Algorithmic Foundations of Learning

Lecture 8 Convex Loss Surrogates. Elements of Convex Theory

Patrick Rebeschini

Department of Statistics University of Oxford

Recall Results on Binary Classification

- $ightharpoonup Z_i = (X_i, Y_i) \in \mathbb{R}^d \times \{-1, 1\}$
- lacktriangle Admissible action set $\mathcal{A} \subseteq \mathcal{B} := \{a : \mathbb{R}^d \to \{-1,1\}\}$
- ▶ True loss function $\ell(a,(x,y)) = 1_{a(x)\neq y} = \varphi^*(a(x)y)$ with $\varphi^*(u) := 1_{u\leq 0}$

$$r(a) = \mathbf{P}(a(X) \neq Y)$$
 $a^* \in \underset{a \in \mathcal{A}}{\operatorname{argmin}} r(a)$ $a^{**} \in \underset{a \in \mathcal{B}}{\operatorname{argmin}} r(a)$
 $R(a) = \frac{1}{n} \sum_{i=1}^{n} 1_{a(X_i) \neq Y_i}$ $A^* \in \underset{a \in \mathcal{A}}{\operatorname{argmin}} R(a)$

So far we have proved:

$$\mathbf{P}\bigg(r(A^\star) - r(a^\star) \lesssim \sqrt{rac{ extsf{VC}(\mathcal{A})}{n}} + \sqrt{rac{\log(1/\delta)}{n}}\bigg) \geq 1 - \delta$$

Problem: In general, computing A^* is NP hard!

Idea: Define convex relaxation of the original problem

1/9

Convexity

Convex function (Definition 8.1)

A function $f:\mathbb{R}^d \to \mathbb{R}$ is *convex* if for every $x, \tilde{x} \in \mathbb{R}^d, \lambda \in [0,1]$ we have $\boxed{f(\lambda x + (1-\lambda)\tilde{x}) \leq \lambda f(x) + (1-\lambda)f(\tilde{x})}$

Convex set (Definition 8.2)

A set ${\mathcal A}$ is *convex* if for every $a, \tilde a \in {\mathcal A}, \lambda \in [0,1]$ we have

$$\lambda a + (1 - \lambda)\tilde{a} \in \mathcal{A}$$

2/9

Convex Loss Surrogates

Convex loss surrogate (Definition 8.3)

A function $\varphi : \mathbb{R} \to \mathbb{R}_+$ is called a *convex loss surrogate* if:

• convex • non-increasing • $\varphi(0) = 1$

True loss:

$$\varphi^{\star}(u) = 1_{u \le 0}$$

Exponential loss:

$$\varphi(u) = e^{-u}$$

Hinge loss:

$$\varphi(u) = \max\{1 - u, 0\}$$

Logistic loss:

$$\varphi(u) = \log_2(1 + e^{-u})$$

Convex Soft Classifiers

- ▶ **Soft** classifiers $\mathcal{A}_{\mathsf{soft}} \subseteq \mathcal{B}_{\mathsf{soft}} := \{a : \mathbb{R}^d \to \mathbb{R}\}$
- ▶ If $a \in \mathcal{B}_{soft}$, corresponding **hard** classifier is given by sign(a)
- 1. Linear functions with convex parameter space:

$$\mathcal{A}_{\mathsf{soft}} = \{ a(x) = w^{\top} x + b : w \in \mathcal{C}_1 \subseteq \mathbb{R}^d, b \in \mathcal{C}_2 \subseteq \mathbb{R} \}$$

 $\mathcal{C}_1, \mathcal{C}_2$ are convex sets

2. Majority votes (Boosting):

$$\mathcal{A}_{soft} = \{a(x) = \sum_{i=1}^{m} w_j h_j(x) : w = (w_1, \dots, w_m) \in \Delta_m\}$$

 Δ_m is the m-dim. simplex and $h_1,\ldots,h_m:\mathbb{R}^d o\mathbb{R}$ are base classifiers

