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Recap

I Training data: (X1, Y1), . . . , (Xn, Yn) ∈ X × {−1, 1}, with X ⊆ Rd
I Loss function: ϕ : R→ R+ (convex: reasonable by Zhang’s lemma)
I Predictors A = {x ∈ Rd → aw(x) : w ∈ W} (W convex in many cases)

NB. There are many settings where A is not convex (e.g., neural networks)

Risk minimization:

minimize
w

r(w) = Eϕ(aw(X)Y )

subject to w ∈ W
=⇒ Let w? be a minimizer

Empirical risk minimization:

minimize
w

R(w) =
1

n

n∑
i=1

ϕ(aw(Xi)Yi)

subject to w ∈ W
=⇒ Let W ? be a minimizer

r(W )−r(w?) ≤ R(W )−R(W ?)︸ ︷︷ ︸
Optimization

+ sup
w∈W
{r(w)−R(w)}+ sup

w∈W
{R(w)−r(w)}︸ ︷︷ ︸

Statistics
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Projected Subgradient Method

Goal: min
x∈C

f(x) with f convex, C convex and compact

Projected Subgradient Method

x̃t+1 = xt − ηtgt,where gt ∈ ∂f(xt)

xt+1 = ΠC(x̃t+1)

with the projection operator ΠC(y) = argminx∈C ‖x− y‖2.
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Non-Expansivity of Projections

Non-expansivity (Proposition 9.2)

Let x ∈ C and y ∈ Rd. Then,

(ΠC(y)− x)
>

(ΠC(y)− y) ≤ 0

which implies ‖ΠC(y)− x‖22 + ‖y −ΠC(y)‖22 ≤ ‖y − x‖22 and, in particular,

‖ΠC(y)− x‖2 ≤ ‖y − x‖2

3/11



First Order Optimality Condition

First Order Optimality Condition (Proposition 8.10)

Let f be convex, and C be a closed set on which f is differentiable. Then,

x? ∈ argmin
x∈C

f(x) ⇐⇒ ∇f(x?)>(x? − x) ≤ 0 for any x ∈ C

Proof of Proposition 9.2. This is a direct consequence of Proposition 8.10
since ΠC(y) is a minimizer of the function z → fy(z) = ‖y − z‖2, and
∇fy(z) = (z − y)/‖z − y‖2.
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Results for Lipschitz Functions

A function f is γ-Lipschitz on C if there exists γ > 0 such that (equivalent)

I For every x, y ∈ C, f(x)− γ‖x− y‖2 ≤ f(y) ≤ f(x) + γ‖x− y‖2
I For every x, y ∈ C, |f(y)− f(x)| ≤ γ‖x− y‖2
I For every x ∈ C, any subgradient g ∈ ∂f(x) satisfies ‖g‖2 ≤ γ

Projected Subgradient Method—Lipschitz (Theorem 9.3)

I Function f is γ-Lipschitz

I Assume ‖x1 − x?‖2 ≤ b
Then, the projected subgradient method with ηs ≡ η = b

γ
√
t

satisfies

f

(
1

t

t∑
s=1

xs

)
− f(x?) ≤ γb√

t

I It is not a descent method: the value function can increase in one time step

I The reference point x? can be anything, not just a minimizer of f
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Proof of Theorem 9.3)
I Convexity yields:

f

(
1

t

t∑
s=1

xs

)
− f(x?) ≤ 1

t

t∑
s=1

f(xs)− f(x?) ≤
1

t

t∑
s=1

g>s (xs − x?)

I Using 2a>b = ‖a‖22 + ‖b‖22 − ‖a− b‖22 and gs =
1
η
(xs − x̃s+1):

g>s (xs − x?) =
1

η
(xs − x̃s+1)

>(xs − x?)

=
1

2η

(
‖xs − x?‖22 + ‖xs − x̃s+1‖22 − ‖x̃s+1 − x?‖22

)
=

1

2η

(
‖xs − x?‖22 − ‖x̃s+1 − x?‖22

)
+
η

2
‖gs‖22

≤ 1

2η

(
‖xs − x?‖22 − ‖xs+1 − x?‖22

)
+
η

2
‖gs‖22

where we used that ‖x̃s+1 − x?‖2 ≥ ‖xs+1 − x?‖2 by Proposition 9.2.
I Summing from s = 1 to t:

f

(
1

t

t∑
s=1

xs

)
−f(x?) ≤ 1

2ηt

(
‖x1 − x?‖22 − ‖xt+1 − x?‖22

)
+
ηγ2

2
≤ b2

2ηt
+
ηγ2

2

Minimizing the right-hand side we have η = b
γ
√
t
which yields the result.
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Results for Smooth Functions

