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Recall. Offline Statistical Learning: Prediction

Offline learning: prediction
Given a batch of observations (images & labels)
interested in predicting the label of a new image
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Recall. Offline Statistical Learning: Prediction

1. Observe training data Z1, . . . , Zn i.i.d. from unknown distribution

2. Choose action A ∈ A ⊆ B
3. Suffer an expected/population loss/risk r(A), where

a ∈ B −→ r(a) := E `(a, Z)

with ` is an prediction loss function and Z is a new test data point

Goal: Minimize the estimation error defined by the following decomposition

r(A)− inf
a∈B

r(a)︸ ︷︷ ︸
excess risk

= r(A)− inf
a∈A

r(a)︸ ︷︷ ︸
estimation error

+ inf
a∈A

r(a)− inf
a∈B

r(a)︸ ︷︷ ︸
approximation error

as a function of n and notions of “complexity” of the set A of the function `

Note: Estimation/Approximation trade-off, a.k.a. complexity/bias
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Offline Statistical Learning: Estimation

Offline learning: estimation
Given a batch of observations (users & ratings)
interested in estimating the missing ratings in a recommendation system
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Offline Statistical Learning: Estimation

1. Observe training data Z1, . . . , Zn i.i.d. from distr. parametrized by a? ∈ A
2. Choose a parameter A ∈ A
3. Suffer a loss `(A, a?) where ` is an estimation loss function

Goal: Minimize the estimation loss `(A, a?) as a function of n and notions of
“complexity” of the set A of the function `

Main differences:

I No test data (i.e., no population risk r).
Only training data

I Underlying distribution is not completely unknown
We consider a parametric model

Remark: We could also consider prediction losses with a new test data...
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Supervised Learning. High-Dimensional Estimation

1. Observe training data Z1 = (x1, Y1), . . . , Zn = (xn, Yn) ∈ Rd × R i.i.d.
from distr. parametrized by w? ∈ Rd:

Yi = 〈xi, w?〉+ σξi i ∈ [n]

Y = xw? + σξ (data in matrix form: Y ∈ Rn and x ∈ Rn×d)

2. Choose a parameter W ∈ W
3. Goal: Minimize loss `(W,w?) = ‖W − w?‖2

High-dimensional setting: n < d (dimension greater than no. of data)

Assumptions (otherwise problem is ill-posed):

I Sparsity: ‖w?‖0 :=
∑d
i=1 1|w?i |>0 ≤ k

I Low-rank: Rank(w?) ≤ k, when w? can be thought of as a matrix
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Non-Convex Estimator. Restricted Eigenvalue Condition

Assume that we know k, the upper bound on the sparsity (‖w?‖0 ≤ k)

Algorithm: W 0 := argmin
w:‖w‖0≤k

1

2n
‖xw − Y ‖22

Restricted eigenvalues (Assumption 12.2)

There exists α > 0 such that for any vector w ∈ Rd with ‖w‖0 ≤ 2k we have

1

2n
‖xw‖22 ≥ α‖w‖22

Statistical Guarantees `0 Recovery (Theorem 12.5)

If the restricted eigenvalue assumption holds, then

‖W 0 − w?‖2 ≤
√

2
σ
√
k

α

‖x>ξ‖∞
n
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Proof of Theorem 12.5

I Let ∆ = W 0 − w?. By the definition of W 0, we have

‖x∆− σξ‖22 = ‖xW 0 − Y ‖22 ≤ ‖xw? − Y ‖22 = ‖σξ‖22

so that, expanding the square, we find the basic inequality:

‖x∆‖22 ≤ 2σ〈x∆, ξ〉

I The restricted eigenvalue assumption yields, noticing that ‖∆‖0 ≤ 2k:

α‖∆‖22 ≤
1

2n
‖x∆‖22 ≤

σ

n
〈x∆, ξ〉 =

σ

n
〈∆,x>ξ〉 ≤ σ

n
‖∆‖1‖x>ξ‖∞

where the last inequality follows from Hölder’s inequality.

