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Recap

> Goal: E r(4*) - r(a*) < f(dimension)
—

na

estimation error for ERM

i i lexi f
» Sufficient: Esup{r(a) — R(a)} < f(dlmensmn’(::p exity of A)
acA

Bound in expectation (Proposition 2.3)

If the loss function ¢ is bounded by ¢, we have

v/2log | A|
Ergleajc{r(a) —R(a)} < CT

\ J

Bound in expectation via Rademacher complexity (Proposition 2.11)

E sug{r(a) —R(a)} <2ERad(Lo{Z1,...,Z,})

with Lo{Zy,.... Z,} :={(l(a, Z1),...,0(a,Z,)) ER" :a € A}




Note

If |A| < oo, Massart's Lemma recovers previous result (modulo constant)

Let 7T CR™ and t := ﬁ > 7t We have

. +/2log
Rad(T) < max [[t — ]|, X2 28171
teT n

We have
> T =Lo{Zy,....Z,} ={(l(a, Z1),...,0a,Z,)) ER":a € A}
> |T] < |A]

v

It =l < ltll2 = /1y @, Ze)? < V2 = ey

so we obtain

Emax{r(a) - R(a)} < 25—

For the proof, let's review some basic properties of conditional expectations...



Properties of conditional expectations
Let X,Y be real-valued random variables. The following can be made precise:

EX is the “best” estimate of X with no information. It is a

v

v

E[X|Y] is the "best” estimate of X if we know Y. It is a

v

If X and Y are independent, Y does not contain any information on X and

EX|Y]=EX independence property (a)

v

If f is a deterministic function, if we know Y we also know f(Y") and
EXf(Y)|Y] = f(Y)E[X]|Y] “taking out what is known" property (b)
> Law of total expectation ( “Ignorants win in life” phenomenon)

EEX|Y] =EX “tower” property (c)

Remark: the above holds with E — E[-|Z], E[- Y] — E[-|Y, Z] possibly using
the notion of conditional independence.



Proof: Symmetrization

Proof
> S={Z,...,Zn} and 8§ = {Z1, .. Zn} be independent samples with same distribution

a

r(a) = El(a, Z) ZEe(az = ZE[eaz 5]

> By properties of conditional expectations (tower property and others) we get
n

1 ~
B sup{r(a) = R(@)} = B sup >" (Ele(a, Z:)18] — t(a, Z2) )

acA i1

(*)Esup fZEE(a Zi) — U(a, Z;)|S]
a€EA T T

<EE[supr{EaZ)*€CLZ)}) ]

ac AN
Yg sup EZ{Z(a Zi) — b(a, Z;)}
(LEA""L et ’ 7 k) K3

—Eslelaf;Q{EaZ)fé(aZ)}

< 2E sup fZQ i(a,Z;) = 2ERad(L o {Z1,...,Zn})
acA T i=1



Supervised Learning. Regression

Today, we consider the setting of regression:
» Z; = (X;,Y;) eRIx R
» Admissible action set A C B := {a: R? — R}
> Loss function is of the form ¢(a, (z,y)) = ¢(a(z),y), for $ : R x R — R

If the function § — ¢(g,y) is v-Lipschitz for any y € ), then

’Rad(ﬁo {z1,...,2n}) < ’yRad(AO{:L'l,...,:cn})‘
with Ao {z1,...,2,} = {(a(z1),...,a(z,)) € R" : a € A}

f(dimension, )

» New goal: |Rad( Ao {xy,...,x,}) < o




Linear predictors ¢5/ls constraints (SVM)

(Proposition 3.2)

Let Ay ;= {z € R? - w'x:w € R?, |lw|z < c}. Then,

Rad(As o {zy,...,2,}) < ¢

max; ||z

Vn

Note: typically, max; ||z;||s ~ /d as

[ zlle =

2 < Vdmax |z
i€[d]

/10



Proof

nRad(Az o {z1,...,2n})

n
T T
=E sup E Quw z;=E sup w ( E szz)
weRd: w2 <1 527 weR:[|w||2<1 i=1

< sup [lw]|2 EH Zﬂlml , by Cauchy-Schwarz’s ineq. 'y < |||yl
i=1

weR:||wl|2<1

2
by Jensen's, as x — /7 is concave
2

1=1

d

. Ez(igixi,y

Jj=1

2 n

n

d
= EZ Z(Qﬂc”)2 as the €;'s are independent and EQ; =0
j=1i=1

n
= B mill} < vamax|oi. as 9 =1.
1

i=1




Linear predictors simplex/{y, constraints (Boosting)

Define d-dimensional simplex: Ay := {w € R?: ||w||; = 1, w1, ..., wy > 0}.

Let Ap == {z € R - w'x:w e cAy}. Then

Rad(Ap o {z1,...,7p} < Hlaxi\/%o\/ﬂogd
n

Note: typically, max; ||z;||~ o¢ d, so overall dependence is ~ \/log d

(Similar result for Proposition 3.3 for £ /¢, constraints. In that case we present
a different argument in the lecture notes, based on Holder's inequality
2Ty < ||z]/1||yl|co- The same argument used for the simplex/{., case also works)

Remark: Difference between d and log d is ultimately linked with the different
dependence with the dimension d for the ¢5 and ¢; ball, respectively.



Proof

» We have

n n
nRad(Aa o {z1,...,2n}) = E sup ZinTwi =E sup wT(ZQixi)
i=1

wEAg i—1 wEAg

» Note that for any vector v = (v1,...,v4) € R? we have

T
Sup w v = max vj
wEAy jel:d

» Then,
E sup wT(Z szz) = E max Z Qix;; =nRad(T)
i=1 i=1

weAy jeld
with 7 = {t1 ..., ta} with t; = (z1,5,...,2a,;) forany j € {1,...,d}
» The proof follows by Massart's lemma as

v/2log |T] -

n =

V2logd

Rad(T) < ma [tz Vima oo Y= 25



Feed-forward neural networks

> Alayer [() : Rde-1 — R consists of a coordinate-wise composition of an
activation function ¢ : R — R and an affine map:

1) (2) := o(WF g 4 p*))

» A neural network with depth ¢ is the function (with dy = d, d, = 1)

fon i@ R — [1)@) = 101DV @) - -)

(Proposition 3.6)

Let A% = {z e R = £{9(2) : [ WPl < w, [|6®||oe < B VK.

Rad(AY) o {z1,.. xn}<—( Zw + W' max || 24| oo 2log(2d)>
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