
Algorithmic Foundations of Learning

Problem Sheet 3
Lecturer: Patrick Rebeschini Due date: 48 hours before class

3.1 U-statistics (Question type: A)

Let h : R2 → R be a symmetric function, i.e., h(x, y) = h(y, x), and assume that ‖h‖∞ = supx,y∈R2 |h(x, y)| ≤
c. Let X1, . . . , Xn be a sequence of i.i.d. random variables, and define

U :=
1(
n
2

) ∑
i<j

h(Xi, Xj).

Show that P(|U −EU | ≥ ε) ≤ 2e−
nε2

8c2 .

Remark. U-statistics refers to a family of unbiased (hence the “U” term) estimators of interest. For
instance, taking h(x, y) = 1

2 (x − y)2 it can be showed that U = 1
n−1

∑n
i=1(Xi − 1

n

∑n
j=1Xj)

2, which is an
unbiased estimatore for the variance, namely, EU = VarX1.

3.2 Lipschitz Concentration for Gaussian Random Variables (Ques-
tion type: B)

Let X = (X1, . . . , Xd) ∈ Rd be a vector of i.i.d. standard Gaussian random variables (mean 0 and variance
1), and let f : Rd → R be a differentiable function, γ-Lipschitz with respect to the Euclidean norm. Prove
that f(X) is sub-Gaussian with variance proxy π2γ2/4, hence

P(|f(X)−Ef(X)| ≥ ε) ≤ 2e
− 2ε2

π2γ2 .

Hint: Use that if a function f : Rd → R is differentiable and X,Y ∈ Rd are two independent vectors of i.i.d.
standard Gaussian random variables, then for any convex function φ : R→ R we have

Eφ(f(X)−Ef(X)) ≤ Eφ

(
π

2
∇f(X)>Y

)
.

Remark. This result can be improved, and it can be shown that even if f is not differentiable, f(X) is
sub-Gaussian with variance proxy γ2, hence leading to

P(|f(X)−Ef(X)| ≥ ε) ≤ 2e
− ε2

2γ2 .

This is remarkable, as it shows that any γ-Lipschitz function of a standard Gaussian vector exhibits the
same concentration as a one dimensional Gaussian random variable with variance γ2.
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3.3 Sub-exponential Random Variables and χ2 Concentration (Ques-
tion type: B)

A random variable X is said to be sub-exponential with non-negative parameters (ν2, c) if

Eeλ(X−EX) ≤ eν
2λ2/2 for any λ ∈ (−1/c, 1/c)

1. Show that if a random variable X satisfies the two-sided Bernstein’s condition with parameter b > 0
(see property (7.1) in Section 7.3 in the Lecture Notes), then it belongs to the class of sub-exponential
random variables with parameters (ν2, c), where c = 2b and ν2 is a parameter you should state.

2. Let Z be a standard Gaussian random variable, i.e., Gaussian with EZ = 0 and VarZ = 1. Then,
Z2 is a chi-squared random variable with 1 degree of freedom. Show that Z2 is sub-exponential with
parameters ν2 = 4 and c = 4.

3. Let Z1, . . . , Zn be independent standard Gaussian random variables. Then, Y = Z2
1 + . . . + Z2

n is a
chi-squared random variable with n degrees of freedom. Show that

P(|Y/n− 1| ≥ ε) ≤ 2e−nε
2/8 for all ε ∈ (0, 1).

4. Assume that we are given n d-dimensional data points x1, . . . , xn ∈ Rd, and we are in a situation when
d is so large that even storing this dataset into memory is very expensive. We would like to design a
compression map f : Rd → Rp with p � d that preserves some important characteristics of the data,
so that we can store the compressed data f(x1), . . . , f(xn) and not “lose much” by doing so. As many
algorithms in machine learning are based on computing pairwise distances, we are interested in finding
a map f that preserves Euclidean distances, i.e., a map f such that for any i, j ∈ [n] we have

(1− ε)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22

for a tolerance parameter ε ∈ (0, 1). Let Z ∈ Rp×d be a matrix formed by i.i.d. standard Gaussian
random variables, and consider the (random) mapping x ∈ Rd → F (x) := Zx/

√
p. Show that if

p > 16
ε2 log(n/δ), then the mapping F satisfies the property above with high probability, namely:

P

(
‖F (xi)− F (xj)‖22
‖xi − xj‖22

∈ (1− ε, 1 + ε) for all i 6= j

)
≥ 1− δ.

Hint: What is the distribution of
‖F (x)‖22
‖x‖22

?

Remark. This is surprising! The map F achieves an arbitrarily good compression with a projection
dimension p that is independent of the original dimension d and that scales only logarithmically with
the number of data points n.

3.4 Stochastic Mirror Descent (Question type: B)

Prove Theorem 11.2 in the Lecture Notes on the convergence of projected stochastic mirror descent.

