Algorithmic Foundations of Learning

Problem Sheet 3

Lecturer: Patrick Rebeschini Due date: 48 hours before class

3.1 U-statistics (Question type: A)

Let h : R* — R be a symmetric function, i.e., h(z,y) = h(y, z), and assume that ||h[|cc = sup, ,cge [h(z,y)| <
c. Let Xq,..., X, be a sequence of i.i.d. random variables, and define

U= % > (X X;).
(2) i<j

ne2

Show that P(JU — EU| > ) < 2e” 8.7 .

Remark. U-statistics refers to a family of unbiased (hence the “U” term) estimators of interest. For

instance, taking h(z,y) = 3(x —y)? it can be showed that U = -1 371" | (X; — £ 7% | X;)?, which is an
unbiased estimatore for the variance, namely, EU = VarXj.

3.2 Lipschitz Concentration for Gaussian Random Variables (Ques-
tion type: B)

Let X = (X1,...,Xq4) € R? be a vector of i.i.d. standard Gaussian random variables (mean 0 and variance
1), and let f : R? — R be a differentiable function, y-Lipschitz with respect to the Euclidean norm. Prove
that f(X) is sub-Gaussian with variance proxy 722 /4, hence

2¢2

P(|f(X) — Bf(X)| > ) < 2¢” 77

Hint: Use that if a function f : R? — R is differentiable and X,Y € R are two independent vectors of i.i.d.
standard Gaussian random variables, then for any convex function ¢ : R — R we have

Eé(f(X) - Ef(X)) < Eo<gi(X)TY>.

Remark. This result can be improved, and it can be shown that even if f is not differentiable, f(X) is
sub-Gaussian with variance proxy 72, hence leading to

2

P(|f(X) - Ef(X)| > ) < 2727

This is remarkable, as it shows that any ~-Lipschitz function of a standard Gaussian vector exhibits the
same concentration as a one dimensional Gaussian random variable with variance 2.
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3.3 Sub-exponential Random Variables and x* Concentration (Ques-
tion type: B)

A random variable X is said to be sub-ezponential with non-negative parameters (12, ¢) if

EMX-EX) < o"X/2 forany A € (—1/e,1/c)

1. Show that if a random variable X satisfies the two-sided Bernstein’s condition with parameter b > 0
(see property (7.1) in Section 7.3 in the Lecture Notes), then it belongs to the class of sub-exponential
random variables with parameters (v2, c), where ¢ = 2b and v? is a parameter you should state.

2. Let Z be a standard Gaussian random variable, i.e., Gaussian with EZ = 0 and VarZ = 1. Then,
Z? is a chi-squared random variable with 1 degree of freedom. Show that Z2 is sub-exponential with
parameters v2 = 4 and ¢ = 4.

3. Let Zy,...,Z, be independent standard Gaussian random variables. Then, Y = Z? + ...+ Z2 is a
chi-squared random variable with n degrees of freedom. Show that

P(Y/n—1]>¢) <2 /8 forallee (0,1).

4. Assume that we are given n d-dimensional data points z1,...,z, € R? and we are in a situation when
d is so large that even storing this dataset into memory is very expensive. We would like to design a
compression map f : R? — R? with p < d that preserves some important characteristics of the data,
so that we can store the compressed data f(x1),..., f(x,) and not “lose much” by doing so. As many
algorithms in machine learning are based on computing pairwise distances, we are interested in finding
a map f that preserves Euclidean distances, i.e., a map f such that for any ¢, j € [n] we have

(1= e)llzi — 25013 < [1f (i) = Flap)ll3 < 1+ )y — 513

for a tolerance parameter ¢ € (0,1). Let Z € RP*? be a matrix formed by i.i.d. standard Gaussian
random variables, and consider the (random) mapping z € R? — F(z) := Zz/,/p. Show that if
D> g log(n/¢), then the mapping F' satisfies the property above with high probability, namely:

P<||F(xz) Fla;)l (1—¢,1+¢) forall i ;éj) >1-4.

IF@)3

=13

Hint: What is the distribution of

Remark. This is surprising! The map F' achieves an arbitrarily good compression with a projection
dimension p that is independent of the original dimension d and that scales only logarithmically with
the number of data points n.

3.4 Stochastic Mirror Descent (Question type: B)

Prove Theorem 11.2 in the Lecture Notes on the convergence of projected stochastic mirror descent.

