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Statistical /computational learning theory (Lecture 1)

~

Problem formulation (out-of-sample prediction):
» Given n data (X1,Y3),...,(X,,Y,) € RY x R iid. from P (unknown)
» Consider the population risk r(a) = E ¢(a(X),Y)
Goal: Compute A € o{(X;,Y;)? ,} such that r(4) — igfr(a) is small
—_—————

excess risk

What does it mean to solve the problem optimally?
» Statistics: A is minimax-optimal w.r.t. the class of distrib. P if

Er(A) — irgfr(a) ~ Aeo{gllf . }Ps’g[?)) {ET(A) — irgf r(a)}

v

Runtime: Computing A takes same time to read the data, i.e. O(nd) cost

v

Memory: Storing O(1) data point at a time, i.e. O(d) storage cost

v

Distributed computations: Runtime O(1/m) if we have m machines

» (communication, privacy, robustness...)



Explicit regularization: uniform convergence (Lecture 1)
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» Estimation/approximation: r(A) — r(a**) = r(A) — r(a*) +r(a*) — r(a™)

Estimation Approximation

» Classical error decomposition for estimation error:

r(A) —r(a*)=r(A)—R(A)+R(A)—R(A*)+R(A")— R(a*)+R(a*)—7r(a*)
— —

—_———
Estimation <0
r(A) —r(a™) < 2sup |r(a) — R(a)| + R(A) — R(A") +r(a”) —r(a™)

acA

Computation Approximation
Statistics




Recall: Subgradient Method with Euclidean Geometry

Risk minimization:
minimize  r(w) = Ep(w' XY)

= Let w* be a minimizer
subject to  [Jwl|2 < ¢}
Empirical risk minimization:
. Il T
minimize  R(w) = — ) o(w' X;Y;)
w n ; = Let W* be a minimizer

subject to  [Jwl|2 < ¢}

r(We)—r(w*) < R(W,)—R(W*) + sup {r(w)—R(w)} + sup {R(w)—r(w)}
—_— ————
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It seems a complete story but... what about the computational cost?




Computational Complexity and Stochastic Oracle Model

» Each subgradient computation costs O(n) (prohibitive if n is large):

OR(w) = ! Z(?w@(wTXiYi)
n

=1

v

Wish: Can we use approximate/noisy subgradients and prove

265‘( cgv%o ?

7 :

E Optimization <

v

Answer: Yes! And we just need O(1) per subgradient computation

v

Main idea: at each step use a single data point to approximate subgradient

aqu@(wTX7}/1>

v

This approach is motivated by the stochastic oracle model

Interplay between Optimization and Randomness



Stochastic Projected Subgradient Method

Goal:

min f(x)

zeC

with f convex, C convex

First Order Stochastic Oracle

Given X, the oracle yields back a random variable G that is an unbiased esti-
mator of a subgradient of f at X conditionally on X, namely

[E[G|X] € 9f(X)|




Projected Stochastic Subgradient Method

Projected Stochastic Subgradient Method

Xt-‘rl = Xt — nth,where E[thXt] S 8f(Xt)
Xip1 =Te(Xp41)

Projected Stochastic Subgradient Method (Theorem 11.1)

» Assume E[||G;|3] < +2 for any s € [t]
» Assume E[|| X7 — z*||3] < b2

Then, projected subgradient method with s, =7 = l\’[ satisfies

Bf (% sz) ~fa) <2

~)|




Proof of Theorem 11.1

> By convexity and the properties of conditional expectations:

F(X)—f(a") <0f(X) T (Xo—a") = B[G.|X:]" (Xs—2") = E[G] (X.—2")|X.]

» Proceeding as in the proof of Theorem 9.3:

1
GI(Xo —a") < %(I\Xs =23 = [ Xerr — 2"[I2) + gl\GsH§

> Taking the expectation, by the tower property of conditional expectations:

Ef(X.) - f(a") < BB[G] (X.~2")|X.] = BG] (X, - 2)

1 % *
< 5 BIXe = "I} = Bl Xow = o"[13) + JEIG. 3

and using the assumption E||G5||3 < +* we obtain

2

LS B -1) < 5 (BIX =" — Bl Xews —a" D)+ o < 2T

> Proof follows minimizing right-hand side (n = #)



Back to Learning: Single and Multiple Passes O(1) Cost

» Multiple Passes through the Data:
o Goal: Minimize regularized empirical risk R over W
o Gy =0uwp(WJ X1, Y1.,,) (I, 13,14, ... are i.i.d. uniform in [n])
o Eldup(W. X1, Y1,,,)IS, Wi = L XL Blop(W. X.Y))|S, W] = OR(W.)

