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From Bounds in Expectations to Bounds in Probability

I Bounds in expectation:

E r(A?)−r(a?) ≤ f(dim. data, complexity A)√
n



• regression

(lecture 3)

• classification (VC dim.)

(lecture 4)

• covering num., chaining

(lecture 5)

I Bounds in probability: Using sub-Gaussianity of bounded r.v.’s (lecture 6)

P

(
r(A?)− r(a?) < f(dim. data, complexity A)√

n
+ c

√
2
log(1/δ)

n

)
≥ 1− δ

Note. Bounds in probability come “for free” if problem is bounded!

Q. Can we get fast rate 1/n? Yes, with new type of concentration ineq.
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Concentration Inequality for Sums of i.i.d. Variables

Optimal Chernoff’s Bound: Convex Conjugate (Proposition 6.3)

Let E eλ(X−EX) ≤ eψ(λ) for any λ ≥ 0. Then,

P(X −EX ≥ ε) ≤ e−ψ
?(ε) P(X −EX < (ψ?)−1(log(1/δ))) ≥ 1− δ

This result immediately yields concentration inequalities for sum of i.i.d. r.v.’s.
I Eeλ

1
n

∑n
i=1(Xi−EXi) =

∏n
i=1 Ee

λ
n (Xi−EXi) ≤ enψ(λ/n) ≡ eϕ(λ)

I ϕ?(ε) = supλ≥0(λε− ϕ(λ)) = n supλ≥0(ελ/n− ψ(λ/n)) = nψ?(ε)

Concentration Inequality for Sums of i.i.d. Variables (Lemma 6.4)

P

(
1

n

n∑
i=1

(Xi −EXi) ≥ ε
)
≤ e−nψ

?(ε)

P

(
1

n

n∑
i=1

(Xi −EXi) < (ψ?)−1
(
log(1/δ)

n

))
≥ 1− δ
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Sub-Gaussian and Bernstein Random Variables

Sub-Guassian (Definition 6.5)

A random variable X is sub-Gaussian with variance proxy σ2 > 0 if

E eλ(X−EX) ≤ exp(σ2λ2/2) for any λ ∈ R

I ψ?(ε) = ε2/(2σ2)

I Bounded r.v.’s: if a ≤ X −EX ≤ b then σ2 = (b−a)2
4 (Hoeffding’s Lem. 2.1)

One-sided Bernstein’s condition (Definition 7.1)

A random variable X satisfies the one-sided Bernstein’s condition with b > 0 if

E eλ(X−EX) ≤ exp

(
(VarX)λ2/2

1− bλ

)
for any λ ∈ [0, 1/b)

I ψ?(ε) = VarX
b2 h( bε

VarX ) with h(u) = 1 + u−
√
1 + 2u for u > 0

I Bounded above r.v.’s: if X −EX ≤ c then b = c/3 (Proposition 7.4)
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Hoeffding’s Inequality vs Bernstein’s Inequality

Consider X1, . . . , Xn ∼ X i.i.d. bounded in [−c, c]

I Upper-tail bounds:

P

(
1

n

n∑
i=1

Xi −EX ≥ ε

)
≤ e−nε2/(2c2) (Hoeffding’s)

P

(
1

n

n∑
i=1

Xi −EX ≥ ε

)
≤ exp

(
−

nε2/2

VarX + cε/3

)
(Bernstein’s)

I Upper-confidence bounds:

P

(
1

n

n∑
i=1

Xi −EX <

√
2c2 log(1/δ)

n

)
≥ 1− δ (Hoeffding’s)

P

(
1

n

n∑
i=1

Xi −EX <
c

3n
log(1/δ) +

√
2(VarX) log(1/δ)

n

)
≥ 1− δ (Bernstein’s)

If VarX = 0 then we get fast rate ⇒ need to understand noise in learning
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Back to Binary Classification

To understand main ideas to get fast rate, consider binary classification:

I Zi = (Xi, Yi) ∈ Rd × {−1, 1}
I Admissible action set A ⊆ B := {a : Rd → {−1, 1}}
I True loss function `(a, (x, y)) = 1a(x)6=y

r(a) = P(a(X) 6= Y ) a? ∈ argmin
a∈A

r(a) a?? ∈ argmin
a∈B

r(a)

R(a) =
1

n

n∑
i=1

1a(Xi)6=Yi A? ∈ argmin
a∈A

R(a)

The Bayes decision rule a?? reads

a??(x) ∈ argmax
ŷ∈Y

P(Y = ŷ|X = x) =

{
1 if η(x) > 1/2

−1 if η(x) ≤ 1/2

with the unkown regression function η(x) := P(Y = 1|X = x)
(η captures noise of unkown generative model)
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Regression Function: Excess Risk and Bayes Risk

