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Statistical/computational learning theory (Lecture 1)

Problem formulation (out-of-sample prediction):

I Given n data (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R i.i.d. from P (unknown)

I Consider the population risk r(a) = Eφ(a(X), Y )

Goal: Compute A ∈ σ{(Xi, Yi)
n
i=1} such that r(A)− inf

a
r(a)︸ ︷︷ ︸

excess risk

is small

What does it mean to solve the problem optimally?

I Statistics: A is minimax-optimal w.r.t. the class of distrib. P if

E r(A)− inf
a
r(a) ∼ inf

A∈σ{Z1,...,Zn}
sup
P∈P

{
E r(A)− inf

a
r(a)

}
I Runtime: Computing A takes same time to read the data, i.e. O(nd) cost

I Memory: Storing O(1) data point at a time, i.e. O(d) storage cost

I Distributed computations: Runtime O(1/m) if we have m machines

I (communication, privacy, robustness...)
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Explicit regularization: uniform convergence (Lecture 1)

A

A a??
a?A

Approximation
Estimation

A?

Computation

Statistics

I Estimation/approximation: r(A)− r(a??) = r(A)− r(a?)︸ ︷︷ ︸
Estimation

+ r(a?)− r(a??)︸ ︷︷ ︸
Approximation

I Classical error decomposition for estimation error:

r(A)− r(a?)︸ ︷︷ ︸
Estimation

=r(A)−R(A)+R(A)−R(A?)+R(A?)−R(a?)︸ ︷︷ ︸
≤0

+R(a?)−r(a?)

r(A)− r(a??) ≤ 2 sup
a∈A
|r(a)−R(a)|︸ ︷︷ ︸
Statistics

+R(A)−R(A?)︸ ︷︷ ︸
Computation

+ r(a?)− r(a??)︸ ︷︷ ︸
Approximation
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Recall: Subgradient Method with Euclidean Geometry

Risk minimization:

minimize
w

r(w) = Eϕ(w>XY )

subject to ‖w‖2 ≤ cW2
=⇒ Let w? be a minimizer

Empirical risk minimization:

minimize
w

R(w) =
1

n

n∑
i=1

ϕ(w>XiYi)

subject to ‖w‖2 ≤ cW2

=⇒ Let W ? be a minimizer

r(W t)−r(w?) ≤ R(W t)−R(W ?)︸ ︷︷ ︸
Optimization

+ sup
w∈W
{r(w)−R(w)}+ sup

w∈W
{R(w)−r(w)}︸ ︷︷ ︸

Statistics

E Statistics ≤ 4cX2 c
W
2 γϕ√
n

Optimization ≤ 2cX2 c
W
2 γϕ√
t

It seems a complete story but... what about the computational cost?
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Computational Complexity and Stochastic Oracle Model

I Each subgradient computation costs O(n) (prohibitive if n is large):

∂R(w) =
1

n

n∑
i=1

∂wϕ(w>XiYi)

I Wish: Can we use approximate/noisy subgradients and prove

E Optimization ≤ 2cX2 c
W
2 γϕ√
t

?

I Answer: Yes! And we just need O(1) per subgradient computation

I Main idea: at each step use a single data point to approximate subgradient

∂wϕ(w>XiYi)

I This approach is motivated by the stochastic oracle model

Interplay between Optimization and Randomness
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Stochastic Projected Subgradient Method

Goal: min
x∈C

f(x) with f convex, C convex

First Order Stochastic Oracle

Given X, the oracle yields back a random variable G that is an unbiased esti-
mator of a subgradient of f at X conditionally on X, namely

E[G|X] ∈ ∂f(X)

5/15



Projected Stochastic Subgradient Method

Projected Stochastic Subgradient Method

X̃t+1 = Xt − ηtGt,where E[Gt|Xt] ∈ ∂f(Xt)

Xt+1 = ΠC(X̃t+1)

Projected Stochastic Subgradient Method (Theorem 11.1)

I Assume E[‖Gs‖22] ≤ γ2 for any s ∈ [t]

