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5.1 Introduction

In the case of classification we established that only a finite number of elements in the hypothesis classA really
matter as far as establishing a notion of complexity of A that can be used to bound uniform deviations in
expectation: only the classifiers yielding different labelings matter. We did so using combinatorial arguments,
leading to the notion of complexity given by the growth function, which measures the maximal size of A
when restricted to a given number of points. This quantity, in turn, can be upper-bounded in terms of the
VC dimension.

We will now apply the same idea in the setting of regression, where we consider real-valued predictors.
We will isolate a few (finitely many) predictors of interest, bound the Rademacher complexity of the set of
restrictions to samples in terms of the Rademacher complexity of these representative predictors, and control
the error the we commit by only considering a subset of A. Our goal is to find a finite set that explains
“most of” the deviation in expectation, up to a certain precision parameter ε. To do so, we will use metric
arguments and the notion of covering numbers. This analysis, in fact, will yield improvements also in the
setting of binary classification, allowing to remove the term log(en/VC(A)) in the bound of Proposition 4.13.

Recall that the regression setting is represented by the choice X = Rd for a given dimension d, Y = R, and

A ⊆ B = {a : X → Y}.

5.2 Covering Numbers Bounds for Rademacher Complexity

Given x = {x1, . . . , xn} ∈ Xn, define the following pseudonorms on the space A: for any a ∈ A,

‖a‖p,x :=
( 1

n

n∑
i=1

|a(xi)|p
)1/p

for any p ∈ [1,∞),

‖a‖∞,x := max
i
|a(xi)|.

These pseudonorms induce the following pseudometrics on the space A, for any a, b ∈ A,

‖a− b‖p,x :=
( 1

n

n∑
i=1

|a(xi)− b(xi)|p
)1/p

for any p ∈ [1,∞),

‖a− b‖∞,x := max
i
|a(xi)− b(xi)|.

There is a monotone behavior of covering and packing numbers on the space (A, ‖ · ‖p,x) with respect to p.

Proposition 5.1 For any x = {x1, . . . , xn} ∈ Xn, 1 ≤ p ≤ q, and ε > 0, we have

Cov(A, ‖ · ‖p,x, ε) ≤ Cov(A, ‖ · ‖q,x, ε)

Pack(A, ‖ · ‖p,x, ε) ≤ Pack(A, ‖ · ‖q,x, ε)
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Proof: See Problem 2.6 in the Problem Sheets.

Proposition 5.1 shows that once we obtain results (i.e. upper bounds) involving covering numbers for the
pseudometric space (A, ‖ · ‖p,x), for p ≥ 1, then we can immediately derive results involving covering and
packing numbers (recall the duality property, Proposition 4.15) for the norm ‖ · ‖q,x, for any q ≥ p.

Covering numbers of the pseudometric space (A, ‖ · ‖1,x) can be used to bound the empirical Rademacher
complexity.

Proposition 5.2 For any x = {x1, . . . , xn} ∈ Xn, let supa∈A ‖a‖2,x ≤ cx. Then,

Rad(A ◦ x) ≤ inf
ε>0

{
ε+

√
2 cx√
n

√
log Cov(A, ‖ · ‖1,x, ε)

}

Proof: Fix x = {x1, . . . , xn} ∈ Xn and ε > 0. Let C ⊆ A be a minimal ε-cover of (A, ‖ · ‖1,x), and for any
a ∈ A let ã ∈ C be such that ‖a− ã‖1,x ≤ ε. We have

Rad(A ◦ x) = E sup
a∈A

1

n

n∑
i=1

Ωia(xi) ≤ E sup
a∈A

1

n

n∑
i=1

Ωi(a(xi)− ã(xi)) + E sup
a∈A

1

n

n∑
i=1

Ωiã(xi)

≤ ε+ E sup
a∈C

1

n

n∑
i=1

Ωia(xi) ≤ ε+ sup
a∈C

√√√√ n∑
i=1

a(xi)2

√
2 log |C|
n

≤ ε+ cx

√
2 log Cov(A, ‖ · ‖1,x, ε)

n
,

where the last inequality follows by Massart’s lemma, and |C| = Cov(A, ‖ · ‖1,x, ε) by definition. The result
follows by taking the infimum over ε > 0.

The bound in Proposition 5.2 establishes a tradeoff with respect to the parameter ε, as when ε decreases
Cov(A, ‖ · ‖1,x, ε) increases. This bound is data-dependent, as the right-hand side depends on x ∈ Xn.

