Algorithmic Foundations of Learning

Lecture 11 Stochastic Oracle Model. Algorithmic Stability

Patrick Rebeschini

Department of Statistics University of Oxford

Statistical/computational learning theory (Lecture 1)

Problem formulation (out-of-sample prediction): • Given n data $(X_1, Y_1), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R}$ i.i.d. from **P** (unknown) • Consider the population risk $r(a) = \mathbf{E} \phi(a(X), Y)$ Goal: Compute $A \in \sigma\{(X_i, Y_i)_{i=1}^n\}$ such that $r(A) - \inf_a r(a)$ is small excess risk

What does it mean to solve the problem optimally?

- ► Statistics: A is minimax-optimal w.r.t. the class of distrib. \mathcal{P} if $\mathbf{E} r(A) - \inf_{a} r(a) \sim \inf_{A \in \sigma \{Z_1, \dots, Z_n\}} \sup_{\mathbf{P} \in \mathcal{P}} \left\{ \mathbf{E} r(A) - \inf_{a} r(a) \right\}$
- ▶ **Runtime:** Computing A takes same time to read the data, i.e. O(nd) cost
- Memory: Storing O(1) data point at a time, i.e. O(d) storage cost
- **Distributed computations:** Runtime O(1/m) if we have m machines
- (communication, privacy, robustness...)

Explicit regularization: uniform convergence (Lecture 1)

- Estimation/approximation: $r(A) r(a^{\star\star}) = \underbrace{r(A) r(a^{\star})}_{\text{Estimation}} + \underbrace{r(a^{\star}) r(a^{\star\star})}_{\text{Approximation}}$
- Classical error decomposition for estimation error:

$$\underbrace{r(A) - r(a^{\star})}_{\text{Estimation}} = r(A) - R(A) + R(A) - R(A^{\star}) + \underbrace{R(A^{\star}) - R(a^{\star})}_{\leq 0} + R(a^{\star}) - r(a^{\star})$$

$$r(A) - r(a^{\star\star}) \leq \underbrace{2\sup_{a \in \mathcal{A}} |r(a) - R(a)|}_{\text{Statistics}} + \underbrace{R(A) - R(A^{\star})}_{\text{Computation}} + \underbrace{r(a^{\star}) - r(a^{\star\star})}_{\text{Approximation}}$$

Recall: Subgradient Method with Euclidean Geometry

Risk minimization:

 $\begin{array}{ll} \underset{w}{\text{minimize}} & r(w) = \mathbf{E}\varphi(w^{\top}XY) \\ \text{subject to} & \|w\|_2 \leq c_2^{\mathcal{W}} \end{array} \qquad \Longrightarrow \qquad \text{Let } w^{\star} \text{ be a minimizer}$

Empirical risk minimization:

$$r(\overline{W}_t) - r(w^\star) \leq \underbrace{R(\overline{W}_t) - R(W^\star)}_{\text{Optimization}} + \underbrace{\sup_{w \in \mathcal{W}} \{r(w) - R(w)\} + \sup_{w \in \mathcal{W}} \{R(w) - r(w)\}}_{\text{Statistics}}$$

$$\boxed{ \textbf{E} \, \texttt{Statistics} \leq \frac{4 c_2^{\mathcal{X}} c_2^{\mathcal{W}} \gamma_{\varphi}}{\sqrt{n}} } \quad \qquad \texttt{Optimization} \leq \frac{2 c_2^{\mathcal{X}} c_2^{\mathcal{W}} \gamma_{\varphi}}{\sqrt{t}} }{\sqrt{t}}$$

It seems a complete story but... what about the computational cost?

Computational Complexity and Stochastic Oracle Model

• Each subgradient computation costs O(n) (prohibitive if n is large):

$$\partial R(w) = \frac{1}{n} \sum_{i=1}^{n} \partial_w \varphi(w^\top X_i Y_i)$$

▶ Wish: Can we use approximate/noisy subgradients and prove

EOptimization
$$\leq \frac{2c_2^{\chi}c_2^{W}\gamma_{\varphi}}{\sqrt{t}}$$

- Answer: Yes! And we just need O(1) per subgradient computation
- Main idea: at each step use a single data point to approximate subgradient

 $\partial_w \varphi(w^\top X_i Y_i)$

This approach is motivated by the stochastic oracle model

Interplay between Optimization and Randomness

Stochastic Projected Subgradient Method

Goal:
$$\min_{x \in \mathcal{C}} f(x)$$
 with f convex, \mathcal{C} convex

First Order Stochastic Oracle

Given X, the oracle yields back a random variable G that is an unbiased estimator of a subgradient of f at X conditionally on X, namely