A function f is β-smooth on C if there exists β > 0 such that (equivalent)

I For every x, y ∈ C, f(y) ≤ f(x) +∇f(x)>(y − x) + β
2 ‖y − x‖

2
2

I For every x, y ∈ C, |∇f(y)−∇f(x)| ≤ β‖x− y‖2 (gradient is β-Lipschitz)

I For every x ∈ C, ∇2f(x) 4 βI (if f is twice-differentiable)

Projected Gradient Descent—Smooth (Theorem 9.4)

I Function f is β-smooth

I Assume ‖x1 − x?‖2 ≤ b
Then, projected gradient descent with ηs ≡ η = 1/β satisfies

f(xt)− f(x?) ≤ 3βb2 + f(x1)− f(x?)

t

In the case of smooth functions, gradient descent is a natural algorithm...
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Interpretation for Smooth Functions

... it is the algorithm that at each time step moves to the point in C that
maximizes the guaranteed local decrease given by the quadratic function
that uniformly upper-bounds the function f at the current location

argmin
y∈C

{
f(x)+∇f(x)>(y−x)+

β

2
‖y−x‖22

}
= argmin

y∈C

{∥∥∥∥(x− 1

β
∇f(x)

)
−y
∥∥∥∥2
2

}

≡ ΠC

(
x− 1

β
∇f(x)

)
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Results for Smooth and Strongly Convex Functions

A function f is α-strongly convex on C if there is α > 0 such that (equivalent)

I For every x, y ∈ C, f(y) ≥ f(x) +∇f(x)>(y − x) + α
2 ‖y − x‖

2
2

I For every x ∈ C, ∇2f(x) < αI (if f is twice-differentiable)

Gradient Descent—Smooth and Strongly Convex (Theorem 9.5)

I Assume C = Rd (same type of result holds for projected gradient descent)

I Function f is α-strongly convex and β-smooth

Then, gradient descent with ηs ≡ η = 1/β satisfies

f(xt)− f(x?) ≤
(

1− α

β

)t−1
(f(x1)− f(x?))

Proof: (see illustration on the previous slide)

I Guaranteed progress in one step: f(xs+1) ≤ f(xs)− 1
2β
‖∇f(xs)‖22

I Lower bound on objective function: f(x?) ≥ f(xs)− 1
2α
‖∇f(xs)‖22
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Oracle Complexity, Lower Bounds, Accelerated Methods
I Convergence rates:

L-Lipschitz β-smooth

Convex O(γb/
√
t) O((βb2 + c)/t)

α-strongly convex O(γ2/(αt)) O(e−tα/βc)

where ‖x1 − x?‖2 ≤ b and f(x1)− f(x?) ≤ c

I Oracle complexities:

L-Lipschitz β-smooth
Convex O(γ2b2/ε2) O((βb2 + c)/ε)

α-strongly convex O(γ2/(αε)) O((β/α) log (c/ε))

I Optimal rates (lower bounds)

L-Lipschitz β-smooth

Convex Ω(γa/(1 +
√
t)) Ω(b̃2β/(t+ 1)2)

α-strongly convex Ω(γ2/(αt)) Ω(αb̃2e−t
√
α/β)

where a := maxx∈C ‖x‖2 and b̃ := maxx,y∈C ‖x− y‖2

Apart from Lipschitz, optimal rates are achieved only by accelerated algorithms
NB. Quantities α, β, γ and a, b, c, b̃ depend implicitly on dimension d
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Back to Learning: Linear Predictors with `2 Ball

Risk minimization:

minimize
w

r(w) = Eϕ(w>XY )

subject to ‖w‖2 ≤ cW2
=⇒ Let w? be a minimizer

Empirical risk minimization:

minimize
w

R(w) =
1

n

n∑
i=1

ϕ(w>XiYi)

subject to ‖w‖2 ≤ cW2

=⇒ Let W ? be a minimizer

r(W t)−r(w?) ≤ R(W t)−R(W ?)︸ ︷︷ ︸
Optimization

+ sup
w∈W
{r(w)−R(w)}+ sup

w∈W
{R(w)−r(w)}︸ ︷︷ ︸

Statistics

E Statistics ≤ 4cX2 c
W
2 γϕ√
n

Optimization ≤ 2cX2 c
W
2 γϕ√
t

Principled approach: Enough to run algorithm for t ∼ n time steps
(ONLY BASED ON UPPER BOUNDS!)
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