5.3 Chaining

Proposition 5.2 is established by only using one fixed level of granularity (ε > 0) at a time, and taking the
infimum over ε > 0 to obtain the final bound. An improved version of this result can be established by
integrating over different levels of granularity. In this case, we need to work with covering numbers for the
pseudometric space (A, ‖ · ‖2,x).1

Proposition 5.3 For any x = {x1, . . . , xn} ∈ Xn and supa∈A ‖a‖2,x ≤ cx we have

Rad(A ◦ x) ≤ inf
ε∈[0,cx/2]

{
4ε+

12√
n

∫ cx/2

ε

dν
√

log Cov(A, ‖ · ‖2,x, ν)
}

Proof: Fix x = {x1, . . . , xn} ∈ Xn. For each j ∈ N+ let εj := cx/2
j and let Cj ⊆ A be a minimal εj-cover

of (A, ‖ · ‖2,x). We have |Cj | = Cov(A, ‖ · ‖2,x, εj). For any a ∈ A and j ∈ N+ let aj ∈ Cj such that

1The chaining argument relies on using the triangle inequality on the application of Massart’s lemma, where the ‖ · ‖2 norm
naturally appears. This is the reason why we can not work with (A, ‖ · ‖1,x) but we need to consider (A, ‖ · ‖2,x).
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‖a − aj‖2,x ≤ εj . The sequence a1, a2, . . . (of elements of covers with decreasing radius) converges towards
a. This sequence can be used to define the following telescoping sum, for a given m ∈ N to be chosen later:

a = a− am +

m∑
j=1

(aj − aj−1)

with a0 := 0. This telescoping sum can be thought of as a “chain” connecting a0 = 0 to a. This is the reason
why the technique we are going to describe is called chaining. We have

Rad(A◦ x) = E sup
a∈A

1

n

n∑
i=1

Ωia(xi) ≤ E sup
a∈A

1

n

n∑
i=1

Ωi(a(xi)− am(xi)) +E sup
a∈A

1

n

n∑
i=1

Ωi

m∑
j=1

(aj(xi)− aj−1(xi)).

We bound the two summands separately. The first summand is bounded by εm, as

n∑
i=1

Ωi(a(xi)− am(xi)) ≤
n∑
i=1

|a(xi)− am(xi)| = n‖a− am‖1,x ≤ n‖a− am‖2,x ≤ nεm.

As the are at most |Cj ||Cj−1| different ways to create a vector in Rn of the formaj(x1)− aj−1(x1)
...

aj(xn)− aj−1(xn)


with aj ∈ Cj and aj−1 ∈ Cj−1, using Massart’s Lemma the second summand can be upper bounded by

m∑
j=1

E sup
a∈A

1

n

n∑
i=1

Ωi(aj(xi)− aj−1(xi)) ≤
m∑
j=1

sup
a∈A

√√√√ n∑
i=1

(aj(xi)− aj−1(xi))2

√
2 log |Cj ||Cj−1|

n

=

m∑
j=1

sup
a∈A
‖aj − aj−1‖2,x

√
2 log |Cj ||Cj−1|√

n
.

By the triangle inequality for the pseudonorm ‖ · ‖2,x we have (using that εk−1 = 2εk)

‖aj − aj−1‖2,x ≤ ‖aj − a‖2,x + ‖a− aj−1‖2,x ≤ εj + εj−1 = 3εj = 6(εj − εj+1).

Also, |Cj | = Cov(A, ‖ · ‖2,x, εj) and |Cj−1| ≤ |Cj |. Putting everything together we find

Rad(A ◦ x) ≤ εm +
12√
n

m∑
j=1

(εj − εj+1)
√

log Cov(A, ‖ · ‖2,x, εj)

≤ 2εm+1 +
12√
n

∫ cx/2

εm+1

dν
√

log Cov(A, ‖ · ‖2,x, ν),

where the last inequality follows as the integral is lower-bounded by its lower Riemann sum as the function
ν → Cov(A, ‖ · ‖2,x, ν) is non-increasing. For any ε ∈ [0, cx/2], choose m such that ε < εm+1 ≤ 2ε. The
statement of the proposition follows by taking the infimum over ε ∈ [0, cx/2].

The integral in Proposition 5.3 is called Dudley Entropy Integral. This integral allows to exploit the decay of
the cover number Cov(A, ‖ · ‖2,x, ν) as ν increases. As the function ν → Cov(A, ‖ · ‖2,x, ν) is non-increasing,
we clearly have ∫ cx/2

ε

dν
√

log Cov(A, ‖ · ‖2,x, ν) ≤ cx
2

√
log Cov(A, ‖ · ‖2,x, ε),

which shows how (modulo constants) Proposition 5.3 yields an improvement over the bound obtained by
Proposition 5.2 using that Cov(A, ‖ · ‖1,x, ε) ≤ Cov(A, ‖ · ‖2,x, ε).