I Assume E[‖X1 − x?‖22] ≤ b2

Then, projected subgradient method with ηs ≡ η = b
γ
√
t

satisfies

Ef

(
1

t

t∑
s=1

Xs

)
− f(x?) ≤ γb√

t
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Proof of Theorem 11.1

I By convexity and the properties of conditional expectations:

f(Xs)−f(x?) ≤ ∂f(Xs)>(Xs−x?) = E[Gs|Xs]>(Xs−x?) = E[G>
s (Xs−x?)|Xs]

I Proceeding as in the proof of Theorem 9.3:

G>
s (Xs − x?) ≤

1

2η
(‖Xs − x?‖22 − ‖Xs+1 − x?‖22) +

η

2
‖Gs‖22

I Taking the expectation, by the tower property of conditional expectations:

Ef(Xs)− f(x?) ≤ EE[G>
s (Xs−x?)|Xs] = EG>

s (Xs − x?)

≤ 1

2η
(E‖Xs − x?‖22 −E‖Xs+1 − x?‖22) +

η

2
E‖Gs‖22

and using the assumption E‖Gs‖22 ≤ γ2 we obtain

1

t

t∑
s=1

(Ef(Xs)−f(x?)) ≤
1

2ηt

(
E‖X1−x?‖22 −E‖Xt+1−x?‖22

)
+
η

2
γ2 ≤ b2

2ηt
+
ηγ2

2

I Proof follows minimizing right-hand side (η = b
γ
√
t
)
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Back to Learning: Single and Multiple Passes O(1) Cost

I Multiple Passes through the Data:

Goal: Minimize regularized empirical risk R over W2

Gs = ∂wϕ(W
>
s XIs+1YIs+1) (I2, I3, I4, . . . are i.i.d. uniform in [n])

E[∂wϕ(W
>
s XIs+1YIs+1)|S,Ws] =

1
n

∑n
i=1 E[∂ϕ(W>

s XiYi)|S,Ws] = ∂R(Ws)

E Optimization = E[R(W t)−R(W ?)] ≤ 2cX2 c
W
2 γϕ√
t

I Single Pass through the Data:

Goal: Minimize regularized expected risk r over W2

Gs = ∂wϕ(W
>
s XsYs)

E[∂wϕ(W
>
s XsYs)|Ws] = ∂r(Ws)

E r(W t)− r(w?) ≤
2cX2 c

W
2 γϕ√
t

Direct bound on estimation error.
No need to go through empirical risk, Rademacher complexity, etc...
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Projected Stochastic Mirror Descent

Projected Stochastic Mirror Descent

∇Φ(X̃t+1) = ∇Φ(Xt)− ηtGt,where E[Gt|Xt] ∈ ∂f(Xt)

Xt+1 = ΠΦ
C (X̃t+1)

Projected Stochastic Mirror Descent (Theorem 11.2)

I Assume that E[‖Gs‖2∗] ≤ γ2 for any s ∈ [t]

I Mirror map Φ is α-strongly convex on C ∩ D w.r.t. the norm ‖ · ‖
I Initial condition is X1 ≡ x1 ∈ argminx∈C∩D Φ(x)

I Assume c2 = supx∈C∩D Φ(x)− Φ(x1)

Then, projected mirror descent with ηs ≡ η = c
γ

√
2α
t satisfies

Ef

(
1

t

t∑
s=1

Xs

)
− f(x?) ≤ cγ

√
2

αt
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Recap: Statistical and Computational optimality

Linear models f(x, a) = 〈a, x〉 with Lipschitz loss function `

I Ridge regression:

Aρ = {w>x : ‖w‖2 ≤ ρ}

Statistics . ρ

√
d

n

Computation . ρ

√
d

t
(proj. gradient descent)

I Lasso:

Aρ = {w>x : ‖w‖1 ≤ ρ}

Statistics . ρ

√
log d

n

Computation . ρ

√
log d

t
(proj. mirror descent)

(entropy mirror map)

We need t ∼ n iterations, i.e. computational complexity O(n2d)
(Stochastic gradient descent yields optimal computational complexity O(nd))

10/15



Limitations leading to implicit regularization...