 $\mathbf{E}[G|X] \in \partial f(X)$

Projected Stochastic Subgradient Method

$$\tilde{X}_{t+1} = X_t - \eta_t G_t$$
, where $\mathbf{E}[G_t|X_t] \in \partial f(X_t)$
 $X_{t+1} = \Pi_{\mathcal{C}}(\tilde{X}_{t+1})$

Projected Stochastic Subgradient Method (Theorem 11.1)

• Assume
$$\mathbb{E}[\|G_s\|_2^2] \leq \gamma^2$$
 for any $s \in [t]$

• Assume $\mathbf{E}[||X_1 - x^\star||_2^2] \le b^2$

Then, projected subgradient method with $\eta_s \equiv \eta = \frac{b}{\gamma\sqrt{t}}$ satisfies

$$\mathbf{E}f\left(\frac{1}{t}\sum_{s=1}^{t}X_s\right) - f(x^\star) \le \frac{\gamma b}{\sqrt{t}}$$

Proof of Theorem 11.1

▶ By convexity and the properties of conditional expectations: $f(X_s) - f(x^*) \le \partial f(X_s)^\top (X_s - x^*) = \mathbf{E}[G_s | X_s]^\top (X_s - x^*) = \mathbf{E}[G_s^\top (X_s - x^*) | X_s]$

Proceeding as in the proof of Theorem 9.3:

$$G_s^{\top}(X_s - x^{\star}) \le \frac{1}{2\eta} (\|X_s - x^{\star}\|_2^2 - \|X_{s+1} - x^{\star}\|_2^2) + \frac{\eta}{2} \|G_s\|_2^2$$

► Taking the expectation, by the tower property of conditional expectations: $\mathbf{E}f(X_s) - f(x^*) \leq \mathbf{E}\mathbf{E}[G_s^{\top}(X_s - x^*)|X_s] = \mathbf{E}G_s^{\top}(X_s - x^*)$

$$\leq \frac{1}{2\eta} (\mathbf{E} \| X_s - x^{\star} \|_2^2 - \mathbf{E} \| X_{s+1} - x^{\star} \|_2^2) + \frac{\eta}{2} \mathbf{E} \| G_s \|_2^2$$

and using the assumption $\mathbf{E}\|G_s\|_2^2 \leq \gamma^2$ we obtain

$$\frac{1}{t} \sum_{s=1}^{t} (\mathbf{E}f(X_s) - f(x^*)) \le \frac{1}{2\eta t} \left(\mathbf{E} \|X_1 - x^*\|_2^2 - \mathbf{E} \|X_{t+1} - x^*\|_2^2 \right) + \frac{\eta}{2} \gamma^2 \le \frac{b^2}{2\eta t} + \frac{\eta\gamma^2}{2}$$

• Proof follows minimizing right-hand side $\left(\eta = \frac{b}{\gamma\sqrt{t}}\right)$

Back to Learning: Single and Multiple Passes O(1) Cost

► Multiple Passes through the Data:

- Goal: Minimize regularized empirical risk R over \mathcal{W}_2
- $G_s = \partial_w \varphi(W_s^\top X_{I_{s+1}} Y_{I_{s+1}})$ $(I_2, I_3, I_4, \dots \text{ are i.i.d. uniform in } [n])$
- $\mathbf{E}[\partial_w \varphi(W_s^\top X_{I_{s+1}} Y_{I_{s+1}}) | S, W_s] = \frac{1}{n} \sum_{i=1}^n \mathbf{E}[\partial \varphi(W_s^\top X_i Y_i) | S, W_s] = \partial R(W_s)$

$$\mathbf{E} \operatorname{Optimization} = \mathbf{E}[R(\overline{W}_t) - R(W^\star)] \leq \frac{2c_2^{\mathcal{X}}c_2^{\mathcal{W}}\gamma_{\varphi}}{\sqrt{t}}$$

Single Pass through the Data:

- Goal: Minimize regularized expected risk r over \mathcal{W}_2
- $G_s = \partial_w \varphi(W_s^\top X_s Y_s)$
- $\mathbf{E}[\partial_w \varphi(W_s^\top X_s Y_s) | W_s] = \partial r(W_s)$

$$\mathbf{E} \, r(\overline{W}_t) - r(w^\star) \leq \frac{2c_2^{\mathcal{X}} c_2^{\mathcal{W}} \gamma_{\varphi}}{\sqrt{t}}$$

Direct bound on estimation error.

No need to go through empirical risk, Rademacher complexity, etc...

