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Offline statistical learning: prediction

Offline learning: prediction
Given a batch of observations (images & labels)
interested in predicting the label of a new image
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Offline statistical learning: prediction

1. Observe training data Z1, . . . , Zn i.i.d. from unknown distribution

2. Choose action A ∈ A ⊆ B
3. Suffer an expected/population loss/risk r(A), where

a ∈ B −→ r(a) := E `(a, Z)

with ` is an prediction loss function and Z is a new test data point

Goal: Minimize the estimation error defined by the following decomposition

r(A)− inf
a∈B

r(a)︸ ︷︷ ︸
excess risk

= r(A)− inf
a∈A

r(a)︸ ︷︷ ︸
estimation error

+ inf
a∈A

r(a)− inf
a∈B

r(a)︸ ︷︷ ︸
approximation error

as a function of n and notions of “complexity” of the set A of the function `

Note: Estimation/Approximation trade-off, a.k.a. complexity/bias
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ERM and Uniform Learning

I A natural framework is given by the empirical risk minimization (ERM)

a ∈ B −→ R(a) :=
1

n

n∑
i=1

`(a, Zi)

I A natural algorithm is given by the minimizer of the ERM

A? ∈ argmin
a∈A

R(a)

I Uniform Learning: The estimation error is bounded by

r(A?)− r(a?)︸ ︷︷ ︸
estimation error for ERM

≤ sup
a∈A
{r(a)−R(a)}+ sup

a∈A
{R(a)− r(a)}︸ ︷︷ ︸

Statistics

I Statistical Learning deals with bounding the Statistics term (Vapnik 1995)

I Generalization Error: r(a)−R(a)≈ 1
n(test)

∑n(test)

i=1 `(a, Z
(test)
i )− 1

n

∑n
i=1`(a, Zi)
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Goal: derive bounds in expectation

I Goal: E r(A?)− r(a?)︸ ︷︷ ︸
estimation error for ERM

.
f(dimension)

nα

I By uniform learning, it suffices to bound the suprema of random processes:

Eg(Z1, . . . , Zn) ≤ f(dimension, complexity of A)

nα

with g(Z1, . . . , Zn) = sup
a∈A
{r(a)−R(a)} = sup

a∈A

{
E`(a, Z)− 1

n

n∑
i=1

`(a, Zi)

}

I We aim to derive a uniform, non-asymptotic Law of Large Numbers

I In machine learning, dimension can be � 106, e.g., number of pixels

I Ideally, f(dimension)� dimension, e.g., f(dimension) ∼ log(dimension)

I Ideally, α = 1 (fast rate)
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Hoeffding’s Lemma (Lemma 2.1)

Let X be a bounded random variable a ≤ X −EX ≤ b. Then, for any λ ∈ R,

E eλ(X−EX) ≤ eλ
2(b−a)2/8

Proof

I W.l.o.g., take EX = 0. Let ψ(λ) = logE eλX

ψ′(λ) =
E[XeλX ]

E eλX
ψ′′(λ) =

E[X2eλX ]

E eλX
−
(
E[XeλX ]

E eλX

)2

I ψ′′(λ) is the variance of X under the distribution Q(dx) = eλx

E eλX
P(dx)

I ψ′′(λ) = VarQ
(
X − a+ b

2

)
≤ EQ

[(
X − a+ b

2

)2]
≤ (b− a)2

4

I Fundamental Thm of Calculus: ψ(λ) =

∫ λ

0

∫ µ

0

ψ′′(ρ)dρdµ ≤ λ2(b− a)2

8
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Maximum of finitely many bounded random variables (Proposition 2.2)

Let X1, . . . , Xn be n centered random variables bounded in the interval [a, b].

Emax
i∈[n]

Xi ≤
b− a√

2

√
log n

Proof

I X = maxi∈[n]Xi. Exponentiate. Jensen’s ineq. as x→ eλx (λ > 0) is convex:

EX =
1

λ
log eλEX ≤ 1

λ
logE eλX

I Bound maximum of non-negative numbers by the sum:

E eλX = E eλmaxi∈[n]Xi = Emax
i∈[n]

eλXi ≤ E
n∑
i=1

eλXi =
n∑
i=1

E eλXi

I Put everything together and use Hoeffding’s lemma (E eλXi ≤ eλ
2(b−a)2/8):

Emax
i∈[n]

Xi ≤
1

λ
log

n∑
i=1

eλ
2(b−a)2/8 =

1

λ
logn+

λ(b− a)2

8

I Optimizing the bound α/λ+ λβ over λ > 0 yields the minimum is at λ =
√
α/β

and the optimal value 2
√
αβ = (b− a)

√
logn/2
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Bound in expectation for finitely-many actions

Bound in expectation (Proposition 2.3)

If the loss function ` is bounded by c, we have

Emax
a∈A
{r(a)−R(a)} ≤ c

√
2 log |A|√

n

Proof: Same as above, using the independence of the data Z1, . . . , Zn
(note that for each a ∈ A, r(a)−R(a) is a centered random variable as ER(a) = r(a))

I Recall wish: E sup
a∈A
{r(a)−R(a)} ≤ f(dimension, complexity of A)

nα

I The dimension of the data is superseded by the boundedness assumption

I α = 1/2, slow rate

I When |A| <∞, log |A| is a valid notion of complexity of the problem

I When |A| =∞, upper bound is trivial and we need another notion of complexity
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Rademacher complexity

Rademacher complexity (Definition 2.5)

The Rademacher complexity of a set T ⊆ Rn is defined as

Rad(T ) := E sup
t∈T

1

n

n∑
i=1

Ωiti

where Ω1, . . . ,Ωn ∈ {−1, 1} are i.i.d. uniform random variables (Rademacher)

I Measures of complexity: describes how well elements in T can replicate the
sign pattern of a uniform random signal in Rn (see Problem 1.5)

I Useful properties:

Rad(cT + v) = |c| Rad(T ) (Proposition 2.6)

Rad(T + T ′) = Rad(T ) + Rad(T ′) (Proposition 2.7)

Rad(conv(T )) = Rad(T ) (Proposition 2.8)

with conv(T ) = {
∑m
j=1 wjtj : w ∈ ∆m, t1, . . . , tm ∈ T ,m ∈ N}
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Rademacher complexity

Massart’s Lemma (Lemma 2.9)

Let T ⊆ Rn and let v ∈ Rn be any vector. We have

Rad(T ) ≤ max
t∈T
‖t− v‖2

√
2 log |T |
n

Proof: Similar to ones given above. Problem 1.6

Contraction property - Talagrand’s Lemma (Lemma 2.10)

Let T ⊆ Rn. For each i ∈ {1, . . . , n}, let fi : R→ R be a γ-Lipschitz function. Then,

Rad((f1, . . . , fn) ◦ T ) ≤ γ Rad(T )

with (f1, . . . , fn) ◦ T := {(f1(t1), . . . , fn(tn)) ∈ Rn : t ∈ T }

Proof: Problem 1.7
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