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Recap: Regression

SVM (Proposition 3.2)

» Z; = (X;,Y:) eERIXR. ACB:={a:R? = R}. {a,(z,y)) = d(a(z),y)

f(dimension, complexity of A)

» Goal: Rad(Ao{xy,...,2,}) < a

Let Ay := {r € R? - w'x: |w|2 < c}. Then

\

Vd
Rad(As 0 {z1,...,2,}) < max ||xz||oocﬁ
Boosting (Proposition 3.6)
Let Ap :={z € R = w'x:|w|; =c,wy,...,wqg > 0}. Then
V2logd
Rad(Aa o {z1,...,z,} < max ||xi||ooci
i \/'E

J

Difference between d and log d related to difference between £ and ¢ ball, resp.
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Today: Classification (binary)

vV v v Vv

Z; = (X,,Y;) S R4 x {—1, ].}

Admissible action set A C B:={a: R = {~1,1}}

Loss function £(a, (x,y)) = ¢(a(x),y), for ¢ : {—1,1}? — R
Today we consider ¢(7,y) = 132, = (1 —yy)/2, a.k.a. the true loss

Recall. For regression we used:

(Proposition 3.1)

If the function § — ¢(7,y) is y-Lipschitz for any y € Y, then

|Rad(£ o{z1,...,2n}) <yRad(Ao{zx1,...,2,}) |

For classification with the true loss we can use:
(Proposition 4.1)

If ¢ is the true loss, then

Rad(Lo{z1,...,2n}) = %Rad(.A o{xy,
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Growth Function

> Ao{x1,...,z,} = {(a(z1),...,a(zy)) € {-1,1}":a € A}
» [Ao{xy,...,z,}| < 2" even if the class A is infinite
» Important: It can growth polynomially with n

Growth function (Definition 4.2)

The growth function of A is defined as

neN-—71y(n):= sup |Ao{z,...,z,}]
T1,...,Ln, ERY

Max number of labelings of n vectors that we can obtain using classifiers in A

Yields “data-independent” bound on Rademacher complexity (Massart's lemma)

2log T4(n)

Rad(Ao{z1,...,x,}) < -

Note: To drive convergence to 0 as n grows, we need 74 to grow polynomially



Growth Function: Examples

» Half spaces over the real line A = {a(z) =21,<,—1: w € R}

0000---0
1000 -- -0
1100---0
1111

Ta(n)=n+1

> Intervals over the real line A = {a(z) =21~ <4<+ —1:w™ <w'}

0000 - - - 00
1000---00  0100---00  0010---00  ---  00000---10 00000 --01
1100---00  0110---00  0011---00  ---  0000---11

11111

[7a(n) =1+ n(n+1)/2]

Problem: not always easy to compute! Solution: VC dimension



VC Dimension

VC dimension (Definition 4.6)

[VC(A) = max{n € N : 74(n) = 2} |

If 74(n) = 2™ for all integer n, then VC(A) = oo

» Half spaces over the real line A = {a(z) =21,<,—1: w € R}
7a(n) =n+1|74(1) =2 and 74(2) =3 <22 = VC(A) =1

> Intervals over the real line A = {a(z) = 21,-<, <+ —1:w™ <w'}
[7a(n) = 14 n(n +1)/2| 74(2) = 22 and 74(3) = 7 < 2= VC(A) = 2

Key point: We can compute the VC dimension without computing 74
» Sufficient to find k such that 74(k) = 2% and 74(k + 1) < 2k*!
» This can be done without computing 74. Sufficient to:
e Find distinct x1,...,zx that are “shattered” by A = VC(A) > k
(i.e., classifiers in A can assign all possible 2% labelings to these points)
o Show that no set of k& + 1 points can be “shattered” by A = VC(A) < k+1
(i.e., for any set of k + 1 points there is a label that can not be assigned)



Bounds using VC Dimension

If VC(A) is finite, then 74 eventually grows polynomially

Sauer-Shelah’s Lemma (Lemma 4.11)

=20 if n <VC(A)

TA(n) o \VEA)
< (vc(A)) if n > VC(A)

,

(Proposition 4.13)

For any z1,...,z, € R we have
2VC 1 Ve
Rad(Ao {z1,...,20}) < \/ (A) log(en/VC(A))
n
» This bound is “data-independent” as it holds for any x1,..., 2,

(as such, it does not allow to exploit the statistical nature of the data)

» We will remove the log-term using covering numbers and chaining



Covering and Packing Numbers

A pseudometric space (S, p) is a set S and a function p: S x S — R, (called a
pseudometric) such that, for any z,y,z € S we have:

> p(z,y) = ply,z) (symmetry)
> p(z,2) < p(x,y) + p(y, ) (triangle inequality)
> p(z,z) =0
A metric space is obtained if one further assumes that p(z,y) = 0 implies x =y

Covering and Packing Numbers (Definition 4.13)

Let (S, p) be a pseudometric space, € > 0

» The set C C S is a e-cover of (S, p) if for every x € S there exists y € C
such that p(z,y) <e. The set C C S is a minimal e-cover if there is no
other e-cover with lower cardinality. The cardinality of any minimal
e-cover is the e-covering number, denoted by Cov(S, p,€)

» The set P C S is a e-packing of (S, p) if for every x, 2’ € P we have
p(x,2") > e. The set P C S is a maximal e-packing if there is no other
e-packing with greater cardinality. The cardinality of any maximal
e-packing is the e-packing number, denoted by Pack(S, p, €)




Covering and Packing Numbers. Properties

’Cov(S,p,E) < Pack(S, p,e) < Cov(S, p,e/2) ‘

Covering and packing numbers typically grow exponentially with the dimension
(in so-called “Logarithmic metric entropy” spaces)

Bd = {y € RY: ||y|| < r} be the d-dim. ball with radius 7 > 0. If ¢ < r, then

- d
(Z) < Cov(BY, |- [l€) < Pack(B, | - |.€) < (3>

Proof: Volume argument

Covering and packing numbers grow exponentially also w.r.t. the VC dimension.
This, along with chaining, will allow us to remove the log-term in Prop. 4.13