5-4 Lecture 5: Covering Numbers Bounds for Rademacher Complexity. Chaining

5.4 Linear Predictors `∞/`1 Constraints

As an application of Proposition 5.3, we consider the case of linear predictors with `∞/`1 constraints, which
adds to the examples covered in Lecture 3. The following result (modulo constants) can also be obtained via
a direct application of Massart’s Lemma, using the fact that the supremum of a linear function over the `∞
ball is achieved at one of the extreme points, and there are 2d of them (so that the final dependence growths
as
√
d).

Proposition 5.4 Let A∞ := {x ∈ Rd → w>x : w ∈ Rd, ‖w‖∞ ≤ 1}. Then, for any x = {x1, . . . , xn} ∈ Xn,

Rad(A∞ ◦ x) ≤ 12γ
maxi ‖xi‖1√

n

√
d

where γ :=
∫ 1/2

0
dν
√

log(3/ν).

Proof: Fix x = {x1, . . . , xn} ∈ Xn. Proposition 5.3 and the bound provided by Proposition 5.1 with p = 2
and q =∞ yield

Rad(A∞ ◦ x) ≤ inf
ε∈[0,cx/2]

{
4ε+

12√
n

∫ cx/2

ε

dν
√

log Cov(A∞, ‖ · ‖∞,x, ν)
}
.

By Hölder’s inequality, for any a ∈ A∞ we have a(x) = w>x ≤ ‖w‖∞‖x‖1 ≤ ‖x‖1,

cx = sup
a∈A∞

‖a‖2,x = sup
a∈A∞

√√√√ 1

n

n∑
i=1

a(xi)2 ≤

√√√√ 1

n

n∑
i=1

‖xi‖21 ≤ c,

with c := maxi ‖xi‖1. To bound the ν-covering number Cov(A∞, ‖ · ‖∞,x, ν), it is sufficient to find a ν-cover
of the pseudometric space (A∞, ‖ · ‖∞,x). Note that for any a, b ∈ A∞ with a(x) = w>a x and b(x) = w>b x,
by Hölder inequality, we have

‖a− b‖∞,x = max
i
|a(xi)− b(xi)| = max

i
|(wa − wb)>xi| ≤ c ‖wa − wb‖∞.

Hence, to find an ν-cover it suffices to find a set of vectors C ⊆ Rd such that for any wa ∈ {w ∈ Rd :
‖w‖∞ ≤ 1} there exists w ∈ C with ‖wa − w‖∞ ≤ ν/c. We can define C to be the set of vertices of
the hypercubes that we obtain by dividing the hypercube with side length 2 into hypercubes with side
length 2ν/c. Clearly, any wa ∈ {w ∈ Rd : ‖w‖∞ ≤ 1} must land in one of these hypercubes, and each
coordinate is at most ν/c away from one of the vertices. There are at most (dc/νe + 1)d vertices, so
Cov(A∞, d∞(x1, . . . , xn), ν) ≤ (dc/νe + 1)d ≤ (c/ν + 2)d ≤ (3c/ν)d, where the last inequality holds for
c/ν ≥ 1, or, equivalently, if ν ≤ c. We have

Rad(A∞ ◦ x) ≤ inf
ε∈[0,cx/2]

{
4ε+

12√
n

∫ c/2

ε

dν
√
d log(3c/ν)

}
≤ 12

√
d√
n

∫ c/2

0

dν
√

log(3c/ν)

=
12c
√
d√

n

∫ 1/2

0

dν
√

log(3/ν).
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5.5 Binary Classification

We now apply Proposition 5.3 to the case of binary classification, which allows us to remove the term
log(en/VC(A)) from the bound of Proposition 4.13.

To this end, we first show that the packing number of the subspace of binary classifiers A equipped with the
pseudonorm ‖ · ‖1,x is upper-bounded by a data-independent bound that grows exponentially with respect
to the VC dimension (recall the exponential dependence on the dimension for packing and covering numbers
on bounded balls, Proposition 4.16). We give a proof that uses a technique known as a probabilistic method.

Proposition 5.5 Let A ⊆ B = {a : X → {0, 1}} with VC(A) <∞. For any x = {x1, . . . , xn} ∈ Xn, p ≥ 1,
ε > 0 we have

Pack(A, ‖ · ‖p,x, ε) ≤
(

10

εp
log

2e

εp

)VC(A)

Proof: Due to the nature of binary classification we have ‖a − b‖pp,x = ‖a − b‖1,x for any a, b ∈ A, p ≥ 1,
x = {x1, . . . , xn} ∈ Xn, which implies that Pack(A, ‖ · ‖p,x, ε) = Pack(A, ‖ · ‖1,x, εp). Hence, it is sufficient
to prove the statement for p = 1. Henceforth, fix x ∈ Xn and ε > 0.