Empirical φ -Risk Minimization

If arphi and $\mathcal{A}_{\mathsf{soft}}$ are convex, we are left with a convex problem

$$R_{\varphi}(a) = \frac{1}{n} \sum_{i=1}^{n} \varphi(a(X_i)Y_i)$$

$$A_{\varphi}^{\star} \in \operatorname*{argmin}_{a \in \mathcal{A}_{\mathsf{soft}}} R_{\varphi}(a)$$

Zhang's Lemma

$$r_{\varphi}(a) = \mathbf{E}\,\varphi(a(X)Y) \qquad \qquad a_{\varphi}^{\star\star} \in \underset{a \in \mathcal{B}_{\text{soft}}}{\operatorname{argmin}} r_{\varphi}(a)$$
$$r(a) = \mathbf{E}\,\varphi^{\star}(a(X)Y) = \mathbf{P}(a(X) \neq Y) \qquad \qquad a^{\star\star} \in \underset{a \in \mathcal{B}}{\operatorname{argmin}} r(a)$$

Zhang's Lemma (Lemma 8.5)

Let $\varphi:\mathbb{R}\to\mathbb{R}_+$ be a convex loss surrogate. For any $\tilde{\eta}\in[0,1]$, $\tilde{a}\in\mathbb{R}$, let

$$H_{\tilde{\eta}}(\tilde{a}) := \varphi(\tilde{a})\tilde{\eta} + \varphi(-\tilde{a})(1-\tilde{\eta}), \qquad \qquad \tau(\tilde{\eta}) := \inf_{\tilde{a} \in \mathbb{R}} H_{\tilde{\eta}}(\tilde{a}).$$

Assume that there exist c>0 and $\nu\in[0,1]$ such that

$$\left| \left| \tilde{\eta} - \frac{1}{2} \right| \le c (1 - \tau(\tilde{\eta}))^{\nu} \qquad \text{ for any } \tilde{\eta} \in [0, 1] \right|$$

Then, for any $a: \mathbb{R}^d \to \mathbb{R}$ we have

$$\underbrace{r(\mathrm{sign}(a)) - r(a^{\star\star})}_{\substack{\text{excess risk} \\ \text{hard classifier}}} \leq 2c(\underbrace{r_{\varphi}(a) - r_{\varphi}(a^{\star\star}_{\varphi})}_{\substack{\text{excess } \varphi\text{-risk} \\ \text{soft classifier}}})^{\nu}$$

5/9

Zhang's Lemma: Examples

Exponential loss:

$$\tau(\tilde{\eta}) = 2\sqrt{\tilde{\eta}(1-\tilde{\eta})}$$

$$c = 1/\sqrt{2}$$

$$\nu = 1/2$$

► Hinge loss:

$$\tau(\tilde{\eta}) = 1 - |1 - 2\tilde{\eta}|$$

$$c = 1/2$$

$$\nu = 1$$

Logistic loss:

$$\begin{split} \tau(\tilde{\eta}) &= -\tilde{\eta} \log_2 \tilde{\eta} - (1-\tilde{\eta}) \log_2 (1-\tilde{\eta}) \\ c &= 1/\sqrt{2} \\ \nu &= 1/2 \end{split}$$

Zhang's Lemma shows that we can reliably focus on convex problems

Elements of Convex Theory

Subgradients (Definition 8.8)

Let $f:\mathcal{C}\subset\mathbb{R}^d\to\mathbb{R}$. A vector $g\in\mathbb{R}^d$ is a subgradient of f at $x\in\mathcal{C}$ if

$$f(x) - f(y) \le g^T(x - y) \qquad \text{for any } y \in \mathcal{C}$$

The set of subgradients of f at x is denoted $\partial f(x)$.

