## Algorithmic Foundations of Learning

# Lecture 3 Rademacher complexity. Examples

Patrick Rebeschini

Department of Statistics University of Oxford

## Recap

► Goal:

$$\underbrace{\mathbf{E}\,\,r(A^\star) - r(a^\star)}_{\text{estimation error for ERM}} \lesssim \frac{f(\text{dimension})}{n^\alpha}$$

Sufficient:

$$\mathbf{E}\sup_{a\in\mathcal{A}}\{r(a)-R(a)\}\leq \frac{f(\mathsf{dimension},\mathsf{complexity}\;\mathsf{of}\;\mathcal{A})}{n^\alpha}$$

#### Bound in expectation (Proposition 2.3)

If the loss function  $\ell$  is bounded by c, we have

$$\mathbf{E} \max_{a \in \mathcal{A}} \{ r(a) - R(a) \} \le c \frac{\sqrt{2 \log |\mathcal{A}|}}{\sqrt{n}}$$

#### Bound in expectation via Rademacher complexity (Proposition 2.11)

$$\mathbf{E} \sup_{a \in \mathcal{A}} \{ r(a) - R(a) \} \le 2 \, \mathbf{E} \, \mathrm{Rad}(\mathcal{L} \circ \{ Z_1, \dots, Z_n \})$$

with  $\mathcal{L} \circ \{Z_1, \dots, Z_n\} := \{(\ell(a, Z_1), \dots, \ell(a, Z_n)) \in \mathbb{R}^n : a \in \mathcal{A}\}$ 

### Note

If  $|\mathcal{A}| < \infty$ , Massart's Lemma recovers previous result (modulo constant)

## Massart's Lemma (Lemma 2.9)

Let  $\mathcal{T} \subseteq \mathbb{R}^n$  and  $\bar{t} := \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} t$ . We have

$$\operatorname{Rad}(\mathcal{T}) \leq \max_{t \in \mathcal{T}} \|t - \bar{t}\|_2 \frac{\sqrt{2\log |\mathcal{T}|}}{n}$$

We have

$$ightharpoonup |\mathcal{T}| \leq |\mathcal{A}|$$

$$||t - \bar{t}||_2 \le ||t||_2 = \sqrt{\sum_{i=1}^n \ell(a, Z_i)^2} \le \sqrt{nc^2} = c\sqrt{n}$$

so we obtain

$$\mathbf{E} \max_{a \in \mathcal{A}} \{ r(a) - R(a) \} \le 2c \frac{\sqrt{2 \log |\mathcal{A}|}}{\sqrt{n}}$$

For the proof, let's review some basic properties of conditional expectations...

## Properties of conditional expectations

Let X, Y be real-valued random variables. The following can be made precise:

- ightharpoonup EX is the "best" estimate of X with no information. It is a constant
- ightharpoonup **E**[X|Y] is the "best" estimate of X if we know Y. It is a random variable
- ▶ If X and Y are independent, Y does not contain any information on X and  $\mathbf{E}[X|Y] = \mathbf{E}X$  independence property (a)
- ▶ If f is a deterministic function, if we know Y we also know f(Y) and  $\mathbf{E}[Xf(Y)|Y] = f(Y)\mathbf{E}[X|Y] \qquad \text{``taking out what is known'' property (b)}$
- ▶ Law of total expectation ("Ignorants win in life" phenomenon)

$$\mathbf{EE}[X|Y] = \mathbf{E}X$$
 "tower" property (c)

Remark: the above holds with  $\mathbf{E} \to \mathbf{E}[\,\cdot\,|Z]$ ,  $\mathbf{E}[\,\cdot\,|Y] \to \mathbf{E}[\,\cdot\,|Y,Z]$  possibly using the notion of conditional independence.

## Proof: Symmetrization

#### Proof

 $lackbox{
ightharpoonup} S=\{Z_1,\ldots,Z_n\}$  and  $\widetilde{S}=\{\widetilde{Z}_1,\ldots,\widetilde{Z}_n\}$  be independent samples with same distribution

$$r(a) = \mathbf{E}\,\ell(a,Z) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}\,\ell(a,\widetilde{Z}_i) \stackrel{\text{(a)}}{=} \frac{1}{n}\sum_{i=1}^{n}\mathbf{E}[\ell(a,\widetilde{Z}_i)|S]$$