Projected Stochastic Mirror Descent

Projected Stochastic Mirror Descent

$$\nabla \Phi(\widetilde{X}_{t+1}) = \nabla \Phi(X_t) - \eta_t G_t, \text{ where } \mathbf{E}[G_t|X_t] \in \partial f(X_t]$$
$$X_{t+1} = \Pi_{\mathcal{C}}^{\Phi}(\widetilde{X}_{t+1})$$

Projected Stochastic Mirror Descent (Theorem 11.2)

- Assume that $\mathbf{E}[\|G_s\|_*^2] \leq \gamma^2$ for any $s \in [t]$
- Mirror map Φ is α -strongly convex on $\mathcal{C} \cap \mathcal{D}$ w.r.t. the norm $\|\cdot\|$
- ▶ Initial condition is $X_1 \equiv x_1 \in \operatorname{argmin}_{x \in \mathcal{C} \cap \mathcal{D}} \Phi(x)$
- Assume $c^2 = \sup_{x \in \mathcal{C} \cap \mathcal{D}} \Phi(x) \Phi(x_1)$

Then, projected mirror descent with $\eta_s \equiv \eta = \frac{c}{\gamma} \sqrt{\frac{2\alpha}{t}}$ satisfies

$$\mathbf{E}f\left(\frac{1}{t}\sum_{s=1}^{t}X_{s}\right) - f(x^{\star}) \le c\gamma\sqrt{\frac{2}{\alpha t}}$$

Recap: Statistical and Computational optimality

Linear models $f(x,a) = \langle a,x \rangle$ with Lipschitz loss function ℓ

We need $t \sim n$ iterations, i.e. computational complexity $O(n^2 d)$ (Stochastic gradient descent yields optimal computational complexity O(nd))

Limitations leading to implicit regularization...

Statistics:

▶ If the empirical risk R has multiple global minima, it can be $r(A^*) \ll r(A^{*'})$ but the bound above does not differentiate

Computation:

▶ If the empirical risk R is non-convex, it is typically not feasible to make $R(A) - R(A^*)$ arbitrarily small

Approximation:

In practice, optimal choices of the class A involve unknown quantities, e.g. level of the noise, so one has to resort to model selection (expensive)

Limitations prompt to study implicit regularization of solvers applied in practice

Can Avoid Supremum and Directly Bound Excess Risk?

Recall from Lecture 1:

So far we used the following decomposition (apart from proof of Theorem 7.10...):

Question. Can we analyze directly excess risk without explicit regularization (i.e., without admissible set $\mathcal{A} \subseteq \mathcal{B}$)?

Question. Can we analyze directly behavior of A without taking the supremum (i.e., without notions of complexity for set $\mathcal{A} \subseteq \mathcal{B}$)?

Answer. Yes to both! Use algorithmic stability and implicit regularization

Algorithmic Stability: New Error Decomposition

Proof. We have

$$r(A) - r(a^{\star\star}) = r(A) - R(A) + R(A) - R(A^{\star\star}) + R(A^{\star\star}) - r(a^{\star\star}).$$

Note that $\mathbf{E}R(A^{\star\star}) \leq r(a^{\star\star})$, as for any $a \in \mathcal{B}$ we have $R(A^{\star\star}) \leq R(a)$ (as, by definition, $A^{\star\star}$ is a minimizer of the empirical risk R over \mathcal{B}) so that

 $\mathbf{E}R(A^{\star\star}) \le \mathbf{E}R(a) = r(a),$

which holds also for $a = a^{\star\star}$.

Algorithmic Stability

Let $\widetilde{A}(i)$ be algorithm trained on perturbed dataset $\{Z_1, ..., Z_{i-1}, \widetilde{Z}_i, Z_{i+1}, ..., Z_n\}$

Generalization error bound via algorithmic stability (Proposition 11.4)

If for any $z \in \mathcal{Z}$ the function $a \to \ell(a, z)$ is γ -Lipschitz, then

$$\mathbf{E}[\underbrace{r(A) - R(A)}_{\text{generalization error}}] \leq \gamma \frac{1}{n} \sum_{i=1}^{n} \mathbf{E} \|A - \widetilde{A}(i)\|$$

Stability: $||A - \widetilde{A}(i)||$ small.

Proof. We have $\mathbf{E} r(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E} \ell(A, \widetilde{Z}_i)$. As (A, Z_i) has the same distribution as $(\widetilde{A}(i), \widetilde{Z}_i)$:

$$\mathbf{E}R(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\,\ell(A, Z_i) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}\,\ell(\widetilde{A}(i), \widetilde{Z}_i)$$

Stability for Stochastic Gradient Descent. Early Stopping

Take $A = W_t$, stochastic gradient descent (no projection as no constraints!)

Early stopping: find time that minimizes upper bounds using Proposition 11.3:

- Generalization error: increasing with time
- Optimization error: decreasing with time

Example of implicit/algorithmic regularization, as opposed to explicit/structural