Hint: Consider the proof of Theorem 10.11 and the proof of Theorem 11.1. Recall from Lecture 0 the
properties of conditional expectations. Also, recall that Holder’s inequality for vectors reads |z Ty| < ||z|||y]]«
and that Holder’s inequality for expectations reads E|XY'| < (E[X?))'/?(E[Y9])Y/4, for p, ¢ > 1 with %Jri =1
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3.5 Boosting (Question type: C)

You are competing in a Kaggle competition involving binary classification. Let (X1,Y7),...,(X,,Y,) €
R™ x {—1,1} be the training data you are given. Assume that you have already computed d classifiers
hi : R™ — {—1,1}, for k € [d], and that you want to combine them to design the final classifier for the
competition. In particular, you want to compute the convex combination of weights W* = (Wy,...,WJ) €
Ay that solves the empirical risk minimization problem:

min  R(w) := ii@<<léwkhk(Xi)>}Q), (3.1)

w=(wi,...,wq)EAy

where ¢ : [-1,1] — Ry is a loss function to be chosen between the exponential loss, the hinge loss, or the
logistic loss. Recall the following definitions:

e B={zeR™ = a(x) e {-1,1}}
Asoi = {z € R™ = a(w) = Xp_y wiha(x) € [-1,1] 1w = (wi, ..., wa) € Ag}

e r(a) =P(a(X)#Y) for any a € B
ro(a) = Bp(a(X)Y) for any a € Asof

e o = argmin, g r(a) (Bayes classifier)

R

ay, = argmin,c 4 . 7,(a)
Answer the following questions.

1. Let A7 = 22:1 Wihy, € Asoy be the soft classifier obtained with the weights that solve problem (3.1).
Show that with probability at least 1 — § the excess risk of the corresponding hard classifier sign (As*a)
is upper-bounded as follows

r(sign(A3)) — r(a**) < 20(47\/ 21‘;& + a\/ 21og(1/5))” +2e(rp(a) — ro(as))”.

n

Define the constants ¢, ¢, v, and v when the loss function ¢ is the exponential loss, the hinge loss, and
the logistic loss, respectively. Hint: For v € [0, 1] and a,b > 0 we have (a +b)” < a” 4+ b".

2. Based on the bound above, does the statistical performance of the final classifier increase or decrease
with d? Why?

3. Give the full implementation (pseudocode) of a computationally-efficient algorithm to approximately
solve problem (3.1) when the loss function ¢ is the exponential loss, the hinge loss, and the logistic
loss, respectively. If W, € R? denotes the output of this algorithm at time step ¢, give a bound for the
quantity

E[R(W}) = R(W™)].

How long would you run the algorithm for? Why? What is the total computational complexity as a
function of n and d?

Remark. Most algorithms that end up winning Kaggle competitions are indeed obtained by using ensemble
meta-algorithms such as boosting, as a way to aggregate a variety of different methods and “boost up” their
performances!
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3.6 Algorithmic Stability: Strongly Convex Functions (Question
type: B)

Let f: RY — R be a differentiable function that is a-strongly convex and S-smooth (with respect to the fo
norm), for given a < f3.

1. Prove that the function z € RY — g(z) := f(z) — 2[/z(]3 is convex and c-smooth, for a constant ¢ > 0
that you should state.

Hint: What happens if the function f is twice-differentiable?

2. Let n < 2/(8 + «). Show that, for any z,y € R, we have

npo
e~y =n(V (@) = Vi) < (1= 5505 ) le = vl

Hint: If a function h is convex and [-smooth with respect to the f5 norm, then its gradients are
co-coercive, that is, (Vh(z) — Vh(y),z —y) > %[ Vh(z) — Vh(y)|3.

3. Given the training data Zi,...,Z,, a loss function ¢, and a convex set C, consider the following
empirical risk minimization problem

- 1 ¢
minimize R(w) = - 25(11), Z;)
subject to w € C

Assume that for any z the function w € C — ¢(w, 2) is a-strongly convex, S-smooth, and +-Lipschitz
(with respect to the Euclidean norm || - ||2). Consider the projected stochastic gradient descent
algorithm (multiple passes through the data) with initial condition W7 = 0 and learning rate n, = n
satisfying n < 2/(8 + «). Use algorithmic stability to prove that for any ¢ > 1 we have

272 a+ B

Blr() — ROV < =5




