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Recap: Regression

I Zi = (Xi, Yi) ∈ Rd ×R. A ⊆ B := {a : Rd → R}. `(a, (x, y)) = φ(a(x), y)

I Goal: Rad(A ◦ {x1, . . . , xn}) ≤
f(dimension, complexity of A)

nα

SVM (Proposition 3.2)

Let A2 := {x ∈ Rd → w>x : ‖w‖2 ≤ c}. Then

Rad(A2 ◦ {x1, . . . , xn}) ≤ max
i
‖xi‖∞c

√
d√
n

Boosting (Proposition 3.6)

Let A∆ := {x ∈ Rd → w>x : ‖w‖1 = c, w1, . . . , wd ≥ 0}. Then

Rad(A∆ ◦ {x1, . . . , xn} ≤ max
i
‖xi‖∞c

√
2log d√
n

Difference between d and log d related to difference between `2 and `1 ball, resp.
1/8



Today: Classification (binary)

I Zi = (Xi, Yi) ∈ Rd × {−1, 1}
I Admissible action set A ⊆ B := {a : Rd → {−1, 1}}
I Loss function `(a, (x, y)) = φ(a(x), y), for φ : {−1, 1}2 → R+

I Today we consider φ(ŷ, y) = 1ŷ 6=y = (1− yŷ)/2, a.k.a. the true loss

Recall. For regression we used:

(Proposition 3.1)

If the function ŷ → φ(ŷ, y) is γ-Lipschitz for any y ∈ Y, then

Rad(L ◦ {z1, . . . , zn}) ≤ γ Rad(A ◦ {x1, . . . , xn})

For classification with the true loss we can use:

(Proposition 4.1)

If φ is the true loss, then Rad(L ◦ {z1, . . . , zn}) =
1

2
Rad(A ◦ {x1, . . . , xn})

2/8



Growth Function
I A ◦ {x1, . . . , xn} = {(a(x1), . . . , a(xn)) ∈ {−1, 1}n : a ∈ A}
I |A ◦ {x1, . . . , xn}| ≤ 2n even if the class A is infinite

I Important: It can growth polynomially with n

Growth function (Definition 4.2)

The growth function of A is defined as

n ∈ N −→ τA(n) := sup
x1,...,xn∈Rd

|A ◦ {x1, . . . , xn}|

Max number of labelings of n vectors that we can obtain using classifiers in A

Yields “data-independent” bound on Rademacher complexity (Massart’s lemma)

(Proposition 4.3)

Rad(A ◦ {x1, . . . , xn}) ≤
√

2 log τA(n)

n

Note: To drive convergence to 0 as n grows, we need τA to grow polynomially
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Growth Function: Examples

I Half spaces over the real line A = {a(x) = 21x≤w−1 : w ∈ R}
0000 · · · 0
1000 · · · 0
1100 · · · 0
...
1111 · · · 1

τA(n) = n+ 1

I Intervals over the real line A = {a(x) = 21w−≤x≤w+ − 1 : w− ≤ w+}
0000 · · · 00
1000 · · · 00 0100 · · · 00 0010 · · · 00 · · · 00000 · · · 10 00000 · · · 01
1100 · · · 00 0110 · · · 00 0011 · · · 00 · · · 0000 · · · 11
...
1111 · · · 11

τA(n) = 1 + n(n+ 1)/2

Problem: not always easy to compute! Solution: VC dimension
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VC Dimension

VC dimension (Definition 4.6)

VC(A) := max{n ∈ N : τA(n) = 2n}

If τA(n) = 2n for all integer n, then VC(A) =∞

I Half spaces over the real line A = {a(x) = 21x≤w−1 : w ∈ R}
τA(n) = n+ 1 τA(1) = 21 and τA(2) = 3 < 22 =⇒ VC(A) = 1

I Intervals over the real line A = {a(x) = 21w−≤x≤w+ − 1 : w− ≤ w+}
τA(n) = 1 + n(n+ 1)/2 τA(2) = 22 and τA(3) = 7 < 23=⇒ VC(A) = 2

Key point: We can compute the VC dimension without computing τA
I Sufficient to find k such that τA(k) = 2k and τA(k + 1) < 2k+1

I This can be done without computing τA. Sufficient to:
Find distinct x1, . . . , xk that are “shattered” by A ⇒ VC(A) ≥ k
(i.e., classifiers in A can assign all possible 2k labelings to these points)
Show that no set of k+ 1 points can be “shattered” by A ⇒ VC(A) < k + 1
(i.e., for any set of k + 1 points there is a label that can not be assigned)

5/8



Bounds using VC Dimension

If VC(A) is finite, then τA eventually grows polynomially

Sauer-Shelah’s Lemma (Lemma 4.11)

τA(n)

= 2n if n ≤ VC(A)

≤
(

en
VC(A)

)VC(A)

if n > VC(A)

(Proposition 4.13)

For any x1, . . . , xn ∈ Rd we have

Rad(A ◦ {x1, . . . , xn}) ≤
√

2 VC(A) log(en/VC(A))
n

I This bound is “data-independent” as it holds for any x1, . . . , xn
(as such, it does not allow to exploit the statistical nature of the data)

I We will remove the log-term using covering numbers and chaining
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Covering and Packing Numbers

A pseudometric space (S, ρ) is a set S and a function ρ : S × S → R+ (called a
pseudometric) such that, for any x, y, z ∈ S we have:

I ρ(x, y) = ρ(y, x) (symmetry)

I ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality)

I ρ(x, x) = 0

A metric space is obtained if one further assumes that ρ(x, y) = 0 implies x = y

Covering and Packing Numbers (Definition 4.13)

Let (S, ρ) be a pseudometric space, ε > 0

I The set C ⊆ S is a ε-cover of (S, ρ) if for every x ∈ S there exists y ∈ C
such that ρ(x, y) ≤ ε. The set C ⊆ S is a minimal ε-cover if there is no
other ε-cover with lower cardinality. The cardinality of any minimal
ε-cover is the ε-covering number, denoted by Cov(S, ρ, ε)

I The set P ⊆ S is a ε-packing of (S, ρ) if for every x, x′ ∈ P we have
ρ(x, x′) > ε. The set P ⊆ S is a maximal ε-packing if there is no other
ε-packing with greater cardinality. The cardinality of any maximal
ε-packing is the ε-packing number, denoted by Pack(S, ρ, ε)
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Covering and Packing Numbers. Properties

Duality (Proposition 4.14)

Cov(S, ρ, ε) ≤ Pack(S, ρ, ε) ≤ Cov(S, ρ, ε/2)

Covering and packing numbers typically grow exponentially with the dimension
(in so-called “Logarithmic metric entropy” spaces)

Bounded Balls (Proposition 4.15)

Bdr := {y ∈ Rd : ‖y‖ ≤ r} be the d-dim. ball with radius r ≥ 0. If ε ≤ r, then

(
r

ε

)d
≤ Cov(Bdr , ‖ · ‖, ε) ≤ Pack(Bdr , ‖ · ‖, ε) ≤

(
3r

ε

)d
Proof: Volume argument

Covering and packing numbers grow exponentially also w.r.t. the VC dimension.
This, along with chaining, will allow us to remove the log-term in Prop. 4.13
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