▶ By properties of conditional expectations (tower property and others) we get

$$\begin{split} \mathbf{E} \sup_{a \in \mathcal{A}} \{r(a) - R(a)\} &= \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \left( \mathbf{E}[\ell(a, \widetilde{Z}_{i}) | S] - \ell(a, Z_{i}) \right) \\ &\stackrel{\text{(b)}}{=} \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[\ell(a, \widetilde{Z}_{i}) - \ell(a, Z_{i}) | S] \\ &\leq \mathbf{E} \mathbf{E} \left[ \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \{\ell(a, \widetilde{Z}_{i}) - \ell(a, Z_{i})\} \middle| S \right] \\ &\stackrel{\text{(c)}}{=} \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \{\ell(a, \widetilde{Z}_{i}) - \ell(a, Z_{i})\} \\ &= \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \Omega_{i} \{\ell(a, \widetilde{Z}_{i}) - \ell(a, Z_{i})\} \\ &\leq 2 \mathbf{E} \sup_{a \in \mathcal{A}} \frac{1}{n} \sum_{i=1}^{n} \Omega_{i} \ell(a, Z_{i}) = 2 \mathbf{E} \operatorname{Rad}(\mathcal{L} \circ \{Z_{1}, \dots, Z_{n}\}) \end{split}$$

## Supervised Learning. Regression

Today, we consider the setting of regression:

- $ightharpoonup Z_i = (X_i, Y_i) \in \mathbb{R}^d \times \mathbb{R}$
- ▶ Admissible action set  $\mathcal{A} \subseteq \mathcal{B} := \{a : \mathbb{R}^d \to \mathbb{R}\}$
- ▶ Loss function is of the form  $\ell(a,(x,y)) = \phi(a(x),y)$ , for  $\phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$

### (Proposition 3.1)

If the function  $\hat{y} \to \phi(\hat{y},y)$  is  $\gamma$ -Lipschitz for any  $y \in \mathcal{Y}$ , then

$$ig| \mathtt{Rad}(\mathcal{L} \circ \{z_1, \dots, z_n\}) \leq \gamma \mathtt{Rad}(\mathcal{A} \circ \{x_1, \dots, x_n\}) ig|$$

with  $\mathcal{A} \circ \{x_1, \dots, x_n\} := \{(a(x_1), \dots, a(x_n)) \in \mathbb{R}^n : a \in \mathcal{A}\}$ 

▶ New goal:  $\operatorname{Rad}(\mathcal{A} \circ \{x_1, \dots, x_n\}) \leq \frac{f(\operatorname{dimension}, \operatorname{complexity} \text{ of } \mathcal{A})}{n^{\alpha}}$ 

## Linear predictors $\ell_2/\ell_2$ constraints (SVM)

### (Proposition 3.2)

Let  $\mathcal{A}_2 := \{x \in \mathbb{R}^d \to w^\top x : w \in \mathbb{R}^d, \|w\|_2 \le c\}$ . Then,

$$\operatorname{Rad}(\mathcal{A}_{2}\circ\{x_{1},\ldots,x_{n}\})\leq c\frac{\max_{i}\|x_{i}\|_{2}}{\sqrt{n}}$$

Note: typically,  $\max_i \|x_i\|_2 \sim \sqrt{d}$  as

$$||x||_2 = \sqrt{\sum_{i=1}^d x_i^2} \le \sqrt{d} \max_{i \in [d]} |x_i|$$

5/10

## **Proof**

$$\begin{split} &n\operatorname{Rad}(\mathcal{A}_2\circ\{x_1,\ldots,x_n\})\\ &= \mathbf{E}\sup_{w\in\mathbb{R}^d:\|w\|_2\leq 1}\sum_{i=1}^n\Omega_iw^\top x_i = \mathbf{E}\sup_{w\in\mathbb{R}^d:\|w\|_2\leq 1}w^\top \Big(\sum_{i=1}^n\Omega_ix_i\Big)\\ &\leq \sup_{w\in\mathbb{R}^d:\|w\|_2\leq 1}\|w\|_2\,\mathbf{E}\Big\|\sum_{i=1}^n\Omega_ix_i\Big\|_2 \quad \text{by Cauchy-Schwarz's ineq. } x^\top y\leq \|x\|_2\|y\|_2\\ &\leq \mathbf{E}\sqrt{\Big\|\sum_{i=1}^n\Omega_ix_i\Big\|_2^2}\leq \sqrt{\mathbf{E}\Big\|\sum_{i=1}^n\Omega_ix_i\Big\|_2^2} \quad \text{by Jensen's, as } x\to \sqrt{x} \text{ is concave}\\ &= \sqrt{\mathbf{E}\sum_{j=1}^d\Big(\sum_{i=1}^n\Omega_ix_{i,j}\Big)^2}\\ &= \sqrt{\mathbf{E}\sum_{j=1}^d\sum_{i=1}^n(\Omega_ix_{i,j})^2} \quad \text{as the } \Omega_i\text{'s are independent and } \mathbf{E}\Omega_i = 0\\ &= \sqrt{\mathbf{E}\sum_{i=1}^n\|x_i\|_2^2}\leq \sqrt{n}\max_i\|x_i\|_2 \quad \text{as } \Omega_i^2 = 1. \end{split}$$

