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Offline statistical learning: prediction
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Offline learning: prediction
Given a batch of observations (images & labels)
interested in predicting the label of a new image



Offline statistical learning: prediction

1. Observe training data Zy, ..., Zy i.i.d. from unknown distribution
2. Choose action A€ ACB
3. Suffer an expected/population loss/risk r(A), where

‘a eB—r(a) :zEé(a,Z)‘

with £ is an prediction loss function and Z is a new test data point

Goal: Minimize the estimation error defined by the following decomposition

r(A) — ;relgr(a) =r(A) - aléli?“(a) +;2£r(a) — érelgr(a)

excess risk estimation error approximation error

as a function of n and notions of “complexity” of the set A of the function /

Note: Estimation/Approximation trade-off, a.k.a. complexity/bias



ERM and Uniform Learning

> A natural framework is given by the

n

1
a€B— R(a) = - Zﬁ(a,Zi)
i=1

v

A natural algorithm is given by the minimizer of the ERM

A* € argmin R(a)
acA

v

Uniform Learning: The estimation error is bounded by

r(A") —r(a”) < sup{r(a) — R(a)} + sup{R(a) — r(a)}
—— acA acA

estimation error for ERM

Statistics

v

Statistical Learning deals with bounding the Statistics term (Vapnik 1995)

test)

Generalization Error: r(a)—R(a) ~ & Z:il (a, 28N =L 4(a, Z;)

n (test) n
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Goal: derive bounds in expectation

f(dimension)

ne

» Goal: E r(4A*)—r(a*) <
—_———

estimation error for ERM

» By uniform learning, it suffices to bound the suprema of random processes:

f(dimension, )

ne

Eg(Zy,...,7Z,) <

with g(Z1,...,Z,) = sup{r(a) — R(a)} = sup {Eé(a, Z) — %Zﬂ(a, Zl)}

acA acA

i=1

» We aim to derive a uniform, non-asymptotic Law of Large Numbers
» In machine learning, dimension can be >> 10°, e.g., number of pixels
» ldeally, f(dimension) < dimension, e.g., f(dimension) ~ log(dimension)

> ldeally, « = 1 (fast rate)



Let X be a bounded random variable a < X — EX < b. Then, for any A € R,

EMX-EX) eX"(b—a)z/S

Proof
» W.lo.g., take EX = 0. Let 1)()\) = logE e**

, EXAX . EXQ)\X EX)\X 2
v =Sl v =B - (B

e

> 1)"()) is the variance of X under the distribution Q(dz) = < P(dx)

- 00 = Vara (x - “57) <Ba[(x - 20Y7 < 0=

A n . )\2(17 _ a)2
» Fundamental Thm of Calculus: (\) = / / " (p)dpdp < —
o Jo



Let X1,...,X,, be n centered random variables bounded in the interval [a, b].

b—
Emax X; <7\/lo n
1€[n] \/i J

Proof

> X = maxXic[n) Xi. Exponentlate Jensen's |neq as x — e (A > 0) is convex:

EX = Xloge)‘EX < XlogEe

» Bound maximum of non-negative numbers by the sum:

EeAX —Ee )\maxLE[n i _EmaxeAXI <E§ :eAXL _2 :Ee)\X
i=1

i€[n] p

> Put everything together and use Hoeffding’s lemma (E ¥ < e)‘Q(b’“)2/8):

2 b —a)?
<= A% (b—a)?/8 _
E{IEIdXX log E e N log n+ 5

=1

» Optimizing the bound a/\ + A3 over A > 0 yields the minimum is at A = \/«a/f8

and the optimal value 2/af = (b — a)+/logn/2

O



Bound in expectation for finitely-many actions

If the loss function ¢ is bounded by ¢, we have

Egleaj({r(a) — R(a)} < (37%

Proof: Same as above, using the independence of the data Z1,...,2,
(note that for each a € A, r(a) — R(a) is a centered random variable as ER(a) = r(a))

dimension, )

v
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Recall wish: | E sup{r(a) — R(a)} < I
acA

» The dimension of the data is superseded by the boundedness assumption
> o =1/2, slow rate
» When < 00, is a valid notion of complexity of the problem

» When = 00, upper bound is trivial and we need another notion of complexity




Rademacher complexity

Rademacher complexity (Definition 2.5)

The Rademacher complexity of a set 7 C R" is defined as

Rad = Esu Qit;
™) te?E n Z
where Qy,...,9Q, € {—1,1} are i.i.d. uniform random variables (Rademacher)

» Measures of complexity: describes how well elements in 7 can replicate the
sign pattern of a uniform random signal in R™ (see Problem 1.5)

» Useful properties:

° ’Rad(cT—i— v) = |c|Rad(T) ‘ (Proposition 2.6)

(T +T') =Rad(T) + Rad(T") ‘ (Proposition 2.7)

° ’ Rad(conv(7)) = Rad(T) ‘ (Proposition 2.8)

with conv(7) = {3°72, wit; 1w € Am,ta,... tm € T,m € N}



Rademacher complexity

Massart's Lemma (Lemma 2.9)

Let 7 C R™ and let v € R™ be any vector. We have

21
Rad(T) < max ||t — v||, X287
teT n

Proof: Similar to ones given above. Problem 1.6

Contraction property - Talagrand's Lemma (Lemma 2.10)

Let 7 C R™. Foreachi € {1,...,n}, let f; : R — R be a y-Lipschitz function. Then,

|Rad((f1,..., fa) o T) < yRad(T) |

with (fl,- ,fn) @7 = {(fl(tl),. ,fn(tn)) eR":te T}

Proof: Problem 1.7

9/