Subgradients yield **global** information (**uniform** lower bounds)

Convexity and subgradients (Theorem 8.9)

Let $f: \mathcal{C} \subseteq \mathbb{R}^d \to \mathbb{R}$ with \mathcal{C} convex:

$$f$$
 is convex \Longrightarrow for any $x \in \operatorname{int}(\mathcal{C}), \partial f(x) \neq \emptyset$
 f is convex \longleftarrow for any $x \in \mathcal{C}, \partial f(x) \neq \emptyset$

If f is convex and differentiable at x, then $\nabla f(x) \in \partial f(x)$

Convex functions that are differentiable allow to infer **global** information (i.e., subgradients) from **local** information (i.e., gradients)

This is why convex problems are "typically" amenable to computations...

To prove algorithms converge we need additional local-to-global properties:

Are Convex Problems Easy to Solve?

- Convex hull: $\operatorname{conv}(\mathcal{T}) := \left\{ \sum_{j=1}^m w_j t_j : w \in \Delta_m, t_1, \dots, t_m \in \mathcal{T}, m \in \mathbb{N} \right\}$
- ▶ Epigraph: epi(f) := { $(x,t) \in \mathcal{D} \times \mathbb{R} : f(x) \leq t$ }.

Proposition 8.6

$$\min_{t \in \mathcal{T}} c^\top t = \min_{t \in \text{conv}(\mathcal{T})} c^\top t, \qquad \max_{t \in \mathcal{T}} c^\top t = \max_{t \in \text{conv}(\mathcal{T})} c^\top t.$$

Proof: As $\mathcal{T} \subseteq \text{conv}(\mathcal{T})$, we have $\min_{t \in \mathcal{T}} c^{\top} t \ge \min_{t \in \text{conv}(\mathcal{T})} c^{\top} t$. Other direction:

$$\begin{split} \min_{t \in \operatorname{conv}(\mathcal{T})} \, c^\top t &= \min_{m \in \mathbb{N}, t_1, \dots, t_m \in \mathcal{T}, (w_1, \dots, w_m) \in \Delta_m} \, c^\top \bigg(\sum_{j=1}^m w_j t_j \bigg) \\ &= \min_{m \in \mathbb{N}, t_1, \dots, t_m \in \mathcal{T}, (w_1, \dots, w_m) \in \Delta_m} \, \sum_{j=1}^m w_j c^\top t_j \geq \min_{t \in \mathcal{T}} c^\top t. \end{split}$$

Proposition 8.7

For any $f:\mathcal{D}\subseteq\mathbb{R}^d\to\mathbb{R}$, $\min_{x\in\mathcal{D}}f(x)=\min_{(x,t)\in\mathcal{C}}t$ with $\mathcal{C}=\operatorname{conv}(\operatorname{epi}(f)).$

Local-to-Global Properties

- ► Convex: $f(y) \ge f(x) + \nabla f(x)^T (y x) \quad \forall x, y \in \mathbb{R}^d$
- ightharpoonup α -Strongly Convex:

$$\left| \exists \alpha > 0 \text{ such that } f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{\alpha}{2} \|y-x\|_2^2 \quad \forall x,y \in \mathbb{R}^d \right|$$

 \triangleright β -Smooth:

$$\left| \exists \beta > 0 \text{ such that } f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{\beta}{2} \|y-x\|_2^2 \quad \forall x,y \in \mathbb{R}^d \right|$$

 $ightharpoonup \gamma$ -Lipschitz:

$$\exists \gamma>0 \text{ such that } f(x)-\gamma\|y-x\|_2 \leq f(y) \leq f(x)+\gamma\|y-x\|_2 \ \forall x,y \in \mathbb{R}^d$$

	Strongly convex?	Smooth?	Lipschitz?
Exponential loss (in R)	NO	NO	NO
Hinge loss (in ℝ)	NO	NO	YES
Logistic loss (in R)	NO	YES	YES

However, we typically only need the domain to be a compact set of $\ensuremath{\mathbb{R}}$