Hint: Consider the proof of Theorem 10.11 and the proof of Theorem 11.1. Recall from Lecture 0 the
properties of conditional expectations. Also, recall that Hölder’s inequality for vectors reads |x>y| ≤ ‖x‖‖y‖∗
and that Hölder’s inequality for expectations reads E|XY | ≤ (E[Xp])1/p(E[Y q])1/q, for p, q > 1 with 1

p+ 1
q =1.



Problem Sheet 3 3-3

3.5 Boosting (Question type: C)

You are competing in a Kaggle competition involving binary classification. Let (X1, Y1), . . . , (Xn, Yn) ∈
Rm × {−1, 1} be the training data you are given. Assume that you have already computed d classifiers
hk : Rm → {−1, 1}, for k ∈ [d], and that you want to combine them to design the final classifier for the
competition. In particular, you want to compute the convex combination of weights W ? = (W ?

1 , . . . ,W
?
d ) ∈

∆d that solves the empirical risk minimization problem:

min
w=(w1,...,wd)∈∆d

R(w) :=
1

n

n∑
i=1

ϕ

(( d∑
k=1

wkhk(Xi)

)
Yi

)
, (3.1)

where ϕ : [−1, 1] → R+ is a loss function to be chosen between the exponential loss, the hinge loss, or the
logistic loss. Recall the following definitions:

• B = {x ∈ Rm → a(x) ∈ {−1, 1}}
Asoft = {x ∈ Rm → a(x) =

∑d
k=1 wkhk(x) ∈ [−1, 1] : w = (w1, . . . , wd) ∈ ∆d}

• r(a) = P(a(X) 6= Y ) for any a ∈ B
rϕ(a) = Eϕ(a(X)Y ) for any a ∈ Asoft

• a?? = argmina∈B r(a) (Bayes classifier)
a?ϕ = argmina∈Asoft

rϕ(a)

Answer the following questions.

1. Let A?ϕ =
∑d
k=1W

?
k hk ∈ Asoft be the soft classifier obtained with the weights that solve problem (3.1).

Show that with probability at least 1− δ the excess risk of the corresponding hard classifier sign
(
A?ϕ
)

is upper-bounded as follows

r(sign(A?ϕ))− r(a??) ≤ 2c

(
4γ

√
2 log d

n
+ c̃

√
2

log(1/δ)

n

)ν
+ 2c(rϕ(a?ϕ)− rϕ(a??ϕ ))ν .

Define the constants c, c̃, ν, and γ when the loss function ϕ is the exponential loss, the hinge loss, and
the logistic loss, respectively. Hint: For ν ∈ [0, 1] and a, b ≥ 0 we have (a+ b)ν ≤ aν + bν .

2. Based on the bound above, does the statistical performance of the final classifier increase or decrease
with d? Why?

3. Give the full implementation (pseudocode) of a computationally-efficient algorithm to approximately
solve problem (3.1) when the loss function ϕ is the exponential loss, the hinge loss, and the logistic
loss, respectively. If W t ∈ Rd denotes the output of this algorithm at time step t, give a bound for the
quantity

E[R(W t)−R(W ?)].

How long would you run the algorithm for? Why? What is the total computational complexity as a
function of n and d?

Remark. Most algorithms that end up winning Kaggle competitions are indeed obtained by using ensemble
meta-algorithms such as boosting, as a way to aggregate a variety of different methods and “boost up” their
performances!
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3.6 Algorithmic Stability: Strongly Convex Functions (Question
type: B)

Let f : Rd → R be a differentiable function that is α-strongly convex and β-smooth (with respect to the `2
norm), for given α < β.

1. Prove that the function x ∈ Rd → g(x) := f(x)− α
2 ‖x‖

2
2 is convex and c-smooth, for a constant c > 0

that you should state.

Hint: What happens if the function f is twice-differentiable?

2. Let η ≤ 2/(β + α). Show that, for any x, y ∈ R, we have

‖x− y − η(∇f(x)−∇f(y))‖2 ≤
(

1− ηβα

β + α

)
‖x− y‖2.

Hint: If a function h is convex and β-smooth with respect to the `2 norm, then its gradients are
co-coercive, that is, 〈∇h(x)−∇h(y), x− y〉 ≥ 1

β ‖∇h(x)−∇h(y)‖22.

3. Given the training data Z1, . . . , Zn, a loss function `, and a convex set C, consider the following
empirical risk minimization problem

minimize
w

R(w) =
1

n

n∑
i=1

`(w,Zi)

subject to w ∈ C

Assume that for any z the function w ∈ C → `(w, z) is α-strongly convex, β-smooth, and γ-Lipschitz
(with respect to the Euclidean norm ‖ · ‖2). Consider the projected stochastic gradient descent
algorithm (multiple passes through the data) with initial condition W1 = 0 and learning rate ηs ≡ η
satisfying η ≤ 2/(β + α). Use algorithmic stability to prove that for any t ≥ 1 we have

E[r(Wt)−R(Wt)] ≤
2ηγ2

n

α+ β

ηαβ
.