I The proof follows by applying the Cauchy-Swartz’s inequality:

‖∆‖1 = 〈sign(∆),∆〉 ≤ ‖ sign(∆)‖2‖∆‖2 ≤
√

2k‖∆‖2

7/12



Bounds in Expectation. Gaussian Complexity

Recall: ‖W 0 − w?‖2 ≤
√

2
σ
√
k

α

‖x>ξ‖∞
n

Gaussian complexity (Definition 12.6)

The Gaussian complexity of a set T ⊆ Rn is defined as

Gauss(T ) := E sup
t∈T

1

n

n∑
i=1

ξiti

where ξ1, . . . , ξn are i.i.d. standard Gaussian random variables

I A1 := {x ∈ Rd → 〈u, x〉 ∈ R : u ∈ Rd, ‖u‖1 ≤ 1}

Bounds in Expectation (Corollary 12.7)

E
‖x>ξ‖∞

n
= Gauss(A1 ◦ {x1, . . . , xn})
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Proof of Corollary 12.7

I The `∞ norm is the dual of the `1 norm: ‖x>ξ‖∞ = supu∈Rd:‖u‖1≤1〈xu, ξ〉

Hölder’s inequality yields 〈xu, ξ〉 = 〈u,x>ξ〉 ≤ ‖u‖1‖x>ξ‖∞ for any u, so

‖x>ξ‖∞ ≥ sup
u∈Rd:‖u‖1≤1

〈xu, ξ〉

On the other hand, note that the choice u = ej , j ∈ [d], satisfies ‖u‖1 = 1
and yields 〈xej , ξ〉 = 〈ej ,x>ξ〉 = (x>ξ)j , so that the inequality is achieved
by at least one of the vectors ej , j ∈ [d].

I We have

〈xu, ξ〉 =

n∑
i=1

(xu)iξi =

n∑
i=1

〈u, xi〉ξi

so

1

n
E‖x>ξ‖∞ = E sup

u∈Rd:‖u‖1≤1

1

n

n∑
i=1

ξi〈u, xi〉 = Gauss(A1 ◦ {x1, . . . , xn})
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Bounds in Probability. Gaussian Concentration

Recall: ‖W 0 − w?‖2 ≤
√

2
σ
√
k

α

‖x>ξ‖∞
n

Column normalization (Assumption 12.8)

cjj =

(
x>x

n

)
jj

=
1

n

n∑
i=1

x2ij ≤ 1

Bounds in Probability (Corollary 12.9)

If the column normalization assumption holds, then

P

(
‖x>ξ‖∞

n
<

√
τ log d

n

)
≥ 1− 2

dτ/2−1
.
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Proof of Corollary 12.9 (Part I)

I Let V = x>ξ√
n
∈ Rd. As each coordinate Vi is a linear combination of

Gaussian random variables, V is a Gaussian random vector with mean

EV =
1√
n
x>Eξ = 0

and covariance matrix given by

E[V V >] =
1

n
E[x>ξξ>x] =

1

n
x>E[ξξ>]x =

x>x

n
= c

as ξ is made of independent standard Gaussian components, so E[ξξ>] = I

I That is, V ∼ N (0, c) and, in particular, the i-th component has
distribution Vi ∼ N (0, cii). By the union bound

P

(
‖x>ξ‖∞√

n
≥ ε
)

= P(‖V ‖∞ ≥ ε) = P

(
max
i∈[n]
|Vi| ≥ ε

)
= P

( d⋃
i=1

{|Vi| ≥ ε}
)
≤

d∑
i=1

P(|Vi| ≥ ε) ≤ dmax
i∈[d]

P(|Vi| ≥ ε)
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Proof of Corollary 12.9 (Part II)

I By concentration for sub-Gaussian random variables (Proposition 6.6) and
Assumption 12.8 we have

P(|Vi| ≥ ε) ≤ 2e
− ε2

2cii ≤ 2e−
ε2

2

I Putting everything together we obtain

P

(
‖x>ξ‖∞√

n
≥ ε
)
≤ 2de−

ε2

2

By setting ε =
√
τ log d for τ > 2, we have 2de−

ε2

2 = 2
dτ/2−1 so that

P

(
‖x>ξ‖∞

n
<

√
τ log d

n

)
≥ 1− 2

dτ/2−1
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