» Recall that Holder's inequality gives |a " b| < ||a||1]|b||so, or equivalently,
—llall1lblls < a"b < |lall1]|b]ls- Applying the lower bound we get,
w3 Jlwli

le = 1]].

2
w w

L ]2 >
— || XW
omn 2= 9 2 D) 2

> Asw € C, ||lwgc|l1 < 3|jwglly and S = supp(w*) := {i € [d] : w} # 0}, by
the Cauchy-Schwarz's inequality we have

[l = lwsll + l[wselly < 4llws[ly = 4(sign(ws), ws)

<4y |lwollwsllz < 4v/[lw*oflwl2

» Hence, using the assumption of the proposition, we get

1 lwl3 [wl _ Jwl3 _ [lwl3
o Pxwls > 2572 = 8llw*folwll3]le - 1] > 52 = 72 = T




Phase Transitions

Fundamental limitation: ‘n > ||w*||010gd‘
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From the book “Statistical Learning with Sparsity The Lasso and Generalizations” by Hastie, Tibshirani, Wainwright

Phase transition (plot of “1lo versus 2; red = DIFFICULT, blue = EASY)



Computing the Lasso? Proximal Gradient Methods

1
Lasso estimator: argmin — ||xw — Y3 + AJw]|;
weRd 2n

» General structure:

argmin h(z) := f(z) + g(x)
z€R4

where f: RY — R is convex and B-smooth, and g : R? = R

» Smoothness yields natural algorithm:

M(y) < gl) + F(@) + V@) Ty~ )+ Sy — 213

1
anganin { o)+ /(0)+910) (=245 Iyl } = Prony a0 3
yeRd

Vi)

» Proximal operator associated to x : R¢ — R:

. 1
Prox,(z) := argmin {n(y) + 5l - x||§}
yER? :




P

roximal Gradient Methods

Proximal Gradient Method

~

|$s+1 = PrOang(xs - nsvf(ms)) |

~

Proximal Gradient Methods (Theorem 13.8)

» Let f be convex and S-smooth
> Let g be convex
> Assume |lz; — 2*||2 < b

Then, the proximal gradient to minimize h = f + g with n, = n = 1/ satisfies

gy
2t —1)

() = h(z7) <

» O(1/t) better than O(1/+/t) of subgradient descent for non-smooth func.
> Reason: Beyond first order oracle (need global info on g to have Prox,,_,)
» Can be accelerated to O(1/t?)



Proximal Gradient Methods for the Lasso: ISTA

Compute Prox? It reduces to d one-dim. problems if x is decomposable:

Prox,, (z1)

Prox,(x) := argmin { Z Z(yl — QL‘Z)Q} = :
e = Prox,,(a)
For the Lasso: .
L w—60 ifw>40
t(w; 0) == Proxy,. |(w) = ar;ger%in {9|y|—|—§(y—w)2} =<0 if —0<w<4

w+60 fw< -0

Iterative Shrinkage-Thresholding Algorithm (ISTA)

Wep1 = L<W — %x (xWs =Y); )\ns>

R is B-smooth, 8 = ,umax(%xTx), but not strongly convex as ,umin(%xTx) =0

Proximal Gradient Methods (Theorem 13.8)

W1 — W3

R(W:) + AlWelly = (ROV?) + W) < 6= 50—