The main idea of the proof is to relate the packing number of the subspace of binary classifiers A equipped
with the pseudonorm ‖ · ‖1,x with the growth function. Let P ⊆ A be a maximal ε-packing and let µ =
|P| = Pack(A, ‖ · ‖1,x, ε). Recall that the growth function of A is defined as m→ τA(m) := supz∈Xm |A ◦ z|
with A◦z = {(a(z1), . . . , a(zm)) : a ∈ A}. That is, the growth function evaluated at m is the largest number
of distinct labelings of m points in X that can be obtained using classifiers from A. We use the probabilistic
method to show that if m ≥ 2

ε logµ then there exists z ∈ Xm such that |P ◦ z| = |P| = µ, so that

µ = |P ◦ z| ≤ |A ◦ z| ≤ τA(m). (5.1)

The connection with probability comes from the following observation: note that for any a, b ∈ P we have

ε < ‖a− b‖1,x =
1

n

n∑
i=1

|a(xi)− b(xi)| =
1

n

n∑
i=1

1a(xi)6=b(xi) = P(a(Z) 6= b(Z)),

where Z is a uniform random variable taking values in {x1, . . . , xn}. Let Z1, . . . , Zm be m i.i.d. random
variables distributed as Z, and use the notation a ◦ {Z1, . . . , Zm} = (a(Z1), . . . , a(Zm)) for any a ∈ A. By
the union bound we have

P(|P ◦ {Z1, . . . , Zm}| = µ)

= P(Every a ∈ P produces a distinct label for {Z1, . . . , Zm})
= P(For every a, b ∈ P, a 6= b, we have a ◦ {Z1, . . . , Zm} 6= b ◦ {Z1, . . . , Zm})
= 1−P(There exists a, b ∈ P, a 6= b, such that a ◦ {Z1, . . . , Zm} = b ◦ {Z1, . . . , Zm})

= 1−P

( ⋃
a,b∈P,a 6=b

{a(Z1) = b(Z1), . . . , a(Zm) = b(Zm)}
)

≥ 1−
∑

a,b∈P,a6=b

P(a(Z1) = b(Z1), . . . , a(Zm) = b(Zm))

= 1−
∑

a,b∈P,a6=b

P(a(Z1) = b(Z1)) · · ·P(a(Zm) = b(Zm))

> 1− µ2(1− ε)m

> 1− µ2e−mε,
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where we used 1− ε < e−ε for ε > 0. The lower bound is strictly greater than zero if m ≥ 2
ε logµ, in which

case we are guaranteed that there exists z ∈ Xm such that |P ◦ z| = µ and (5.1) holds.

Using Sauer-Shelah’s lemma, Lemma 4.11, we have τA(m) ≤ (em/VC(A))VC(A), and (5.1) with m = 2
ε logµ

yields

µ1/VC(A) ≤ 2e

ε
log(µ1/VC(A)).

The proof follows as a ≤ b log a implies a ≤ b log b/(1 − 1/e) (see Lemma A.1 in [1], for instance), and
e/(1− 1/e) ≈ 4.86456 ≤ 5.

Theorem 5.6 Let A ⊆ B = {a : X → {0, 1}} with VC(A) <∞. For any x = {x1, . . . , xn} ∈ Xn, we have

Rad(A ◦ x) ≤ 31

√
VC(A)

n

Proof: Proposition 5.3 with cx = 1 and ε = 0 yields

Rad(A ◦ x) ≤ 12√
n

∫ 1

0

dν
√

log Cov(A, ‖ · ‖2,x, ν).

By Proposition 4.15, the covering number is upper-bounded by the packing number. The bound in Propo-
sition 5.5 yields, using log x ≤ x/e,

log Cov(A, ‖ · ‖2,x, ν) ≤ log Pack(A, ‖ · ‖2,x, ν) ≤ VC(A) log

(
10

ν2
log

2e

ν2

)
≤ VC(A) log

(
20

ν4

)
.

We get

Rad(A ◦ x) ≤ 12

√
VC(A)

n

∫ 1

0

dν

√
log

(
20

ν4

)
≤ 31

√
VC(A)

n
,

where we used that
∫ 1

0
dν
√

log
(
20
ν4

)
≈ 2.55919.
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