Explicit regularization and uniform convergence:

r(A)− r(a?) ≤ 2 sup
a∈A
|r(a)−R(a)|︸ ︷︷ ︸
Statistics

+R(A)−R(A?A)︸ ︷︷ ︸
Computation

+ r(a?A)− r(a?)︸ ︷︷ ︸
Approximation

Statistics:

I If the empirical risk R has multiple global minima, it can be
r(A?)� r(A?′) but the bound above does not differentiate

Computation:

I If the empirical risk R is non-convex, it is typically not feasible to make
R(A)−R(A?) arbitrarily small

Approximation:

I In practice, optimal choices of the class A involve unknown quantities, e.g.
level of the noise, so one has to resort to model selection (expensive)

Limitations prompt to study implicit regularization of solvers applied in practice
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Can Avoid Supremum and Directly Bound Excess Risk?

Recall from Lecture 1:

r(A)− r(a??)︸ ︷︷ ︸
excess risk

= r(A)− r(a?)︸ ︷︷ ︸
estimation error

+ r(a?)− r(a??)︸ ︷︷ ︸
approximation error

So far we used the following decomposition (apart from proof of Theorem
7.10...):

r(A)−r(a?)︸ ︷︷ ︸
estimation error

= r(A)−R(A) +R(A)−R(A?)︸ ︷︷ ︸
optimization error

+R(A?)−R(a?)︸ ︷︷ ︸
≤0

+R(a?)−r(a?)

≤ R(A)−R(A?)︸ ︷︷ ︸
optimization error

+ sup
a∈A

(r(a)−R(a)) + sup
a∈A

(R(a)−r(a))︸ ︷︷ ︸
statistics error

Question. Can we analyze directly excess risk without explicit regularization
(i.e., without admissible set A ⊆ B)?

Question. Can we analyze directly behavior of A without taking the supremum
(i.e., without notions of complexity for set A ⊆ B)?

Answer. Yes to both! Use algorithmic stability and implicit regularization
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Algorithmic Stability: New Error Decomposition

New error decomposition (Proposition 11.3)

For any A ∈ B we have

E r(A)− r(a??)︸ ︷︷ ︸
excess risk

≤ E [r(A)−R(A)]︸ ︷︷ ︸
generalization error

+ E [R(A)−R(A??)]︸ ︷︷ ︸
optimization error

Proof. We have

r(A)− r(a??) = r(A)−R(A) +R(A)−R(A??) +R(A??)− r(a??).

Note that ER(A??) ≤ r(a??), as for any a ∈ B we have R(A??) ≤ R(a) (as, by
definition, A?? is a minimizer of the empirical risk R over B) so that

ER(A??) ≤ ER(a) = r(a),

which holds also for a = a??.
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Algorithmic Stability

Let Ã(i) be algorithm trained on perturbed dataset {Z1, ..., Zi−1, Z̃i, Zi+1, ..., Zn}

Generalization error bound via algorithmic stability (Proposition 11.4)

If for any z ∈ Z the function a→ `(a, z) is γ-Lipschitz, then

E[ r(A)−R(A)︸ ︷︷ ︸
generalization error

] ≤ γ 1

n

n∑
i=1

E‖A− Ã(i)‖

Stability: ‖A− Ã(i)‖ small.

Proof. We have E r(A) = 1
n

∑n
i=1 E `(A, Z̃i).

As (A,Zi) has the same distribution as (Ã(i), Z̃i):

ER(A) =
1

n

n∑
i=1

E `(A,Zi) =
1

n

n∑
i=1

E `(Ã(i), Z̃i)
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Stability for Stochastic Gradient Descent. Early Stopping

Take A = Wt, stochastic gradient descent (no projection as no constraints!)

Generalisation error for convex Lipschitz and smooth losses (Lemma 11.5)

I Function w ∈ Rd → `(w, z) is convex, γ-Lipschitz and β-smooth

I ηs ≡ η satisfying ηβ ≤ 2

I Let W1 = 0

E[r(Wt)−R(Wt)︸ ︷︷ ︸
generalization error

] ≤ 2ηγ2

n
(t− 1)

Early stopping: find time that minimizes upper bounds using Proposition 11.3:

I Generalization error: increasing with time

I Optimization error: decreasing with time

Example of implicit/algorithmic regularization, as opposed to explicit/structural
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