(Theorem 7.6)

For any a ∈ B r(a)− r(a??) = E[|2η(X)− 1|1a(X)6=a??(X)]

r(a??) = Emin{η(X), 1− η(X)} ≤ 1

2

r(a??) = 1/2 if and only if η(X) = 1/2 (Y contains no information on X)

I η close to 1/2: large Bayes risk large; small excess risk

I η away from 1/2: small Bayes risk large; large excess risk
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Fast Rate: Massart’s Condition

Massart’s Noise Condition (Definition 7.7)

There exists γ ∈ (0, 1/2] such that

P

(∣∣∣∣η(X)− 1

2

∣∣∣∣ ≥ γ) = 1

(γ = 0 would mean condition is void)

Fast Rate in Binary Classification (Theorem 7.10)

Let a?? ∈ A so that a? = a??. If Massart’s condition holds with γ ∈ (0, 1/2],

P

(
r(A?)− r(a?) ≤ log(|A|/δ)

γn

)
≥ 1− δ

Fast rate if |A| <∞
I Massart’s condition is strong: η uniformly bounded away from 1/2

I Weaker conditions: η arbitrarily close to 1/2, but with small probability
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Proof of Theorem 7.6 (Part I)

I Error decomposition: r(A?)− r(a?) ≤ R(a?)−R(A?)− (r(a?)− r(A?))

G(a) := R(a?)−R(a)− (r(a?)− r(a)) = R(a?)−R(a)−E[R(a?)−R(a)]

=
1

n

n∑
i=1

(g(a, Zi)−Eg(a, Zi))

with g(a, z) = 1a?(x)6=y−1a(x)6=y
I The above yields r(A?)− r(a?) ≤ G(A?)
I Bernstein’s inequality for bounded random variables yields, for any a ∈ A,

P(G(a) ≥ ε) ≤ exp

(
− nVar g(a, Z)

b2
h

(
bε

Var g(a, Z)

))
I Setting the right-hand side to δ/|A|, using that h−1(u) = u+

√
2u for u > 0

P

(
G(A?) <

b

n
log(|A|/δ) +

√
2(Var g(A?, Z)) log(|A|/δ)

n

)
≥ P

( ⋂
a∈A

{
G(a) <

b

n
log(|A|/δ) +

√
2(Var g(a, Z)) log(|A|/δ)

n

})
≥ 1−δ
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Proof of Theorem 7.6 (Part II)

I As for any a ∈ A we have |g(a, Z)| = 1a(X)6=a?(X), then

Var g(a, Z) ≤ E[g(a, Z)2] = P(a(X) 6= a?(X))

and from Theorem 7.6 and Massart’s noise condition we have

r(a)− r(a?) = E[|2η(X)− 1|1a(X)6=a?(X)] ≥ 2γP[a(X) 6= a?(X)],

which yields Var g(a, Z) ≤ 1
2γ (r(a)− r(a

?))

I Using that r(A?)− r(a?) ≤ G(A?), we can conclude

P

(
r(A?)−r(a?) < 2

3n
log(|A|/δ)+

√
(r(A?)− r(a?)) log(|A|/δ)

γn

)
≥ 1−δ.

The proof follows by solving the expression in the event with respect to the
excess risk r(A?)− r(a?), using that x < 2α/3 +

√
xα/γ for x ∈ [0, 1],

with α > 0 and γ ∈ (0, 1/2], implies x < α/γ.
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Interpolation Slow and Fast Rate: Tsybakov’s Condition

Tsybakov’s Noise Condition (Definition 7.11)

There exist α ∈ (0, 1), β > 0, and γ ∈ (0, 1/2] such that, for all t ∈ [0, γ],

P

(∣∣∣∣η(X)− 1

2

∣∣∣∣ ≤ t) ≤ βtα/(1−α)

Interpolation Slow and Fast Rate in Binary Classification (Theorem 7.13)

Let a?? ∈ A. If Tsybakov’s condition holds for α ∈ (0, 1), β > 0, γ ∈ (0, 1/2],

P

(
r(A?)− r(a?) ≤ c

(
log(|A|/δ)

n

) 1
2−α
)
≥ 1− δ

for a given constant c that depends on α, β, γ.

I if α→ 0 then we recover slow rate (condition becomes void)

I if α→ 1 then we recover fast rate (condition recovers Massart’s)

Note: A? does not depend on α: it automatically adjusts to the noise level!
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