X WV
2¢5 €3 Yy

E Optimization = E[R(W;) — R(W*)] < N

» Single Pass through the Data:
o Goal: Minimize regularized expected risk r over W
o Gs = dwp(W, X.Y5)
o E[0,p(W, X, Y,)|Ws] = or(Ws)

— 2cX eV
Er(W,) —r(w*) < =2-21¢
(W) —r(w®) < 7

Direct bound on estimation error.
No need to go through empirical risk, Rademacher complexity, etc...



Projected Stochastic Mirror Descent

Projected Stochastic Mirror Descent

VO(X,11) = VO(X,) — .Gy, where E[G|X,] € 8f (X))
X1 =8 (Xei1)

Projected Stochastic Mirror Descent (Theorem 11.2)

» Assume that E[||G;||2] < ~2 for any s € [t]
> Mirror map @ is a-strongly convex on C N D w.r.t. the norm || - ||
»> Initial condition is X = z; € argmin,conp ®(x)

> Assume ¢? = sup,ccnp @(z) — ®(21)

Then, projected mirror descent with n, =71 = 51 / 27“ satisfies

o (13 <o




Recap: Statistical and Computational optimality

Linear models f(x,a) = (a,x) with Lipschitz loss function ¢

d
Statistics < p\/7
n

. d . .
Computation < p\/; (proj. gradient descent)

» Ridge regression:

Ay = {wTe [l < p)

» Lasso:
log d

Statistics < p
n

logd

t
A, ={w'z: [Jwli < p} (entropy mirror map)

Computation < p

(proj. mirror descent)

We need t ~ n iterations, i.e. computational complexity O(n?d)
(Stochastic gradient descent yields optimal computational complexity O(nd))



Limitations leading to implicit regularization...

Explicit regularization and uniform convergence:

r(4) —r(a”) < 2 sup r(a) — R(a)| + R(A) — R(A}) +1(ay) —r(a”)

Computation Approximation
Statistics

Statistics:

> If the empirical risk R has multiple global minima, it can be
r(A*) < r(A*") but the bound above does not differentiate

Computation:

> If the empirical risk R is non-convex, it is typically not feasible to make
R(A) — R(A*) arbitrarily small
Approximation:

» In practice, optimal choices of the class A involve unknown quantities, e.g.
level of the noise, so one has to resort to model selection (expensive)

Limitations prompt to study implicit regularization of solvers applied in practice




Can Avoid Supremum and Directly Bound Excess Risk?
Recall from Lecture 1:

r(A) —r(a™) =r(A) —r(a*) +r(a*) — r(a™)

excess risk estimation error approximation error

So far we used the following decomposition (apart from proof of Theorem
7.10...):

r(A)—r(a*) =r(A)—R(A) + R(A)—R(A*) + R(A*)—R(a*) +R(a*) —7r(a”)
—_———

estimation error optimization error <0
< R(A)—R(A") + sup(r(a) - R(a)) + sup(R(a)—r(a))
—————— acA acA

optimization error
statistics error

Question. Can we analyze directly excess risk without explicit regularization
(i.e., without admissible set A C B)?

Question. Can we analyze directly behavior of A without taking the supremum
(i.e., without notions of complexity for set A C B)?

Answer. Yes to both! Use algorithmic stability and implicit regularization



Algorithmic Stability: New Error Decomposition

For any A € B we have
Er(A) —r(a™) <E[r(A) — R(A)]+ E[R(A) — R(A™)]

excess risk generalization error optimization error

Proof. We have
r(A) —r(a*™) =r(4) — R(A) + R(A) — R(A*™) + R(A™) — r(a™).

Note that ER(A**) < r(a**), as for any a € B we have R(A**) < R(a) (as, by
definition, A** is a minimizer of the empirical risk R over B) so that

ER(A*) <ER(a) = r(a),

which holds also for a = a**.



Algorithmic Stability

Let g(z) be algorithm trained on perturbed dataset {71, ..., Z; 1, Z-7Zi+1,

If for any z € Z the function a — ¢(a, z) is ~-Lipschitz, then

E[r(4) ~ R(4)] <7+ > Bll4 - )|

generalization error

Stability: |[A — A(i)|| small.

Proof. We have Er(A) = LS E((A, 7).
As (A, Z;) has the same distribution as (A(i), Z;):

ZEEAZ ZE(Z

s Zn}



Stability for Stochastic Gradient Descent. Early Stopping

Take A = W, stochastic gradient descent (no projection as no constraints!)

Generalisation error for convex Lipschitz and smooth losses (Lemma 11.5)

» Function w € RY — /(w, z) is convex, v-Lipschitz and 3-smooth
> 15 = n satisfying n8 < 2
> Let W1 =0

E[r(W;) — R(W;)] < 2’172 (t—1)

generalization error

Early stopping: find time that minimizes upper bounds using Proposition 11.3:
» Generalization error: increasing with time

» Optimization error: decreasing with time

Example of implicit/algorithmic regularization, as opposed to explicit/structural

15/1%