7/10

## Linear predictors $simplex/\ell_{\infty}$ constraints (Boosting)

Define *d*-dimensional simplex:  $\Delta_d := \{ w \in \mathbb{R}^d : ||w||_1 = 1, w_1, \dots, w_d \ge 0 \}.$ 

Let  $\mathcal{A}_{\Delta} := \{x \in \mathbb{R}^d \to w^{\top}x : w \in c\Delta_d\}$ . Then

$$\operatorname{Rad}(\mathcal{A}_{\Delta} \circ \{x_1, \dots, x_n\} \leq c \frac{\max_i \|x_i\|_{\infty}}{\sqrt{n}} \sqrt{2\log d}$$

Note: typically,  $\max_i ||x_i||_{\infty} \not\propto d$ , so overall dependence is  $\sim \sqrt{\log d}$ 

(Similar result for Proposition 3.3 for  $\ell_1/\ell_\infty$  constraints. In that case we present a different argument in the lecture notes, based on Hölder's inequality  $x^\top y \leq \|x\|_1 \|y\|_\infty$ . The same argument used for the  $simplex/\ell_\infty$  case also works)

**Remark:** Difference between d and  $\log d$  is ultimately linked with the different dependence with the dimension d for the  $\ell_2$  and  $\ell_1$  ball, respectively.

## Proof

We have

$$n\operatorname{Rad}(\mathcal{A}_{\Delta}\circ\{x_1,\ldots,x_n\}) = \mathbf{E}\sup_{w\in\Delta_d}\sum_{i=1}^n\Omega_i w^\top x_i = \mathbf{E}\sup_{w\in\Delta_d}w^\top \Big(\sum_{i=1}^n\Omega_i x_i\Big)$$

Note that for any vector  $v = (v_1, \dots, v_d) \in \mathbb{R}^d$  we have

$$\sup_{w \in \Delta_d} w^\top v = \max_{j \in 1:d} v_j$$

► Then,

$$\mathbf{E} \sup_{w \in \Delta_d} w^\top \Big( \sum_{i=1}^n \Omega_i x_i \Big) = \mathbf{E} \max_{j \in 1:d} \sum_{i=1}^n \Omega_i x_{i,j} = n \operatorname{Rad}(\mathcal{T})$$

with 
$$\mathcal{T} = \{t_1 \dots, t_d\}$$
 with  $t_j = (x_{1,j}, \dots, x_{d,j})$  for any  $j \in \{1, \dots, d\}$ 

▶ The proof follows by Massart's lemma as

$$\operatorname{Rad}(\mathcal{T}) \leq \max_{t \in \mathcal{T}} \|t\|_2 \frac{\sqrt{2\log |\mathcal{T}|}}{n} \leq \sqrt{n} \max_i \|x_i\|_\infty \frac{\sqrt{2\log d}}{n}$$

### Feed-forward neural networks

▶ A layer  $l^{(k)}: \mathbb{R}^{d_{k-1}} \to \mathbb{R}^{d_k}$  consists of a coordinate-wise composition of an activation function  $\sigma: \mathbb{R} \to \mathbb{R}$  and an affine map:

$$l^{(k)}(x) := \sigma(W^{(k)}x + b^{(k)})$$

▶ A neural network with depth  $\iota$  is the function (with  $d_0 = d$ ,  $d_{\iota} = 1$ )

$$f_{nn}^{\iota}: x \in \mathbb{R}^d \longrightarrow f_{nn}^{(\iota)}(x) := l^{(\iota)}(\cdots l^{(2)}(l^{(1)}(x))\cdots)$$

### (Proposition 3.6)

Let 
$$\mathcal{A}_{nn}^{(\iota)} := \{ x \in \mathbb{R}^d \to f_{nn}^{(\iota)}(x) : \|\mathbf{w}^{(k)}\|_{\infty} \le \omega, \|b^{(k)}\|_{\infty} \le \beta \ \forall k \}.$$