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Recall Results on Binary Classification

I Zi = (Xi, Yi) ∈ Rd × {−1, 1}
I Admissible action set A ⊆ B := {a : Rd → {−1, 1}}
I True loss function `(a, (x, y)) = 1a(x)6=y = ϕ?(a(x)y) with ϕ?(u) := 1u≤0

r(a) = P(a(X) 6= Y ) a? ∈ argmin
a∈A

r(a) a?? ∈ argmin
a∈B

r(a)

R(a) =
1

n

n∑
i=1

1a(Xi)6=Yi
A? ∈ argmin

a∈A
R(a)

So far we have proved:

P

(
r(A?)− r(a?) .

√
VC(A)

n
+

√
log(1/δ)

n

)
≥ 1− δ

Problem: In general, computing A? is NP hard!

Idea: Define convex relaxation of the original problem
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Convexity

Convex function (Definition 8.1)

A function f : Rd → R is convex if for every x, x̃ ∈ Rd, λ ∈ [0, 1] we have

f(λx+ (1− λ)x̃) ≤ λf(x) + (1− λ)f(x̃)

Convex set (Definition 8.2)

A set A is convex if for every a, ã ∈ A, λ ∈ [0, 1] we have

λa+ (1− λ)ã ∈ A
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Convex Loss Surrogates

Convex loss surrogate (Definition 8.3)

A function ϕ : R→ R+ is called a convex loss surrogate if:
• convex • non-increasing • ϕ(0) = 1

True loss:
ϕ?(u) = 1u≤0

Exponential loss:
ϕ(u) = e−u

Hinge loss:
ϕ(u) = max{1− u, 0}

Logistic loss:
ϕ(u) = log2(1 + e−u)
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Convex Soft Classifiers
I Soft classifiers Asoft ⊆ Bsoft := {a : Rd → R}
I If a ∈ Bsoft, corresponding hard classifier is given by sign(a)

1. Linear functions with convex parameter space:

Asoft = {a(x) = w>x+ b : w ∈ C1 ⊆ Rd, b ∈ C2 ⊆ R}

C1, C2 are convex sets

2. Majority votes (Boosting):

Asoft = {a(x) =
m∑
i=1

wjhj(x) : w = (w1, . . . , wm) ∈ ∆m}

∆m is the m-dim. simplex and h1, . . . , hm : Rd → R are base classifiers

Empirical ϕ-Risk Minimization

If ϕ and Asoft are convex, we are left with a convex problem

Rϕ(a) =
1

n

n∑
i=1

ϕ(a(Xi)Yi) A?ϕ ∈ argmin
a∈Asoft

Rϕ(a)
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Zhang’s Lemma

rϕ(a) = Eϕ(a(X)Y ) a??ϕ ∈ argmin
a∈Bsoft

rϕ(a)

r(a) = Eϕ?(a(X)Y ) = P(a(X) 6= Y ) a?? ∈ argmin
a∈B

r(a)

Zhang’s Lemma (Lemma 8.5)

Let ϕ : R→ R+ be a convex loss surrogate. For any η̃ ∈ [0, 1], ã ∈ R, let

Hη̃(ã) := ϕ(ã)η̃ + ϕ(−ã)(1− η̃), τ(η̃) := inf
ã∈R

Hη̃(α̃).

Assume that there exist c > 0 and ν ∈ [0, 1] such that∣∣∣∣η̃ − 1

2

∣∣∣∣ ≤ c(1− τ(η̃))ν for any η̃ ∈ [0, 1]

Then, for any a : Rd → R we have

r(sign(a))− r(a??)︸ ︷︷ ︸
excess risk

hard classifier

≤ 2c(rϕ(a)− rϕ(a??ϕ )︸ ︷︷ ︸
excess ϕ-risk
soft classifier

)ν
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Zhang’s Lemma: Examples

I Exponential loss:
τ(η̃) = 2

√
η̃(1− η̃)

c = 1/
√

2
ν = 1/2

I Hinge loss:
τ(η̃) = 1− |1− 2η̃|
c = 1/2
ν = 1

I Logistic loss:
τ(η̃) = −η̃ log2 η̃ − (1− η̃) log2(1− η̃)
c = 1/

√
2

ν = 1/2

Zhang’s Lemma shows that we can reliably focus on convex problems
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Elements of Convex Theory

Subgradients (Definition 8.8)

Let f : C ⊂ Rd → R. A vector g ∈ Rd is a subgradient of f at x ∈ C if

f(x)− f(y) ≤ gT (x− y) for any y ∈ C

The set of subgradients of f at x is denoted ∂f(x).

Subgradients yield global information (uniform lower bounds)

Convexity and subgradients (Theorem 8.9)

Let f : C ⊆ Rd → R with C convex:

f is convex =⇒ for any x ∈ int(C), ∂f(x) 6= ∅
f is convex ⇐= for any x ∈ C, ∂f(x) 6= ∅

If f is convex and differentiable at x, then ∇f(x) ∈ ∂f(x)

Convex functions that are differentiable allow to infer global information (i.e.,
subgradients) from local information (i.e., gradients)

This is why convex problems are “typically” amenable to computations...
To prove algorithms converge we need additional local-to-global properties7/9



Are Convex Problems Easy to Solve?
I Convex hull: conv(T ) :=

{∑m
j=1 wjtj : w ∈ ∆m, t1, . . . , tm ∈ T ,m ∈ N

}
I Epigraph: epi(f) := {(x, t) ∈ D × R : f(x) ≤ t}.

Proposition 8.6

min
t∈T

c>t = min
t∈conv(T )

c>t, max
t∈T

c>t = max
t∈conv(T )

c>t.

Proof: As T ⊆ conv(T ), we have min
t∈T

c>t ≥ min
t∈conv(T )

c>t. Other direction:

min
t∈conv(T )

c>t = min
m∈N,t1,...,tm∈T ,(w1,...,wm)∈∆m

c>
( m∑

j=1

wjtj

)

= min
m∈N,t1,...,tm∈T ,(w1,...,wm)∈∆m

m∑
j=1

wjc
>tj ≥ min

t∈T
c>t.

Proposition 8.7

For any f : D ⊆ Rd → R, min
x∈D

f(x) = min
(x,t)∈C

t with C = conv(epi(f)).

Any minimization problem can be written in a convex form! 8/9



Local-to-Global Properties

I Convex: f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ Rd

I α-Strongly Convex:

∃α > 0 such that f(y) ≥ f(x) +∇f(x)T (y − x) +
α

2
‖y − x‖22 ∀x, y ∈ Rd

I β-Smooth:

∃β > 0 such that f(y) ≤ f(x) +∇f(x)T (y − x) +
β

2
‖y − x‖22 ∀x, y ∈ Rd

I γ-Lipschitz:

∃γ > 0 such that f(x)− γ‖y − x‖2 ≤ f(y) ≤ f(x) + γ‖y − x‖2 ∀x, y ∈ Rd

Strongly convex? Smooth? Lipschitz?
Exponential loss (in R) NO NO NO

Hinge loss (in R) NO NO YES
Logistic loss (in R) NO YES YES

However, we typically only need the domain to be a compact set of R
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